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INDEXED COUNTER LANGUAGES (*)

by J. DUSKE (x), M. MIDDENDORF (*) and R. PARCHMANN (*)

Communicated by J. BERSTEL

Abstract. — Starting with the characterization of context-free counter languages by rightlinear
indexed grammars with one index, indexed counter grammars are introduced and investigated. The
family of indexed counter languages is a full AFL properly contained in the family of indexed
languages and incomparable with the full trio oflinear indexed languages. Furthermore by modifying
the dérivation mode, a characterization of type-0 languages by indexed counter grammars is given.

Résumé. - Après une caractêrisation des langages algébriques à compteurs par des grammaires
indexées linéaires droites d'index 1, on introduit et étudie les grammaires indexées à compteurs.
La famille des langages indexés à compteurs est une AFL proprement contenue dans la famille des
langages indexés, et incomparable au cône rationnel des langages indexés linéaires. De plus, en
modifiant le mode de dérivation, on obtient une caractêrisation des langages de type 0 par des
grammaires indexées à compteurs.

1. INTRODUCTION

Indexed grammers have been introduced by Aho [1] as an extension of
context-free grammars. In the study of indexed grammars the question arises
whether the generative power of these grammars dépends on the number of
indices.

It is obvious, that an indexed grammar with an empty set of indices can
only generate context-free languages. On the other hand two indices suffîce
to generate ail indexed languages, because the indices of a gênerai indexed
grammar can be coded by words of two indices.

The concept of indexed grammars permits two principle ways of represen-
ting context-free languages; first by using a context-free grammar, which is a
special form of an indexed grammar, and second by using a rightlinear

(*) Received August 1990, revised November 1990.
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9 4 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

indexed grammar, which can be interpreted as a grammatical description of
a pushdown automaton.

Hence there is a natural way of representing context-free counter languages
as rightlinear indexed grammars with only one index and a special "endmar-
ker". Extending this concept to the case of a (genera!) indexed grammar, the
use of only one index symbol can be interpreted as "counting while perform-
ing context-free dérivations". The "endmarker" allows to detect a count of
zero and to start counting again. In Section 2 we introducé such grammars
formally and give examples. These grammars are called indexed counter
grammars or ic-grammars and the corresponding languages are called indexed
counter or ic-languages. Our investigations show that this subclass of indexed
languages shares many properties with the context-free counter languages.

In Section 3 we first give normal forms of ic-grammars. In particular, using
regularity properties of the index words appearing in dérivations of indexed
grammars, we arrive at the e-free Standard form of ic-grammars. Then it is
shown that grammars in this standard form allow dérivations of terminal
words such that the lengths of the appearing index words in these dérivations
are linear bounded by the lengths of the derived words. With the aid of this
result we give in Section 4 an example of an indexed language which is not
an ic-language, i. e, the family of ic-languages (which is a full AFL) is properly
contained in the family of indexed languages.

We also investigate the linear and rightlinear forms of ic-grammars and
completely characterize the subset and proper subset relation between the
classes of (linear, rightlinear) indexed, (linear, rightlinear) indexed counter
and (linear, rightlinear) context-free grammars.

In the final Section 5 we consider indexed grammars with another dériva-
tion mode introduced in [6]. Under this dérivation mode ic-grammârs generate
the same languages as phrase structure grammars. This result shows that
type-O languages can be obtained by "counting on leftmost dérivations of a
context-free grammar".

2. FORMAL DEFINITIONS AND BASIC PROPERTIES

Let us first defme the notion of an (linear, rightlinear) indexed grammar:

DÉFINITION 2.1: An indexed grammar is a 5-tuple G = (N,T,I,P,S) where

(1) TV, T, ƒ are finite, pairwise disjoint sets; the sets of variables, terminals
and indices respectively;

Informatique théorique et Applications/Theoretical Informaties and Applications



INDEXED COUNTER LANGUAGES 9 5

(2) P is a finite set of pairs (Af 0 ) , AeN, fel\j {e}, 0e(7V7* U T)*9

the set of productions; (Af 0 ) is denoted by Af-> 0 ;

(3) S e TV, the start variable.

Let ® = u1B1$1u2B2$2. . .£„p„wM + 1 with WJÊ?* for i e [ l : « + l ] ,
and PJ.GT* foryefl :n] with n^O, be an element of (NP U T)*9 and let y G 7*,
then we set

For 0' , 0 " e ( f f u r ) * , we set 0 '=>0" iff ®' = ® X

( 0 : y ) 0 2 w i t h ® ! , ®2e(NI*\JT)* and Af ^QeP,feI{J {e}.

n + #

=> is the ft-fold product, => is the transitive and => is the reflexive, transitive
closure of =>.

An indexed grammar G = (N, T, /, P, S) is called a linear indexed grammar,
iff each production in P is of one of the forms Af-+ uByv or Af^y u with A,
BeN,feIU{e}9u, veT* and y e/*.

An indexed grammar G = (TV, 71, ƒ, P, 5) is called a rightlinear indexed gram-
mar, iff each production in P is of one of the forms Af^uBy or Af^u
witlij , £e iV , / e /U {e}, weT* andye/*.

The language L(G) generated by an (linear, rightlinear) indexed grammar
G = (N,T,I9P9S) is the set L(G) = { w\ we T*9 sXw}. A language L is called
an (linear, rightlinear) index language iff L~L(G) for an (linear, rightlinear)
indexed grammar G.

The index words in a dérivation of such a rightlinear grammar can be
interpreted as the pushdown list; the nonterminals can be interpreted as
states of a suitable pushdown automaton. Vice versa for a given pushdown
automaton a rightlinear indexed grammar can be constructed which générâtes
the language that is accepted by that automaton. It follows that the rightlinear
indexed languages are exactly the languages accepted by pushdown automata,
Le. the context-free languages, as has been shown by Aho [1].

A pushdown automaton with only one pushdown symbol is a counter.
Such a device must stop if the pushdown store is empty, Le. it has counted
to zero.

An iterated counter may count down to zero several times. For this purpose
there is a bottom marker # in the pushdown store of an iterated counter.

vol. 26, n° 1, 1992



9 6 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

The formai définition of such an automaton is as follows [4]:

DÉFINITION 2.2: An iterated counter is a pushdown automaton
K= (Z, T, r , Ô, z0, # , F) with r = {ƒ # } and

where z e Z and aeTKJ [e] {e dénotes the empty word).

The classes of languages accepted by these automata with final state, empty
store or both coincide [4].

It is easy to construct a rightlinear indexed grammar for the iterated
counter K= (Z, T,T,8,z0, #,F) of Définition 2.2 which générâtes the set of
all words accepted by K with final states. Set G = (N9T,I9P9S) with
TV- Z U { S }, ƒ = r = {ƒ, # } and the following set of productions:

(a) S^zo#

(b) if (z', f) e 8 (z, fl, ƒ) then zf -> az' ƒ ' e ƒ>

(c) if (z', / # ) G ô (z, a, # ) then z # -> az' ƒ # e ?

(J) for ail z e F the production z -> e is in P
and if (z',e)eS(z,a, # ) with z'ef, then z# -+aeP.

The productions of the form z# -^az'f(# represent the capability of K
to start counting again, i. e, the itération capability.

Counting with the help of the pushdown store of K corresponds to counting
on dérivations of a rightlinear grammar. It is now interesting to investigate
the problem of counting on dérivations of (linear) context-free grammars. This
leads to the définition of an (rightlinear, linear) indexed counter grammar.

DÉFINITION 2.3: An indexed grammar G = (N,T,I,P,S) is called indexed
counter grammar {ic-grammar) iff ƒ== {ƒ, # } and the productions in P are of
one of the forms:

(a) S

where S does not appear in any other production in P

(b) Ag^G, ge{f,e}, ®e(Nf*\JT)*

(c) A # -> 0, 0 G {NP # U T)*.

G is called linear indexed counter grammar {linear ic-grammar) iff in the
above définition 0 e 7* Nf* T* U T* in {b) and 0 e T* Nf* # r* U T* in (c).
G is called rightlinear indexed counter grammar {rightlinear ic-grammar) iff in
the above définition @eT* Nf* \J V in (b) and 0 e r* TV/* # U T* in (c).

Informatique théorique et Applications/Theoretical Informaties and Applications
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A language L is called {rightlinear, linear) ic-language if L = L(G) for an
(rightlinear, linear) ic-grammar G.

Remark : If G is an ic-grammar, the index words in sentential forms are of
theform/ '# , i^O.

As shown above the rightlinear ic-languages are exactly the languages
accepted by itérated counters.

Example 2.4:

1. Let G^dStAtB}, {a}, {ƒ, # }, P,S) with

Gx is an ic-grammar with L(Gl)={a2n\n^0}.

2. Let G2 = ({S,Ai}, {a,6,c}, {ƒ, # }5 P, 5) with

G2 is a linear ic-grammar with L(G2) = {anbncn\n^Q}.

3. Let G3 = ({5, A, B9 C, D}, {a, b, $}, {ƒ # } , P , S ) with

{ A ^ a A f , A ^ B 9 Bf^bB, B#

C^aCf, C^D,Df-+bD,D# - e } .

G3 is a rightlinear ic-grammar with L(G3) = {o"*"5akbk \ n9 k^0 }.

3. PROPERTIES OF INDEXED COUNTER GRAMMARS

DÉFINITION 3.1: An ic-grammar G—(N9 T,I, P9 S) is in standard form if all

productions are of one of the forms:

(a) S-

where S does not appear in any other production in P

(b) A^BC

(c) A -+a

A-+ Bf {f-producing production)

Af-> B (f-consumingproduction)

vol. 26, n° 1, 1992



9 8 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

where^l, BeN and aeT{j{e}.

A linear ic-grammar G = (N, T> I, P, S) is in linear standard form if all
productions are of one of the forms (a), (c) or (d) as above or A-*bC or
A^Bc, A, B, CeN, b9 ceT.

A rightlinear ic-grammar G^{N,T,I,P,S) is in rightlinear standard farm
if all productions are in one of the forms (a), (c) or (d) as above or A -> èC,
A9 CeN, beT.

Remark: Applications of/-producing or /-consuming productions give rise
to nodes with only one son in the corresponding dérivation tree, Le. all
changes of the index words attached to a variable occur on paths with no
branches.

THEOREM 3.2: For every {linear, rightlinear) ic-grammar G=(N,T,I,P,S)
an {linear, rightlinear) ic-grammar G' in standard farm with L{G) = L{G') can
effectively be constructed.

Proof: First replace each production of the form

A# ^u1B1y1u2, . .ulBlylul + l9

by the productions A# -^B# and B^>u1B1yiu2. . ^ulBlylul + x where B is
a new nonterminal. Then eliminate in a standard way ail singular productions
(e. g. [5]). Now ail productions are of one of the forms:

{a) S->A#

{b)

{c)

where ®e(Nf*\JT)*,ge{f,e}

Finally ail productions of the form {b) are transformed by standard
constructions {see [1], [2]) into the desired form. D

DÉFINITION 3.3: An (linear, rightlinear) ic-grammar G = (N9T9I9P,S) is in
e-free standard farm if it is in standard form and there are no productions of
the form A -> e, A e N, A #S .

Informatique théorique et Applications/Theoretical Informaties and Applications
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Given a context-free grammar, it is easy to construct an equivalent e-free
grammar — détermine all variables producing the empty word and delete
variables with this property on the righthand side of productions.

In the case of indexed grammars, we have to consider the difficulty that
dérivations of the empty word from a variable depend on the attached index
words.

In [1] a construction of an e-free indexed grammar is given. This construc-
tion increases the number of indices and therefore is not appropriate for
transforming an ic-grammar into an equivalent e-free ic-grammar.

In the following we give a suitable construction for ic-grammars based on
the fact, that for indexed grammars G = (N, T, /, P, S) the sets

EMPTYG(A) = {y\Ay^>e, ye/*}

are regular for all A eN [7] and that regular sets over a one element alphabet
are ultimately periodic (e. g. [4]). Now we can state:

LEMMA 3.4: Let G = (N,TiIyP,S) be an (linear, rightlinear) ic-grammar.
There are two constants no^l and po^\ such that for all BeN\{S} the

following holds:

IfBfr# =>e then r<n0 or r^n0 andBfno+k# => e with k=(r~n0) mod pQ.

Remark: The Lemma states that if it is possible to dérive the empty word
using a long index word ƒ**#, then it is also possible to dérive the empty
word using an index word fs#, where s is in the small interval [n0 : n0 +p0 — 1],

Proof Let BeN\{S}. Consider

This set is regular and hence the set L{B)={fr\Bfr# =>e} is regular over
{ƒ}* and thus is ultimately periodic, i. e. there are constants nB^0 and pB^ 1
with:

if r £ nB then we have ƒr e L (B) ifff + ̂ e L (B)

Now set

n0 = max {1, max { nB \ B e N\{ S}}}

vol. 26, n° 1, 1992



100 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

and

Po = \cm{pB\BeN\{S}}

where lcm dénotes the lowest common multiple. D

We will now give a construction of an e-free (linear, rightlinear) ic-grammar
G' from a gênerai (linear, rightlinear) ic-grammar G. The variables of G' will
be triples such that a term Bf # in a dérivation of G will be transformed
into the triplel

[£,ƒ', 0]# if r<nQ

or

[B,r°, k]fr~no# with k = (r~n0)modp0 if r^n0.

Here n0 and p0 are the constants of Lemma 3.4. With Lemma 3.4 it is
obvious that the triple alone détermines, whether Bfr# =>e is possible.

THEOREM 3.5: For every (linear, rightlinear) ic-grammar G = (N,T,I,P,S)
art (linear, rightlinear) ic-grammar G in e-free standard form can effectively be
constructedsuch that L(G) = L(G) holds,

Proof: Let G be an ic-grammar. W.l.o.g. G is in standard form. Let n0 and
p0 be as in Lemma 3.4. Set G' = (N', T, /, P', S) with

N'={S}U{[A,f\0]\AeNJ^n0}U{[A,fn°,k]\AeN,ke[0:p0-l]}

and P' is defïned as follows:

(a) S^eisinP'iîsXe

(b) S -+ [A, e, 0] # is in F if S -* A # is in P.

(c) [A,e,0]# ->[J3,e,0]# i s inP ' i f^# ->B# is in P.

(d) If A -• Bf is in P, then for ally'e [0 : n0 — 1], ze [0 :p0 — 1] the productions
[AJ\0] - [^/ J + 1 ,0] and M,/"o,^ - , [^/«o, (l-+ l)mod^0]/are in P'.

(e) If Af ̂  B is in P then for alljefl : ^ 0 ] , ze[0:/?o— 1] the productions

+[B,fi-\ 0]#

and

M,/"o, z ] / ^ [5,/"o, (,-- l)mod/»0] are in P'.

Informatique théorique et Applications/Theoretical Informaties and Applications
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(ƒ) If A -» BC is in P, then for all j e [0 : «0 - 1] the productions

[.«,ƒ', 0]->[*,ƒJ,0][C,/',0]

and

[AJ\ 0]^[C,/J',0] if Bfj#^e

and

1/4, A 0] -> [5, / ^ 0] if C / ^ 4 e are in P'.

For all ie[0:po— 1] the productions

and

[A, ƒ "o, i\ -> [C,/"o, z] if Bfn° + i# Xe

and

M, / n ° , fl -> [B, ƒ "o, i] if C/"o + £ # 4 e are in P'.

(g) If ^ ^ Û , a^e, is in P, then for all ye[0:« o - l ] 9 ie[0:po-l] the
productions

[yl, f\ 0] -> ö and |>4, /"o, Ï] -> ̂z are in F.

G' is effectively constructable since the problem "eeL{G)" is decidable for
an arbitrary indexed grammar G. Delete all single productions of G' to obtain
G with L(G') = L(Ü) [see (6), p. 29].

To establish a correspondence between dérivations according to G and
dérivations according to G' we need the following function

with

[A,fr,Q]# if rSn0

^ ^ where ^ = (r-w0) mod/?0

Now we will prove:
For all^eiVXlS1}, weT*

If Afr# => w, w^e according to G then *P (Afr#) => w according to G'.

vol. 26, n° 1, 1992
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The case n=\ obviously holds.

Now assume A # => B# =>w according to G. We have

[A,e,0]# => [B9e90]#

and with the induction hypothesis y¥(B#) = [B, e, 0]# =>w holds according

to G'. Now let Afr# =>£/ r + 1 # i w according to G.
We have to consider two cases:
1. r<n0:

F contains the production [AJ\Q] -> [Bjr+\0].

Therefore

holds according to G'.
2. r^n 0 :
P' contains the productions [A, ƒ "o, i\ -» [5, /"°5 ( Ï+ l)mod/70]/ for all

/e[0: /70- l ] .

Therefore

[B,/«o, (fc+i) mod^0]/-«o + i #

#) 4 w holds according to G'.

Now let y4/r # =>Bfr~x# i w according to G.
Again we have to consider two cases:

P' contains the production [A, f\ 0] # -> [5, / r " S 0] # .
Therefore

holds according to G'.

2. r>/t0:

P' contains the productions [A, f"°, i\f^>[B,fn°, (i—l)modp0] for all

Informatique théorique et Applications/Theoretical Informaties and Applications
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Therefore

y(Afr#) = [A, ƒ"<>, k]f-n°# => [B9f"°, (k-l)modp0]f-no-i #

= x¥(Bfr~1#) >̂ w holds according to G'.

Finally assume

Af# ^Bfr#Cfr#^w1w2 = w with Bfr# =lWl and Cfr#

The case w1 ̂ e and w2^e obviously holds.

Now consider wx = e. We have w2 ̂ e and Bf# >̂ e.

1. r<n0:

F contains the production [A,f9 0] -• [C, f, 0].

Therefore

holds according to G'.

2.

Since Bfr # =>e holds according to G, with lemma 3.4 follows

Bfn°+k# 4 e with fc = (r-«0) mod

Hence the production [^t,/"o, k] -> [C,/"o, fc] is in P'.

Therefore

w2 = w holds according to G'

The case w2 = e is similar.

Altogether we have shown:

£If S=>A# 4 w , w / e holds according to G5 S^[A,e,0]# =xif(A#)£>w
holds according to G\ Le. L(G) £

vol. 26, n° 1, 1992



104 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

In a similar way one can show:

For all AeN\{S], r^O and w e P we have: If W{Afr#)^w holds

according to G' then Afr# => w holds according to G.
Hence L{G') g L{G).
The proof for linear and rightlinear ic-grammars is similar. D

For technical reasons it is convenient to have an ic-grammar with the
property that a final dérivation step of the form Afk# =>a is possible only
if k = 0. For this we have:

LEMMA 3.6: Let G = (TV, J7, I, i3, S) be an {linear, rightlinear) ic-grammar. An
equivalent {linear, rightlinear) ic-grammar G'= {N\T,I,P\S) can effectively
be constructed such that in a dérivation o f a terminal word each final dérivation
step is of the form A# =>a.

Proof: W.l.o.g. we assume G in Standard form.

Set N' = N\J [Ta,Fa\aeT\J {e}}. Furthermore introducé the new produc-
tions

Faf->F» Fa#-»Ta# and Ta -> a for each ae T\J {e}.

Now replace each production A^>a, aeT[j{e} by Af^Fa and
*Ta#. D

Remark: If the grammar G in the foregoing lemma is in (e-free) standard
form then the grammar G' is in (e-free) standard form too.

In the next section we need the property that for words w of an ic-language
there are dérivations such that the index words ocurring in these dérivations
are linear bounded by | w |.

Let us first defïne the following notion:

DÉFINITION 3.7: Let G = (N, T,I,P, S) be an ic-grammar, weL(G), and 5 r
w

be a dérivation tree of w. Set

maxind {^w) = max { k \ Afk # is a label of a node in $~w}

and

maxind (w) = min {maxind (^w) | ̂ w is a dérivation tree of w }.

THEOREM 3.8: Let G = {N,T,I,P,S) be an {linear, rightlinear) ic-grammar
in e-free standard form which satisfies the condition of the foregoing lemma.

Informatique théorique et Applications/Theoretical Informaties and Applications



INDEXED COUNTER LANGUAGES 105

Then there is a constant c>0 such that maxind(w)^cmax {| w\, 1} for all
weL(G).

Proof: We will only give a proof of the gênerai case because the proof for
linear and rightlinear grammars is a slight modification thereof.

In the proof we use the fact that due to the special form of the grammar
G a dérivation tree 2T of a word weL(G), w^e has | w\— 1 nodes with two
sons whereas all other inner nodes have only one son and that the length of
the index words of a node and it's parent differ by at most one. It follows
that if maxind (^")>c | w|, where c is a suitably choosen constant, then SF
must contain long paths of nodes with only one son. It is shown that some
of those paths which correspond to dérivations of the form Bfl# =>Bfj#
are in fact useless since they lengthen index words that are already long
enough. By deleting such "useless" paths we can get a new dérivation tree
3~' for w such that maxind (&") S c | w |.

We now start the proof.

For each n>0 set LCM(n) = lcm {1,2, . . . , « } . Set c' = | JV| 2LCM(|N\)
and c = 2c'. Now let weL(G) and k = maxind(w). Since the case w = e is
obvious, assume w^e. Let 5" be a corresponding dérivation tree with
k = maxind {&") and a minimal number of nodes labeled with Afk#.

Now assume k>c\ w|.

In 9~ there is a node nk with label Akf
k#. Consider the path 0> from S#

to this node and let nun2, - • . , « * - ! be the nodes on & determined by:

nt is labeled with Atf
l# and

each successor of n{ on & is labeled with Bfj#with i<j^k for ie[l:k—l],
The nodes nh ie[l:k—\], have exactly one son in 3~. Let h = \k/2] and let
0>' be the subpath of & starting with nh. Since G is e-free, SP' contains at
most | w | — 1 nodes with two sons in 2T.

Therefore, using the pigeon-hole principle, there is a subpath 0*" of ^ '
starting with nr and ending with nr+s, which contains no node with two sons
in ST such that

w\ w w

Now consider the séquence of nonterminals An . . ., Ar+S. In each subse-
quence of length | iV |+ l of this séquence a nonterminal must occur twice.
Hence, there are at least [s/\N\\^c'/\N\ disjoint subsequences Ap . . ,9AJ+i_1

with Aj = Aj+i, ze[l: | iV|] and je[r:r + s— \N\], Since each of these disjoint
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106 J. DUSKE, M. MIDDENDORF, R. PARCHMANN

subsequences has a length less than or equal \N\ there is a k1 e[l : |N\] such
that at least c'/\ N\2 of them have the length kx.

Consider the dérivation determined by 0>" :Arf# =>^ r + s / r + s #-
This dérivation contains c'/\N\2 subderivations of the form

AjfJ# => Aj+klf
j+ki# with

Omitting

kx \N\2 kx

subderivations of this form one obtains a dérivation

Let 0* be the path determined by this dérivation.
Now consider the subtree 2Tr of 3~ with root nr+s = rnt and a path &\ of

mt to a leave a. Let rr$-l9 m"_2, ...,m
fl

0 be the nodes and Hf_l9

B%_ 2,. . .,BQGN determined by:

mï is labeled with £?ƒ # and
each predecessor of ma

t on 0>\ is labeled with Cfj# for i<j^k, ZG[Ö : f— 1].
The father of m? has exactly one son in ST for ze[0: t— 1]. Since G is e-free,
^ ° contains at most | w | — 1 nodes with two sons in F. Since

\w

there is a uniquely determined subpath $\ of 0>\ starting with ma
à+c, and

ending with m% where d is maximal, which contains no node with two sons
in y (with the possible exception of nQ. Now mark all nodes on the path
from mt to ma

d+c., and dénote the subtree of e5
r
1 with root rrfd by 3T\*

If b is another leave of 9~ u then we have either §P\ == ^ and ^ = 3T\ or
# ï , # i and &~\9 3~X are disjoint.

Now assume that for each leave a the paths âP\, 0*\ are determined and
all nodes on the path from mt to the first node of §P\ are marked.

Consider the séquence of nonterminals i?3+c<, Ba
d+C^1, . . .,B^ of a path

0>\. With the same argument as above there must be at least c'j\N\ disjoint
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subsequences Bj, Bj„l9 - . .9Bj-i+l with Bj = Bj^t and therefore there is a
k2 e [1 : | N\] such that at least c'j\ N |2 of them have the length k2.

Consider the dérivation Ba
d+C, fà + c''# XB°df

d# determined by §»[. This
dérivation contains c'/\N\2 subderivations of the form

f X *;_»,ƒ>-**# with

Omitting

1 y c' _LCM(\N\)
y

k2 \N\2 k2

subderivations of this form yields a dérivation

Let 0>\ be the path determined by this dérivation.
Now perform the following opération on 5":
1. Substituten" by # .
2. If a marked node is labeled by Dft # , change the label by.
3. Substitute each gP\ by 0>\.
This yields a dérivation tree of w which contains less nodes labeled with

Afk# (since nk is a marked node) and we have a contradiction to the
définition of 3~. D

4. PROPERTIES OF INDEXED COUNTER LANGUAGES

Recall that a family of languages is called a full trio if it is closed under
homomorphisms, inverse homomorphisms and intersection with regular sets.
If it is futhermore closed under union, concaténation and Kleene closure it
is called a full AFL. It is easy to give a grammar based proof of the following
theorems.

THEOREM 4.1: The family of ic-languages is a full AFL.

THEOREM 4.2; The family oflinear ic-languages is a full trio.

Remark: It is known that the family of rightlinear ic-languages, Le. the
family of iterated counter languages is a full AFL [3].
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In the foliowing we will show that the family of ic-languages is properly
contained in the family of indexed languages.

To this, consider the language L= {u$1u$2u
R\ue[0,1}+ } . Lis generated

by the indexed grammar G = (N9 T,/,P, S) with N= {S, A9B}3 1= {ƒ,g, # }
and the following set of productions:

S^0Af#0 Bf^BO

S^lAg#l Bg^Bl

A-+0A/0

A^lAgl

G is a linear indexed grammar, thus L is a linear indexed language.
Now we will show:

LEMMA 4 .3 : There are linear indexed languages which are not ic-languages,

Proof: We show that the linear indexed language

L={U$1U$2U
R\UG{0,1}+}

is not an ic-language.

Assume, L is generated by the ic-grammar G=(N,T,I,P,S). W.l.o.g. let
G be in e-free standard form.

Let W = U$1U$2U
RGL and let ST'w be a dérivation tree of w according to G

with maxind (^^^maxindCw).

Consider the two paths from the root to the leaves labeled $x and $2. Let
the last common node of these two paths be labeled Afk #.

Hence there is a dérivation Afk # => Bfk # Cfk #^>wx Cfk # 4 wx w2 with

The entire word w is determined by the subword w2v2 (or v1w1), hence
each dérivation Bfk# =>w[ according to G implies w'1 = w1.

The same holds for each dérivation Cfk# => wr
2.

Therefore, if Afk# =>Bfk# Cfk# =>w', we have w/ = w1w2. Since wx w2

also détermines w9 we have:
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Now, for each weL{G) we choose a dérivation tree ^~w as above which
détermines a pair p (w) = (A -• BC, k) where k S maxind (w). We have
A; :g maxind (w)^c|vt>|, where c is the constant of Theorem 3.8 for G and if
w^w then p(w)^p(w). There are 2" words in L with length 3n + 2, n ^ l .
Therefore there are at least 2" words weL with />(w) = (̂ 4 -• BC,k) and
fc ^ maxind (w) ̂  c (3 n + 2).

But there are at most p [c (3 n + 2) + 1] pairs of the form (̂ 4 -> .ÖC, £;) where p
is the number of productions of the form A->BC and £ E [ 0 : C ( 3 W + 2)] .

Hence we have 2" ̂  p [c (3 « + 2) + 1] for all n ̂  1, which is a contradiction. D

LEMMA 4.4: TTzere are rightlinear indexed languages, Le. context-free lan-
guages, which are not linear ic-languages.

Proof: We show that the context-free language

L={u$1u
R$v$2v

R\u,ve{0,l}+}

is not a linear ic-language.

Assume, L is generated by the linear ic-grammar G = (N, T919 P9 S). W.Lo.g.
let G be in e-free Standard form.

Let w = u$1 uR$v$2v
ReL.

Since there is a dérivation of the form Afk# =>$xBfk# =>$x uR$v$2v
where v is a prefix of vR or Afk# = > B f k # $ 2 ^ > u $ 1 u R $ v $ 2 where u' is a
suffix of w, each dérivation Bfk# =>w' implies wK is a prefix of w', v is a
suffix of w' respectively. Now proceed similar to the proof of lemma 4 .3 . •

Remark: It is known that there are linear context-free languages which are
not rightlinear ic-languages, Le. iterated counter languages.

E. g. consider the language L=i{u$uR\ue{0, l } + } - That L is not a rightli-
near ic-language can be seen with arguments similar to that used in the proof
of lemma 4 .3 .

On the other hand, consider the ic-language L={a2n\n^\} of example
2AA. This language is not a linear indexed language since Parikh mappings
of linear indexed languages are semilinear [2]. Therefore we have:

COROLLARY 4 .5: There are ic-languages, which are not linear indexed lan-
guages.

Fr om example 2 . 4 . 2 follows:

COROLLARY 4.6: There are linear ic-languages which are not rightlinear
indexed languages, i.e. context-free languages.
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Remark: It is known that there are rightlinear ic-languages, i.e. iterated
counter languages, which are not linear context-free languages.

E.g. consider the language of example 2.4.3 which is not linear context-
free (see [4], p. 224).

Now it is easy to show with the help of the above lemmata, corollarys,
remarks and known facts the following theorem:

THEOREM 4.7: Let (L, RL)I be the class of {linear, rightlinear) indexed
languages, let (L, RL) IC be the class of (linear, rightlinear) ic-languages and
let (L,RL) CF be the class of {linear, rightlinear) context-free languages.

Let X^ Y mean Y is a proper subset of X and let X^Y mean X 4: Y and
Y<tX.

The following diagram holds:

RLI-CF - / „ LIC

LCF - • RLIC

5. R-MODE DERIVATIONS OF INDEXED COUNTER GRAMMARS

Let us now alter the dérivation mode for indexed grammars
G = (N, T, /, P9 S) in the following manner. For

& = u1B1^1u2B2^2...Bn^nun + 1 with W i G r * for i e [ l : n + l ] ,

and Pj-e/* for y e [1 :«] with nTtO and y el* we set

In 0 :R y the indexword y is appended to the indexword of the leftmost
variable of 0 only, whereas in 0:y, as defined in Section 2, y is appended
to the indexwords of all variables appearing in 0 .
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Now let us define the R-mode dérivation for G:

For 0 ' , ®" e (NI* UT)* we set' 0 '*=>0" iff & = wAfy@l9

" = *(©©! :*Y) with w e P , ^ e ^ U Î 7 ) * and Af-+ 0 e P , feI[J {e}.

=>, jR=>, K=> are defîned as usual.

Furthermore set LR(G) = { w|

Remark: The R-mode dérivation is a leftmost dérivation. Our définition
corresponds to R-mode dérivations for extended grammars as defmed in [6].

In [6] it was shown, that type-0 languages are exactly the languages LR (G),
where G is an indexed grammar. Now the question arises, which class of
languages is obtained if we restrict G to an ic-grammar. Hère we have

THEOREM 5.1: For each type-0 language L there is an ic-grammar G with
L = LR(G).

Proof: Let L = LR(G') for an indexed grammar G'= (N\TJ\P\S') with
^/=={£i> • • ->gm-i}- W.l.o.g., see [6], we can assume that the productions in
P' are of one of the forms

(a) A^BC

(b) A-+a

(c) A^Bf

(d) Af^B
where A, B, CeN'Jel' and aeT[J {e}.

We will now construct an equivalent ic-grammar G. For this, we represent
an indexword giogir . .ginelr* in G' by the indexword fh#in G where

n

j = 0

Let G = (N, T,I,P, S) with

N=N' U { T{|/e[0:m-l],ye[l : w - l ] } U { Uj\je[l \m- 1]} U {S,E,E},

/={ƒ,#},

and P is defmed as follows:

1. S^>S'# is inP,

2. A-+BC is in Piî A-+ BC is in P',

3. A —y a is in P if 4̂ -• a is in P',

4. ^ -• r£ 5 is in P if ^ -^ B is in P',

5. A -v [ƒ,£ is in P if y* -> ̂  is in P',
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6. for all je[1 :m— 1], ze[0:m-2] the productions

and

are in P.
7. E -» £" ƒ and £" -^ e are in P,
8. for all je[1 : m— 1] the productions

and

{/.# - ^ £ # £". . .£" are inP

O'-l)-times

Now set O : ƒ'* ->• N with $ (e) = 0 and >̂ (gf y) = i + m <]> (y), /. e., if
y = 8i08i1- • -^tn

€^'*) then inin-1. . .z0 is the m-adic représentation of
With induction on the lenght of dérivation it is possible to show

(à) if Sf R^> wA y® according to G' then S*^> w^[/^(Y) # 0 according to G
and

(b) if SR=5> w^4/k#® according to G then there is a y e / ' * with

and 5" K=> ŵ 4 y® according to G' where VUGT*, AeN\ y el'* and

From this, LR(G) = LR(G') = L can easily be shown. D
This theorem can be interpreted in the way that each type-O language can

be obtained by counting on leftmost dérivations of context free grammars.
This is similar to a grammatical version of the simulation of Turing-machines
by two-counter machines, see [5], p. 172.
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