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ON SOME PACKING PROBLEM
RELATED TO DYNAMIC STORAGE ALLOCATION (*)

by Marek CHROBAK (1) and Maciej SLUSAREK (2)

Communicated by J.-E. PTN

Abstract. - We consider the problem of packing rectangles of height 1 when the x-coordinates
of their left and right edges are specified. In the off-line case the optimal solution can be trivially
found in polynomial time. In the on-line case no algorithm can have performance ratio better
than 3. A connection between this problem and dynamic storage allocation is shown.

Résumé. - On considère le problème de l'empilage de rectangles de hauteur 1 lorsque les abscisses
des côtés gauches et droits sont spécifiées. On vérifie aisément que dans le cas «off-line» la solution
optimale est en temps polynomial. Dans le cas « on-line », il n'existe aucun algorithme dont le
coefficient de performance soit meilleur que 3. On montre également les rapports de ce problème
et du problème de l'allocation dynamique de mémoire.

1. INTRODUCTION

The two-dimensional bin packing problem has been extensively explored
as a model for dynamic storage allocation. Its basic variant assumes that a
list of jobs specified by their sizes and résidence times is given and the
problem is to minimize the make-span; préemptions are not allowed [1, 3, 4].
Geometrically this corresponds to packing rectangles into an infinité height
bin so as to minimize the packing height. Vertical coordinate spécifies the
starting time of a job's exécution, horizontal - its address in the memory. A

(*) Received July 1984, revised May 1988.
(*) Institute of Informaties, Warsaw University, PKiN, p. 850, 00-901 Warsaw, Poland.
(2) Institute of Informaties, Jagiellonian University, Kopernika 27, 31-501 Cracow, Poland.
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special case when the jobs are allocated in the same order as they appear on
the list (on-line) is considered in [3, 4].

The second variant allocates jobs strictly on-line, but préemptions are
allowed both in time and memory [2]. Yet another on-line version is investi-
gated in [6] where the memory is divided into bins - e. g. dise packages (see
also a survey [5]).

In this paper we are concerned with a similar model, but for the sake of
présentation we adopt an inverse geometrical interprétation. The height (verti-
cal coordinate) corresponds to computer resource (memory) and the hori-
zontal one reflects starting and finishing time of requests. The model looks
like follows. There is a list of rectangles of height 1 given on the plane by
specifying their left and right edge coordinates and they should be packed
by moving them vertically. They cannot intersect and should be considered
in the order as they appear on the list — i. e. on-line. We call it DPU —dynamic
packing of unit blocks, and consider it in terms of a game between an
attacker forming a séquence of blocks and a defender whose goal is to pack
them. The method is similar to the approach of [10]. The main results can
be summarized as follows:

— there is no strategy for DPU with performance ratio better than 3,

— the performance ratio of a natural First Fit strategy is not less than 4,

— assuming that all blocks are of equal length, First Fit has performance
ratio 2 and is optimal within a broad class of stratégies.

We also show some connection between DPU and the off-line version of
the dynamic storage allocation, as defined in [7]. We believe that this can
lead to a polynomial time approximation strategy with constant worst-case
ratio for the second problem.

The DPU problem can be also considered in graph-theoretic setting, which
has been explored by Gyârfâs and Lehel [8]. Rectangles may be treated
as vertices of an interval graph. Packing them becomes equivalent to graph
coloring, and First Fit strategy may be called a greedy method hère—for an
on-line defined séquence of graph vertices assign to each of them the lowest
possible color.

In this setting First Fit performance can be measured as the relation
between the number of colors used and the size of the largest clique in the
graph. The strongest upper bound [8] (due to W. Just) states that for each
interval graph the number of colors used by First Fit is O (n log n), where n
is the size of the largest clique.
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2. THE GENERAL VERSION OF DPU

An instance of the DPU problem consists of a finite nonempty séquence
of blocks, where by a block we mean a pair v = (f, /), ƒ / e Z + , ƒ</. The
différence l—f is called the length of a block (geometrically, ƒ, / specify
the x-coordinates of a unit-height rectangle to be packed). We say that an
algorithm A solves DPU when given a séquence of blocks
v=(vi)izn = ((fi, li))iânA packs them by producing a séquence (af)^n of posi-
tive integers called addresses, such that

(i) A outputs at bef ore reading vi+l9 for i^n— 1,

(ii) if at = aj for some i<j then either lt^fj or /,<ƒ•.

The function a produced by A is called an allocation of V, and A (V)
dénotes the number of addresses used by A on data V.

Let OPT(V) dénote the minimal number of addresses necessary to pack
ail blocks of V, that is

Consider the foliowing algorithm called FF (an abbreviation for First Fit).

1. î: = l;

2. if i>n then STOP;

3. ai:=wîn{keZ+:Vj<i(aj = k*>[fi9ldn[fj,lj) = 0Y,

4. i: = i+ l ; goto 2;

Clearly FF solves DPU; FF simply gives v( the first address unoccupied in
the interval [fiy lt).

Let us define D(V) = max\{i : te[fb lt)}\, and call it the density of a
t

séquence of blocks V.

THEOREM 1: For each séquence V of blocks OPT(V) = D(V).

Proof: Obviously OPT(V)^D (F). Let U dénote a permutation of V such
that (fh lt) occurs before (/}, l3) in U when ft<fs. Then OPT(V) = OPT(U)
and D (V) = D(U). But it is not difficult to observe that FF(U) = D(U). Hence
OPT(V) = D(V). M
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Consider a game Gn between an attacker Px and a defender P2 with the
following rules:

(1) the i-th move of Px is a block Vi = (fi, Q,

(2) the response given by P2 is a number ai9 where al9 a2, . . . is an
allocation satisfying (i) and (ii),

(3) the density of the séquence issued by P1 never exceeds n,

(4) Pt wins when P2(V)^3n~2 (where ^r=(ül-)i-i,2
 a n d P2 i s a l s o

used hère to dénote the defender's strategy).

LEMMA 1: For every neZ+ there exists a successful strategy Sn for Px

in G„.

Proof: The proof is by induction on n. The strategy S1 is trivial: Px issues
the block v = (l, 2). We set ï± = 1 — the interval length necessary to perform Sx.

Suppose we have a successful strategy Sn for Px in Gn and its interval
length ƒ„. Let t£ = z(/„-h 1)H-1 for f = 0, 1, 2, 3 and t4 = 4In + 4. First, Pi
repeats Sn four times in the intervals

[to, h-l)9 [tl9 t2-l), [t2, t 3 - l ) , [t3.
 f4)-

Dénote by V the séquence of blocks issued by P1 so far and by Mt the set of
adresses used by P2 when playing in the ï-th interval, i= 1, 2, 3, 4. From the
inductive assumption we have

(1) D (F)^n,

(2) | M i | £ 3 n - 2 , f o r ï = l , 2 , 3 , 4 ,

Let M = MX U M 2 U M 3 UM4 . For simplicity we describe the remaining
part of the game as directed trees; vertices dénote Pt 's moves and edges are
labelled by P2 's responses. HALT is the end of the game. There are several
cases to be checked. We give the details for those more complicated; the
remaining ones are coped with similarly.

(o) |M|i>3n + l, O.K., Px has already won.

(b) \ M | = 3 n. In this case one P1 's move suffices:

(tOit4) >HALT.

(c) |M | = 3 n - l .

Informatique théorique et Applications/Theoretical Informaties and Applications



ON SOME PACKING PROBLEM 491

(cl) \Mi\ = 3n-2, for i= l , 2, 3, 4.

(cl A) M 1 ^M 2 = Af3 = M4. Let {x}=M 1 -M 2 . Then the game can be
finished as follows:

( « 3 - 1 , (t0, t3) HALT

(ftg.Ua)

(cl.2) M1=M2^M3 = M4. Let {x}=M 2 -M 3 , {j;} = M3 - M 2.

*o ' *i * 2

Fîg. l . a Fig. \.b

Fig. 1. c Fig. l . d

vol. 22, n° 4, 1988



4 9 2 M. CHROBAK AND M. SLUSAREK

The remaining moves are as foliows:

(to, ti) - ^ (h - 1 , U) --^m HALT

p$M r # M u {p}

(tx-l9t2) >(t2-l,t3) .HALT (fig. \.b).
The remaining subcases of (c 1) are:

(c2) \Mj\ = 3n-\ for exactly one;e{l, 2, 3, 4}. Let 7 = 1 (for 7 = 2, 3, 4
the argument is similar).

(c2.1) M2 = M3. Let {x}=M1-M2, The following moves lead to the
victory of Pt:

^ P$M r4Mu{p) T ^

2 - 1 , '3) • (t* h) > HALT

(t0, h) ^ (tA - 1 , t2)
 r*Mu{p\ H A L T (fig. 1. c)

(c2.2) M2^M3. This case is simple:

(«o, ti) - ^ (h -1, t3) ^ HALT

(c3) There are at least two jlJj2e{l, 2, 3, 4} such that
| Mjt | = | Mj21 = 3 n — 1. The moves of Pj are similar to those from (c 2.2).

(d) | M | = 3 n — 2. All Mi 's are equal and the moves of Px are as follows:

(to, t t) ^ ( t 3 - 1 , t4)
 r*Mu{"> ( t i - 1 , t 3 ) ' * M " { * •'HALT (/fe. 1.d)

r$Mv{p)

I s$M KJ {p, r)

HALT

In each case P2 is forced to use at least 2n+ 1 addresses. Since the density
of the instance increases at most by one, the above procedure gives us the
strategy Sn+1. We finish the proof by setting In+1~tA~to = 4/n + 3. •
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As a conséquence we obtain:

THEOREM 2: There does not exist a strategy A for DPU such that for some
s > 0 and 5

for every V in DPU.

Proof: We have (3n —2)/n>3 —£ + 8/n for sufficiently large n, so the thesis
follows from lemma 1. •

LEMMA 2: For each n>0 there exists VneDPU such that D(Vn) = n and

Rroof: We construct F„'s inductively. First we show that there are
Vl9 . . ., V1 such that FF(Vn)^3n-2 for n= 1, . . ., 7. Any single block can
serve as Vv For n = 2, . . ., 7 Vn is formed as a concaténation of four separate

f° u r n e w blocks added, as depicted in figure 2a. This yields
for n = 2, . . ., 7. Therefore

9 for n= l , . . ., 7.

Fig. 2.a

For n^8 the construction of F„ is more complicated. Using figure 2b we
describe Vn as follows. First, eight Fn_4 instances, four Vn_3, four Fn_2 and
two Vn_1 are concatenated, each one defined in its own sufficiently long
interval. Then cornes a séquence of 36 blocks whose location is depicted
explicitly in figure 2 b. First four blocks are those which obtained address

^+\9 the next two in the séquence are the ones placed in the address
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and so on. The last block in the séquence (and in the whole
instance Vn) is the one which has been given the highest address FF(Vn).

Assuming n^8 one can easily see that the density of Vn is exactly n, and
FF(Vn) = FF(Vn_1) + 4. This finishes the proof of the induction step, from
which the thesis follows. •

THEOREM 3: There do not exist e>0 and 5 such that

FF(V)<(4-e)D(V) + è

for every V in DPU.

Proof: Immédiate from Lemma 2. •

3. A SUBPROBLEM OF DPU

Suppose we require that ail blocks are of the same length. This restricted
version is called UDPU (U from "uniform").

THEOREM 4: For every V=(v^n in UDPUFF(V)^2D (V)-l. Moreover,
the ratio 2 is tight.

Proof: Let v~{f0 lt) be such a block that at = FF(V). We define

Then

^ I ^i H ^3 I + H F2 M 3̂1 + 1 ~ 1 ^ 2 Z> ( F)--1.

This gives the upper bound. To show that this ratio is tight we construct the
following instances of UDPU:

Vn = \Vn,D • ' ' > Vn, n> Un, 1? • • • •> Un, n~ 1? Vn, n+ U ' • ' \ 2 n - l )

for neZ+, where

i) for i = l , . . . S 2 n - 1 ,

and u„it. = (2n + ï - l , 3W + Ï - 1 ) for 1=1, . . ., n~\ (fig. 3). Then D(Vn) = n
and FF(VJ = 2n-l, hence FF(Vn)/D(Vn) ->2 as n -+ oo. •
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v n . n - 1

"n.2 ur..2

n+ \

Fïg. 3

Proving a nontrivial lower bound for all packing stratégies in case of
UDPU seerns to be much harder than for the gênerai version. We can only
show that FF is optimal within quite a wide range of algorithms.

THEOREM 5: Assume that an algorithm A solving UDPU obeys the rule:

(^) never choose a new address if there is room in one already used.

Then the performance ratio o f A is not less than 2.

Proof: Consider V„ of the proof of theorem 4. Let

for neZ + . Then, if A satisfies(*) A(Un) = FF(Un)^2n~l. •

4. DPU AND DYNAMIC STORAGE ALLOCATION

Consider the following dynamic storage allocation problem — DS A in short.
There is a collection

of memory requests (blocks) given, where ri9 dh steZ+ dénote respectively
the arrivai time, departure time and the size of the i'-th block, r(<di,

Informatique théorique et Applications/Theoretical Informaties and Applications
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i=\, . . ., n. We ask for the smallest memory size M such that there exists
an allocation function

a: {1, . . . ; n } ^ Z

satisfying:

(1) af-f-s^M, for i=l, . . ., n,

(2) for each i^=j {a}^at<a} + s,-=>r^djvr}^

The answer should be constructive, i. e. explicitly giving the numbers at. The
problem is iVP-hard in the strong sensé even when sf6 { 1, 2} [7], Restricting
résidence times ài~ri to be not greater than 3 (they may be uniform) and
allowing sizes to be unlimited also preserves JVP-hardness[12].

We do not know any approximation strategy for DSA having constant
performance ratio. Using Robson's results[10] it can be proved that no on-
line algorithm (hère "on-line" means that the blocks should be packed in
order according with their arrivai times), can achieve such a ratio [11], as
well as quite a few off-line ones. We believe that the strategy described below
possesses the required property.

Assume that ail block sizes are powers of two. The Buddy-Decreasing-Size
algorithm (BDS in short) works in two stages:

(1) sort the blocks on descending size,

(2) place each block as low as possible, considering the blocks in the order
from (1).

Dénote by BDS (T) the smallest memory size needed to perform BDS on
T and by OPT(T) the minimum over all packing stratégies. D (T) is defined
as

D(T) = max £ s£
t

and is called the density of T. Unlike in DPU we may have that
OPT(T)>D(T) for some instances Tof DSA. In gênerai only the inequality
holds: OPT(T)^D(T).

THEOREM 6: For every V in DPU there exists T in DSA such that
D(T) = OPT(T)and

FF(V)_BDS(T)

vol. 22, n° 4, 1988



4 9 8 M. CHROBAK AND M. SLUSAREK

And conversely, for each T in DSA there exists V in DPU such that
D {V) = D (T) and FF(V) = BDS (7).

Proof: (1) Let F = (vI)^„ and h = FF(V). Construct Tin the ffollowing way:
Replace each block vt by kt identical blocks b^ — ir^ djl9 s^) where fci = 2fli~1,
rji~Â dj^li, sjl — 2h~1fki and at is the allocation generated by FF (here, as
usual fb \i are such that vi = {fi, /f)). BDS, given T as the input, produces a
configuration of the same shape, and 0PT(T) = D(7) follows from
Theorem 1.

(2) Let Tbe a séquence of DSA blocks, their sizes being powers of 2, sorted
on descending size. Preserving this order, replace each block bt = (ri? d(, st) by
Si identical DPU blocks vt =(ri9 dt). Observe that when BDS locates a block
bt there is no gap in the interval [rt, dt) below at (if it were, it would be of
size not less than st because of descending order of sizes). Hence vt. is assigned
the same address by FF as it wouid get if treated as a part of bt. •

COROLLARY 1.' For ciïiy v<4 there are instances T in DSA of arbitrarüy
large density such that BDS (T)jOPT(T)>r. •

Using the idea of the buddy-system [9] the domain of BDS strategy can be
easily extended to include blocks of any sizes, at the cost of doubling the
ratio.

Observe that Theorem 6 is valid when we impose restrictions on block
lengths. Let UDSA consist of those instances of DSA in which all blocks are
of equal length. So we obtain:

COROLLARY 2: The strategy BDS for UDSA has the asymptotic performance
ratio equal to 4. •

Note that UDSA is iVP-complete, even when all blocks are required to be
of length 3 [12]. Therefore Corollary 2 gives a polynomial-time approximation
strategy for a simple, but still ATP-complete, version of DSA.

5. FINAL REMARKS

The most intriguing question left open is that of tight bound for the
performance of FF strategy for DPU. A complicated extension of the proof
of Lemma 2 yields that its ratio is not less than 4.4. Note that similarly as
in Corollary 2 showing that this ratio is constant (which we believe is the
case — though the ratio 4 from Theorem 3 is much greater than we expected
at first) we would prove that BDS is an approximation algorithm for DSA
with constant ratio. Clearly this ratio would be too large to allow any
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practical applications. However, once it is known that such an approximation
is possible at ail, it may be easier to find more efficient stratégies for DSA.
Moreover, the notion of "approximability" is useful in classifying hard (in
particular, iVP-complete) problems according to their difficulty. The easiest
problems are those approximable with the ratio 1 + 8, where 8 is arbitrarily
small. Then corne the problems approximable with constant ratios much
greater than 1. At last, the most difficult problems are those which cannot
be approximated with any constant ratio unless P = NP—for example the
travelling salesman problem [7].
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