
INFORMATIQUE THÉORIQUE ET APPLICATIONS

KAI SALOMAA
Yield-languages recognized by alternating
tree recognizers
Informatique théorique et applications, tome 22, no 3 (1988),
p. 319-339
<http://www.numdam.org/item?id=ITA_1988__22_3_319_0>

© AFCET, 1988, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1988__22_3_319_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 22, n° 3, 1988, p. 319 à 339)

YIELD-LANGUAGES RECOGNIZED
BY ALTERNATING TREE RECOGNIZERS (*)

by Kai SALOMAA (*)

Communicated by J. BERSTEL

Abstract. - We show that every context-sensitive language is the yield of a tree language
recognized by an alternating bottom-up tree recognizer. If one nullary symbol of the ranked
alphabet is defined to correspond to the empty word in the yield, then every recursively enumerable
language can be represented as the yield of a tree language recognized by an alternating recogniz-
er.In establishing these results we use the observation that in an alternating bottom-up computation
the tree recognizer is able to check that every configuration appearing in the computation tree
belongs to a given regular tree language.

Résumé, - Nous montrons que tout langage context-sensitif est langage des feuilles d'un langage
d'arbre reconnu par un automate a"arbres alternant ascendant. Si un symbole zéroaire a pour image
le mot vide, alors tout langage récursivement enumerable peut être représenté comme le langage
des feuilles d'un langage d'arbre reconnu par un automate alternant. Dans les preuves, on utilise le
fait qu'un automate d'arbre est capable de tester si les configurations produites dans un calcul
alternant ascendant appartiennent à un langage d'arbre régulier donné.

INTRODUCTION

Alternation has been studied as a generalization of nondeterminism for
many machine models. In [2,5] it is shown that alternation does not increase
the power of nondeterministic one-way or two-way finite automata. In the
same way it is proved in [11] that alternating top-down tree automata just
recognize the regular forests. (We call tree languages forests for short.)
Alternating automata operating on infinité trees are studied in [6],

Alternating bottom-up tree recognizers are discussed in [10] where it is
shown that the family of recognized forests properly contains the regular

(*) Received in July 1986, revised in October 1987.
This research was supported by the Academy of Finland and the Heikki and Hilma Honkanen

Foundation.
C) University of Turku, Department of Mathematics, SF-20500 Turku, Finland.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 88/03 319 21/S4.10/© Gauthier-Villars



320 KAI SALOMAA

forests. The intuitive reason for this is that in an alternating bottom-up
computation the order in which different subtrees of the input tree are read
can be essential; therefore an alternating bottom-up computation cannot be
simulated by a deterministic computation using a standard subset construc-
tion.

Here we study the yield-languages of forests recognized by alternating
bottom-up recognizers. In the following we call these languages shortly
alternating yield-languages. The yield-languages of regular and algebraic
forests respectively are the context-free and indexed languages, cf [3,8].
The family of forests recognized by alternating bottom-up recognizers is
incomparable with the family of algebraic forests, cf. [10], but in section 4
we will show that every context-sensitive language can be represented as an
alternating yield-language, and hence the family of alternating yield-languages
properly contains the indexed languages. The question whether all alternating
yield-languages are context-sensitive is open, but we have the partial resuit
that given an alternating yield-language one cannot effectively construct a
context-sensitive grammar for it.

In section 5 we show that if nodes of the trees may be labeled also by the
empty word, then every recursively enumerable language is the yield of a
forest recognized by an alternating bottom-up recognizer. In proving these
results we use a normal form for context-sensitive grammars obtained in [7].

In the first section we establish some notation. In section 2 we recall the
définition of an alternating bottom-up recognizer from [10] and define the
alternating yield-languages. In the third section it is shown that regular
control does not increase the power of alternating bottom-up computation.
This result will considerably simplify the proofs in sections 4 and 5.

1. PRELIMINAIRES

The reader is assumed to be familiar with some basic notions concerning
formai languages, trees and forests, cf. [3,4,9], Here we just fix the notation
and briefly recall some définitions.

Let A be a set. Then @ (A) dénotes the set of subsets of A and Â is defined
to be the set { â\ a G A }. We may assume that always A(^\A = 0.I{(U^AXA

is a binary relation, then o* dénotes the reflexive, transitive closure of ©.
The symbol X dénotes the empty word. Symbols L and Q always dénote
finite ranked alphabets. The set of m-ary (m^O) symbols of E is denoted by

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 321

Zm. The set of 1,-trees F^ is the smallest set S such that:
(i) Eo ç S, and
(ii) if m ̂  1, a e l m 5 and t l5 . . ., fm e S, then a ( ^ . . ., £m) e S.
A 1,-forest is a subset of Fs. The family of regular forests is denoted by

REG. The set of SA-trees FL (̂ 4) is defined to be Fn, where Qo = Zo U ̂ 4 and

The yield-function

is defined as follows:
(i) ydz(b) = b when beS0 .
(ii) If m ^ l , aeXmand tls . . . , tmeF s , then

. ..9tJ)=ydL(t1). . .

We simply dénote yd^ by ĵ d when L is clear from the context.
For every ce2 0 we define the c-yield-function

ydc: F^(L0-{c})*

as follows:
(i) ydc(c) = X.

(ii) ydc(b) = biïbel,o-{c}.
(iii) Let t = a ( t 1 ; . . ,,£m), where m ^ l , a e S m and tl9 . . . , t m e F s . Then

H ( 0 = K (ti)... M CO-
The word yd (t) is obtained from t simply by concatenating the labels of

the leaves of t from the left to the right. In the word ydc (t) all occurrences

of c are omitted.

2. ALTERNATING BOTTOM-UP TREE RECOGNIZERS

First we recall the définition of an alternating bottom-up recognizer,
cf. [10].

DÉFINITION 2.1: An alternating bottom-up tree recognizer is a four-tuple
A = (A,Y,,g,A'), where

(i) A is a finite set of states.

vol. 22, n° 3, 1988



3 2 2 KAl SALOMAA

(ii) Z is a finite ranked alphabet.

(iii) g is a function that associâtes with every element aeZm(m^0) a
mapping ag : Am -+ &> (0> (A)). (If aeE 0 ) og is interpreted to be an element of

(iv) A' ç A is the set of accepting final states.

The family of alternating bottom-up recognizers is denoted by AR.

In the following définitions A = (A, Z,g, Af) is as above.

DÉFINITION 2.2: X^-trees are called A-configurations The set of active
subtrees of an .4-configuration K, act(K), consists of all occurrences of
subtrees of K of the form o{au . . . ,am), m^O, a e l m 5 al9 . . . ,ameA When
ƒ= a (als . . ., am) e act(K), we write

A configuration tree of 4 is a finite rooted tree (in the sense of graph theory),
the nodes being labeled by 4"configurations. The set of configuration trees
of A is denoted by CT(A). If TeCT(A), conf{T) dénotes the set of all
^-configurations that occur as a label of some node of T.

For a recognizer A we define the EU- and UE-modes of opération. In the
£C/-mode at each computation step A first makes an existential choice and
thereafter branches universally; in the UE-mode A first branches universally
and then makes the existential choices.

DÉFINITION 2.3: The transition relations of the recognizer A, \-^v and
Vv/ ç CT(A) x CT(A\ are defined as follows. Let Ze {EU, UE} ând T9

TeCT(A). Then

TYZ
A T iff T is obtained from T as follows:

Choose a leaf n of T and suppose that n is labeled by a configuration
KeF£(y4). Choose an active subtree f=a(al9 . . .,am) of K, (m^O).

(i) Case Z = EU: Choose a nonempty set {cl5 . . . ,C^}G/S , / I > 0 . Now T'
is obtained from T by attaching for the node n h successors that are respec-
tively labeled by the configurations K(f<- cx)9 . . ., K{f<r- ch). [Here K(f<r- ct)
dénotes the Z^4-tree that is obtained from K by replacing the fixed occurrence
of ƒ with ct.]

(ii) Case Z=UE: Let fg = {Dv . . .,Dp}9 Dt ç A9 i= l , . . .,/>. Choose élé-
ments dteDi9 i=l9 . . .,/?. Now in T' the node n has p successors that are
labeled by the configurations K(f<- dx)9 . . ., K(f<- dp).

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 323

DÉFINITION 2.4: Let KeFz(A) and Ze {EU, UE}. The set of Z-alternating
K-computation trees of A is

COMZ(A, K) = { TeCT{A) |K(h|)* T}.

(Here K is interpreted to be the configuration tree consisting of only one
node labeled by K.)

A computation tree is said to be accepting if all its leaves are labeled by
éléments of A\ The configuration K is Z-accepting if COMZ(A,K) contains
at least one accepting computation tree. The set of Z-accepting configurations
is denoted by HZ(A). The forest Z-recognized by A is

The corresponding famiiy of forests is denoted

J?z(AR) = {Lz(A)\AeAR}.

Example 2. 5: Let A = {A, X,g, Af), where A = {a, b}, A' = { a}9 L = 2 2 U
^2 = { T }> ̂ o = {7i> Ï2 } a n d g is defined as follows:

t ( a , a ) T ( b , b )

{ a } £ T g ( a , a ) { a } € x g ( b , b )

Let t = x(ylJy2). Then Figure represents an £[/-accepting t-computation
tree of A,

vol. 22, n° 3, 1988



324 KAI SALOMAA

In [10] it is shown that &UE(AR) ç &EU(AR) and that corresponding to
every L e &EU (AR) there exists a forest L' e S£l]E (AR?) such that
yd(L')=yd(L). Hence we have

THEOREM 2.6: yd(J?EU(AR))=yd(J?ÜE(AR)).

The languages of yd(J?z(AR)) are called Z-alternating yield-languages,
Z e { ËU, UE}. By Theorem 2. 6 the families of EU- and L/£-alternating yield-
languages are equal and we just call them alternating yield-languages.

Let Ze{EU,UE}. We say that L is a Z-alternating extendedyield-language
if there exists a recognizer A = (A,T,9g,A') and ceS 0 such that

L=yde(Lz(A)).

If Ml9 M2 ç FE, yd(M1)=yd(M2) and ce l o > then^ c (M 1 )=M( M
2 ) - Hence

from Theorem 2.6 it follows also that the families of EU- and l/£-alternating
extended yield-languages are equal. They are called in the following alternating
extended yield-languages.

Finally we present some définitions needed in the following sections.

DÉFINITION 2.7: Let Ze {EU, UE} and A = (A,Z,g,A% B = (B,yL,h,B').
Suppose that A^B and KeFz(A). Let T1eCOMz(AiK) and
T2eCOMz(B,K) (note that K is also a ^-configuration). We say that Tx

thins T2 if
(i) 7\ is obtained from T2 by deleting some nodes (possibly an empty set)

together with all their successors, and
(ii) every leaf of Tx is also a leaf in T2.
(Intuitively this means that 7\ is obtained from T2 by "cutting off some

subtrees" in such a way that if a non-leaf node n of T2 is not eut off, then
also some immédiate successor of n is not eut off.)

DÉFINITION 2.8: Let A = (A9Y,9g,A')eAR. The recognizer A is said to be
complete if for all m^O, Gelm , and au . . ,,ameA:

Gg (au . '. ., flj # 0 and 0 does not belong to aff (al9 . . ., am).

The recognizer A is deterministic if for all m^O, aeZms al9 . . .,ameA:

where

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 325

Clearly the above définition is equivalent to the usual définition of a
deterministic bottom-up tree recognizer, cf. [3]. Also nondeterministic tree
recognizers can be obtained as a subcase of alternating recognizers. An
arbitrary nondeterministic recognizer can be simulated by the ££/-computa-
tion (resp. t/£-computation) of an ^K-recognizer A^A^g^A*), where for
every a e l m and al9 . . .,ameA, <Jg(al9 . . .,am) consists of one-element sub-
sets of A (resp. consists of one subset of A). The deterministic as well as
nondeterministic bottom-up tree recognizers exactly recognize the family of
regular forests. On the other hand, alternating recognizers generally can
recognize also nonregular and even nonalgebraic forests, cf [10],

3. CONTROL-FORESTS FOR ALTERNATING COMPUTATION

Here we show that an ^4K-recognizer A is able to check that every configu-
ration occurring in accepting computation trees of A belongs to a given
regular forest. For instance nondeterministic tree recognizers do not have
this property. Regular control-forests will be very useful in constructing
alternating recognizers for nonregular forests.

DÉFINITION 3.1: Let A=(A^g,A')eAR, Ze {EU, UE} and KeFz(A).
Suppose that M ^ FT (A). The set of M-controlled Z-alternating K-computa-
tion trees of A is

The configuration K is M-controlled Z-accepting if COMZ (A, K) [M] contains
an accepting computation tree. The set of M-controlled Z-accepting configu-
rations is denoted by HZ(A)[M] and the forest M-controlled Z-recognized
by A is

The family of forests Z-recognized by an ^.R-recognizer with a regular
control-forest is denoted by ^Z(AR)[REG].

LEMMA 3.2: Let Ze{EU,UE}. For every A = (A^g,A')eAR and
M ç FZ(A) there exist a complete recognizer B = (B, X, h, B') and Mx £ FX(B)
such that

In addition Mx can be chosen to be regular if M is regular.

vol. 22, n° 3, 1988



326 KAI SALOMAA

Proof. — We omit the proof which is quite straightforward. (One can
choose B = A\j{d], where d is a "dead state", and M1 = M.) •

We show that J£?EU (AR) is closed with respect to regular control The
intuitive idea of the proof is that in a computation step in a configuration
K an ^K-recognizer can make one additional universal branching to the
computation tree, and this branch can be made to check that K belongs to
the given regular forest.

THEOREM 3. 3: &EÜ (AR) [REG] = £?EV (AR).

Proof. - Cleariy ££EV (AR) ç £eEV (AR) [REG]. We prove the converse
inclusion. Let L e jSfEU (AR) [REG]. By Lemma 3.2 there exist a complete
recognizer A = (A9 S,g, A*) and a regular forest M ^ FZ(A) such that
L = LEÜ(A)[M].

Let £ = (£,Qd,B') be a deterministic recognizer such that LEU(B) — M.
Here Qm = £m if m>0 and Q0 = E 0 U ^ . Without restriction we may assume
that BC] A = 0.

Let m^O, creQm, bl5 . . .,bmeB and suppose that

We make the convention that in the following od(bXi . . .,bm) dénotes always
just the element b (and not {{b}}e&{0>(B))\

We construct a recognizer Ç = (C, X, h, C') such that LEU(C) = LEU(A)[M].
We choose

C = A U B U 5 and C - ^ H M) U S'.

The function h is defined in (l)-(4).
Let m^O, creSm, a1 ) . . . ,ame^4 and let f=a(au . . .,am). We dénote

(1) A = {DU{fd\\Deft}\J{{fé}}.

For every element ceCwe define ceB as follows:

if ceB.

Now let m ^ l , ae£ m , cl9 . . .,cmeC and suppose that at least one of the
éléments ct, l ^ i ^ m , does not belong to A. We have the following three

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 327

possibilities.
(2) If cl9 . . ., cmeA\JB, then

(3) If there exists an i, l ^ i ^ m , such that cteB and c ^ e ^ U ^ whenjVi,
then

where b = ad(c ls . . . ,cm).

(4) If there exist i,je{ 1, . . ., m }, iVj such that ci5 C/e5, then

The intuitive idea of the construction is roughly as follows. As it reads an
active subtree ƒ of an arbitrary ^-configuration K, C simulâtes a computation
step of A by an existential choice of the form D\j{Jd), Defg. The computa-
tion from nodes K(f<- d), deD, continues simulating the computation of A,
and the computation starting from K(f<-fd) checks that KeLEU(B)=M.

Fact 1

Let KeFz(C) be such that

yd(K)e(L0\JA\JB)*B(i:0UA\JB)*,

(i. e., at least one leaf of K is labeled by an element of B, and none is labeled
by an element of B,) Then K is not in HEU (C).

Proof of Fact 1: From the rules (1) and (2) it follows that in every
K-computation tree there exists a branch all the nodes of which are labeled
by configurations K! such that yd(K')e(I0UiU B)* BÇL0{JA\J B)*. [Note
that always in (1) D^0 since A is complete.] Hence this computation path
cannot end in an accepting final state.

Fact 2

Suppose that KeFz(A) and Ç reads an active subtree ƒ of K making the
choice {fd} by (1). Then the resulting configuration K(f<-fd) is not in

Proof of Fact 2: This follows immediately from Fact 1 since fd belongs
to B.

vol 22, n° 3, 1988



328 KAI SALOMAA

Fact 3

Let teFz and TeCOMEU(Ç, t). Suppose that conf(7) ç H£U(Ç). Then
there exists T'eCOM£C7(,4, *) such that T' thins T.

Proof of Fact 3: Suppose that t(\-f?)nT9 n^O. We prove Fact 3 using
induction on n.

(i) If n = 0, then T consists of one node labeled by t and we can choose

(ii) Suppose that n = fc + l and that the claim holds for n^fc. Let 7\ be
such that

By the induction assumption there exists T{ e COMEU( A,t) such that T\
thins 7\. Suppose that T is obtained from 7\ by adjoining successors to a
leaf n of TV

(i') If n does not appear in T'i9 then 7*i thins T.

(ii') Suppose that n appears in T .̂ Then n is labeled by an ^-configuration
K and, by Fact 2, when the recognizer Ç in the computation tree T reads an
active subtree ƒ of X, it makes a choice of the form D \J {fd}, D efg. Let
T' e COM£c; (A, t) be the computation tree that is obtained from T\ by
adjoining the successors K(f<-x\ xeD, for the leaf n. Then T' thins T.

Fact 4

Proof of Fact 4: Let tGF£ and suppose that TeCOMEU(C,t) is accepting.
By Fact 3 there exists T'e COMEU (A, t) such that T thins T. Now all the
leaves of T' must be labeled by éléments of Af Ç\ M, and hence T' is an
accepting computation tree of A and teLEU(A).

Let Keconf(T). We claim that KeM.

(i) If K labels a ieaf of T\ then XG X' O M.

(ii) Suppose that X labels a node of T' that is not a leaf. Suppose that
when continuing the computation of T, Ç reads an active subtree ƒ of X. By
Fact 2, C has to make an existential choice of the form D \J {Jd}, D efg. We
consider the subtree of T with the root labeled by K(f<-Jd). Clearly in this
subtree whenever the rule (1) is applied, Ç has to make a choice of the form

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 329

{fd}- [Otherwise in some branch the computation would lead to a configura-
tion K' containing two nodes labeled by éléments of B, and by (3) and (4) K
would not be accepting.] Hence the computation starting from K(f+-fd) is
performed "as by E\ and it checks that KeM.

FactS

HEU(A)[M]<=HEÜ(Q.

Proof of Fact 5: Let KeF^iA) and T be an £(7-accepting M-controlled
X-computation tree of A. We show that KeHEU(Ç) using induction on *T
( = the number of nodes of 7):

(i) I f t f r= l 5 thenXe^ / nMçi / j E [ / (Ç) .

(ii) Suppose that *T=fc + l, k ^ l . Suppose that at the root of T A reads
an active subtree ƒ of K making a choice D efg. We construct an ECZ-accepting
X-computation tree Tx of C as follows. At the root of 7\ C reads the active
subtree ƒ of Kby rule (1) making the choice D \J {Jd}. By the silent induction
assumption the configurations K{f<^x\ xeD, belong to HEU(C). As it
continues the computation of T± from K(f<^Jd), always when using a rule (1)
C makes an existential choice of the form {fd} and otherwise uses the
deterministic rules (2) and (3). Since KeM, this computation ends at the root
of K in a state b, beB'. Hence KeHEU(Q.

Now from Facts 4 and 5 it follows that

LEÜ(A)[M\ = LEV(C). •

Similarly as in Theorem 3. 3 it can be shown that also £fÜE(AR) is closed
with respect to regular controi. Here we do not need this result since by
Theorem 2.6 the families of EU- and t/£-alternating yield-languages are
equal

4. REPRESENTATION OF CONTEXT-SENSITIVE LANGUAGES

In this section we show that every context-sensitive (i. e., type 1, cf. [4,9])
language is an alternating yield-language. The question whether the inclusion
holds in the other direction is open, but we have the weaker result that at
least there does not exist an algorithm that given an alternating yield-
language L (i. e., a recognizer of the corresponding forest) would produce a
context-sensitive grammar generating L.

vol. 22, n° 3, 1988



3 3 0 KAI SALOMAA

DÉFINITION 4.1: A Penttonen normal farm context-sensitive grammar or
PNF grammar is a four-tuple

where:
(i) F is a finite alphabet of terminal symbols;

(ii) N is a finite nonterminal alphabet;
(iii) S e AT is the initial nonterminal;
(iv) P is a finite set of productions of the forms

B -> CD, DB^DC or B -> fe,

where B, C, DeN and b e F. In addition P may contain the production 5 -> A,
in which case S does not appear in the right-hand side of any production
of P.

The productions of P define in the usual way the rewrite-relation
=>G ç ( F U AO* x ( F U A0*> c/ [4,9], and the language generated by G is

In [7] it is shown that every context-sensitive language not containing the
empty word can be generated by a PNF grammar without the rule S -> X.
Hence every context-sensitive language L can be generated by a PNF gram-
mar G as in Définition 4.1, and S -^XeP iü XeL.

In the following we define the set of dérivation trees D (G) of a PNF
grammar G and construct an AR-recognizer A recognizing the dérivation
trees of terminal words. We could define some kind of an "empty tree" t0 to
correspond to the dérivation S -* X, and the recognizer A could easily check
whether toeD(G). To simplify the notations, in the rest of this section we
always assume that a context-sensitive language does not contain the empty
word and that a PNF grammar is without the production S -• X. By what
was said above, this is not an essential restriction.

It should be noted that the tree grammar given in Définition 4.2 is not a
very natural one. This is because there is no natural way to present context-
sensitive dérivations as trees.

DÉFINITION 4.2: Let G = (V, N,S,P) be a PNF grammar. We define a
ranked alphabet Q = Q 2 U ^ i U ^ o associated with G as follows:

Q! = {a} and Q2 = {x},

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 331

where a and x are new symbols.

We define a production set F that consists of so called unlabeled produc-
tions

B^t (BeN,tzFa)

and labeled productions of the form

B-*Dt (

The set F exactly consists of all productions defined in

(1) For every production B -+beP there is a production B -* <j(b) in F.

(2) For every B^CDeP there is B -» a (x (C, D)) in F.

(3) For every production DB^DC of P there is the labeled production

B-+Da(o(C)) in F.

The relation hG ç F a x F n is defined as follows. Let tl9 t2eFn.

Then ^ hGt2 iff t2 is obtained from £t in one of the following ways:

(i) Replace some occurrence of an element BeN in t1 by t, where B^teP.
(ii) Replace some occurrence of BeN in t1 by t, where B -+DteP and the

leaf of tx immediately to the left of B is labeled by D.
Now the set of dérivation trees of G is defined to be

The dérivation trees correspond in an obvious way to dérivations of G and
we have immediately

LEMMA 4.3: Let G = {V,N,S,P) be a PNF grammar and we(V{jN) + .
Then S =>g w iff there exists a teD(G) such that yd (t) = w.

Note that the right-hand sides of productions of F would seem to contain
"unnecessary" symbols a. These are included just to simplify the proof of
the following lemma.

LEMMA 4.4: Let G = (V,N9S,P) be a PNF grammar. Then there exists a
ranked alphabet E and a X-forest M such that MeJ£EU (AR) and
yd(M) = L(G).

vol. 22, n° 3, 1988



332 KAI SALOMAA

Proof, — Let a, T and Q be as in Définition 4.2. We choose

OJ where E2 = {x}, S1 = {a} and E 0 =F. Define

where

and g is defined as follows.

Let fce£0- Then

(4) bg = {{B}\B-*beP}.

Let £, CeJV. Then

(5) a$(B) = {{(

(6)

(7)

(8) T,(5, |

(9) ig (x, 3;) = 0 if x or y belongs to N U (N x JV).

We choose

and define M ^ F^ (A) by

(10) M=^rf"1(M1).

Since Mi is a regular language, we have MeREG. Now we claim that

(11) HE

Let teD(G). Then teFz(JV) since D (G) £ Fn = Fz(iV). Suppose that
"£, n^O. Using induction on n we show that teH£C/(/4) [Af].

If n = 0, then t = S e A' O M e H£C7 (4) [Af], Next suppose that n = k +1 and

that t1 eHEU(A)[M] whenever S(\-G)ktv Let f be such that

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 3 3 3

Suppose that t is obtained from f by replacing an occurrence of a symbol
B e N by a right-hand side of a production peP. In the f ollowing we construct
a M-controlled £ü7-accepting f-computation tree T of A. We have three cases
to consider corresponding to (l)-(3) in Définition 4.2.

(i) p = B -• a (fc) as in ( 1). Then t = t' (B <- a (6)). [In t' (5 <- a (£)) £ dénotes
actually a fixed leaf that is labeled by B, this should not cause confusion.]
Now in the computation of T, A reads first b making the existential choice
{B} by (4). This leads to the configuration K1 = t/(B^a(E)). Because r 'eFo ,
we have

Hence ^ e M . In Xx A reads the active subtree o(B) by (6) and the resulting
configuration is t'(B*-E) = t', By the induction assumption t'eHEU(A)[M]
and hence the computation tree T can be completed from t'to a M-controlled
£ [/-accepting computation tree.

(ii) p = B->o(i(C,D)) as in (2). Now t = t'(B <- a(x(C?JD))) and at the
root of T A reads the active subtree x(C,D) of f by rule (8) making the
existential choice {B}. This leads to an identical configuration K± as in
case (i).

(iii) p = B->Do(o(C)) as in (3). Since/? can be applied to the leaf B of t\
it follows that the leaf immediately to the left of B is labeled by D. Now
t = r'(B<- a(a(C))) and in TA reads the active subtree u(C) by (5) making
the existential choice {(B, C)}. [{(B, C)}eog (C) because DB -> DC e P.] This
leads to a configuration K2 = t' (B<- o ((B, C))), where

Now K2eM since DB^DCeP, In X2 A reads the active subtree o((B,C))
by rule (7) and this leads to t'eHEÜ(A) [Af].

Thus we have shown that D(G) ^ #£c;(y4)[M]. For the converse part of
(11) suppose that teHEÜ(A)[M\ DFZ(N). Suppose that

t(\-f)nT

where TeCOMEU(A, t) [M] is an accepting computation tree. Since the recog-
nizer A is "a nondeterministic automaton" (i. e., none of the rules causes
universal branching in the computation tree), T is in fact a computation path
of length n+ 1. We show that tsD(G) using induction on n.

If rc = 0, then teA' C\M={S) ^D(G). Then suppose that n = k+\ and
that the claim holds for all values n<^k. Let K be the configuration that is

vol 22, n° 3, 1988



334 KAI SALOMAA

obtained from t in the computation tree T by applying one of the rules (4),
(5) or (8). [Rules (6) and (7) cannot be applied because teFz(N).]

As an example we consider the case where K is obtained from t using the
rule (5); the two other cases are similar but simpler.

Let f=a(B) be the active subtree of t such that K=t(f*-(E9B))9 EeN.
Let XeVUN be the label of the leaf immediately to the left of ƒ (Since
KeM, there exists a leaf to the left of/) Now

where wl9 w2e(FUA0*- Since T is M-controlled, it follows that yd(K)sMt

and hence X is an element of AT such that XE -> XB e P. Since the configura-
tions of M can contain at most one element of NU(JVxJV), in the computa-
tion path T the recognizer A must next "destroy" the state (£, B) by rule (7).
This means that in t the father of ƒ must be labeled by a and in the
computation path T the successor of K is

Since XE-+XBe P, it follows by (3) that E-*xo(o (B)) G P and hence

KÏGt.

Now there exists a M-controlled ELZ-accepting K'-computation path of length
k— 1 and hence by the induction assumption KsD (G). Thus we have com-
pleted the proof of (11).

Now

LEÜ (A) [M] - HEU (A) [M]nFz = D (G)

and hence by Lemma 4.3 for every weV+:

S =>g w iff there exists a tsLEV(A) [Af] such that

Thus

and LEÜ(A) [M]e£?EU(AR) by Theorem 3.3. •

Example 4. 5: Consider the PNF grammar G = (V, N,S, P), where

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD- LANGU AGES 335

and the set P consists of the

17

r

B(Bj^
BtD,^

following productions:

S^EDX,

E^BF, £ -• c,

B*T' iff{uMi• 2 } ,

.2},

B

Now it can easily be verified that

Note that L(G) is not context-free. The word bcbd2 is derived for instance
as follows:

S =>G EDX =>G BFDX =>G

=>G BEB2C2 =>G BEB2D2D2

The dérivation tree t e D (G) corresponding to this dérivation is

t = o (T (G (x (a (ft), a (T (o (c), a (ft))))), a3 (x (a (d), o (d))))).

Let the recognizer 4 and the control-forest M corresponding to the grammar
G be as in the proof of Lemma 4.4. We dénote \-^v simply by h In the
following we compute an £C/-accepting M-controlled t-computation tree of A.
The computation trees of A have only one branch and therefore we dénote a
computation tree simply by the configuration that labels its single leaf:

t (F)10 a (x (a (x (B, a (x (£, B2)))% a3 (x (Z>2, Z>2))))

h a (x (a (x (B, a (x (£, B2)))), a
3 (C2)))

h a (x (a (x (B, a (x (£, B2)))), a ((D ̂  C2))))

ha(x(a(x(B,a(x(£,B2)))),/)1))

vol. 22, n° 3, 1988



336 KAI SALOMAA

ha(T(a(x(B,F)),D1))

Now we get the main resuit as a direct conséquence of Lemma 4.4.

THEOREM 4.6: Every context-sensitive language can be effectively represented
as an alternating yield-language.

Since the proof of Theorem 2.6 is effective and the emptiness question for
context-sensitive languages is undecidable (cf. [9]), it follows that:

COROLLARY 4. 7: Let Ze {EU, UE}. The question whether for a given recog-
nizer AeAR, Lz(A) — 0, is undecidable.

The above resuit was proved differently in [10]. Also, since the indexed
languages form a proper subfamily of the context-sensitive languages (cf. [1]),
one has

COROLLARY 4. 8: Thefamily of yield-languages of algebraic forests isproperly
contained in thefamily o f alternating yield-languages.

The question whether ail alternating yield-languages are context-sensitive
remains open. However, hère we see that at least one cannot effectively
construct a context-sensitive grammar for a given alternating yield-language.

THEOREM 4.9: The membership problem for alternating yield-languages is
undecidable.

Proof (Outline): We reduce the Post Correspondence Problem, PCP,
(cf. [4,9]) to the above question. Let V be an alphabet and let a = (al9 . . ., an),
P = (Pl9 . . .,Pn), n ^ l , a;, PieK+, i= l , . . ,,n, be an arbitrary instance of
PCP. Choose S = Z2 U Si U £0>

 w h ^ r e £2 = { ̂  }> £o = {<*>is <°2} and

Define the homomorphisms hx : Sf -> F* and /i2 : SJ -> { 1, . . ., n }* b v t h e

following:

when xeK, i € { l n}.

We say that a S-tree t is we// formed if

(12) r ^ x O i , ^ ) , where t 1 = y 1 . . . ^ ( © J and t2
 = z i - • -^(©2)»

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 337

r,s^l, y-v ZjeliU and yx. . .yr (resp. zx. . . zs) is obtained by catenating
strings of the form x1(i)x2. . .xk, k}>\, XJEV, 7 = 1, . . . , /c , f e { l , . . ., n } ,
and ai — x1. . . xfc (resp. ^i = x1. . . xfc). (Intuitively this means that tx codes a
string of words of a and t2 SL string of words of p.)

We define the forest L to consist of all well formed trees x( t l s t2) as in (12)
such that

(13) h1(y1. . .yr) = hl(zl. . . zs) (and hence also r = s), and

(14) fc2(yi.-.Jv)=M*i. ••*.).
We construct an ^R-recognizer A such that LEÜ(A) = L. When ^ reads a

leaf (Ö1 of an input tree £, the computation branches universally into three
computations Cl9 C2 and C3. The computation Cx just checks that the input
tree t is well formed, i. e., of the form T(tl9t2)

 a s i*1 (12). This is easy since
the set of well formed trees is regular.

Using a construction essentiaily similar to that of Appendix 2 of [10], in
one branch of the computation C2, A can be forced to read alternately unary
symbols yt and zi from tx and t2, and send along another branch of the
computation tree "signais corresponding to yt and z" to the root x. Thus A
is able to check that r = s and h1(yi) = h1(zi), f=l , . . . ,r. Similarly in C3, A
can check that h2 (yx. . .yr) =h2(z1. . .zs). [In C3, .4 passes by deterministically
symbols labeled by éléments of V and reads alternately from tx and t2

symbols of the form x(i\ xeV.] We leave the details of the construction to
the reader. Instead of the above outlined construction from [10] one could
also use a suitable regular control-forest to guarantee that C2 and C3 check
conditions (13) and (14).

Now there exists a well formed H-tree that satisfies (13) and (14) iff the
PCP (a, P) has a solution. An algorithm M for the membership problem
could décide whether <Ù1(Ù2 belongs to yd(LEU(A)) and hence also whether
(a, P) has a solution. Since PCP is undecidable, it follows that M does not
exist. •

From the proof of Theorem 4.9 it follows in fact that also the question
whether a word of length two belongs to an alternating yield-language is
undecidable.

THEOREM 4.10: There does not exist an algorithm M that for a given
alternating yield-language L would produce a context-sensitive grammar gêner-
ating L.

Proof. The membership problem for context-sensitive languages is decida-
ble, cf. [9]. Hence if M would exist, we could décide the membership problem
for alternating yield-languages, contradicting Theorem 4.9. •

vol. 22, n° 3, 1988



338 KAI SALOMAA

5. ALTERNATING EXTENDED YIELD-LANGUAGES

In the previous section we saw that using an alternating bottom-up compu-
tation we can recognize the dérivation trees of a context-sensitive grammar
that has no length decreasing productions. Here we consider extended yield-
languages where some nullary symbol c corresponds to the empty word in
the yield. By labeling some leaves of the input tree with c the recognizer can
"extend its workspace" and thus it can recognize the dérivation trees of
arbitrary context-sensitive grammars.

DÉFINITION 5.1: A four-tuple G = (V,N,S,P) is called an extended PNF
grammar if G is otherwise exactly as in Définition 4.1 except that P may
also contain productions of the form

where BeN.

The following result is proved in [7],

THEOREM 5.2: Every recursively enumerabïe language can be generaled by
an extended PNF grammar,

Next we define the dérivation trees of an extended PNF grammar anal-
ogously with Définition 4.2.

DÉFINITION 5.3: Let G = (T, N,S,P) be an extended PNF grammar. Corre-
sponding to G we define the ranked alphabet Q~Q2[JQ1[JQ0, where
Q0=V(J NU {c},Q1 = {o} and Q2 = { T }. Here a, x and c are new symbols.

The production set P is defined by rules (l)-(4), where (1), (2) and (3) are
exactly as in Définition 4.2 and (4) corresponds to the additional
^-productions:

(4) IfB^XeP, then B^a(c)eP.

The set P defines the relation YG and the set of dérivation trees D (G) as in
Définition 4.2.

Analogously with Lemma 4. 3 we have

LEMMA 5.4: Let G = (V,N,S,P) be an extended PNF grammar and
we (F UN)*. Then

S =>g w iff there exists a teD (G) such that ydc(t) = w.

Informatique théorique et Applications/Theoretical Informaties and Applications



ALTERNATING YIELD-LANGUAGES 3 3 9

LEMMA 5. 5: Let G = (V, N, S, P) be an extended PNF grammar, Then there

exists a ranked alphabet X, ceZ 0 and a 1,-forest Me£fEU(AR) such that

ydc(M) = L(G).

Proof — The proof is quite similar to the proof of Lemma 4.4. The

^-productions are treated in exactly the same way as the productions of the

form B - • b. •

Since of course every alternating extended yield-language is recursively

enumerable, we have as a conséquence of Lemma 5. 5:

THEOREM 5.6: The family of alternating extended yield-languages equals to

the family of recursively enumerable languages.

ACKNOWLEDGMENTS

I would like to thank Magnus Steinby for many useful suggestions to improve the results
and présentation of this paper. The grammar of Example 4.5 is due to Martti Penttonen.

REFERENCES

1. A. AHO, Indexed Grammars. An Extension of Context-free Grammars, J. Assoc.
Comput. Mach., Vol. 15, 1968, pp. 647-671.

2. A. K. CHANDRA, D. C. KOZEN and L. J. STOCKMEYER, Alternation, J. Assoc.
Comput. Mach., Vol. 28, 1981, pp. 114-133.

3. F. GÊCSEG and M. STEINBY, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
4. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 1979.
5. R. E. LADNER, R. J. LIPTON and L. J. STOCKMEYER, Alternating Pushdown and

Stack Automata, SIAM J. Comput, Vol. 13, 1984, pp. 135-155,
6. D. E. MULLER, A. SAOUDI and P. E. SCHUPP, Alternating Automata, the Weak

Monadic Theory of the Tree, and its Complexity, Proc. of 13th ICALP, Lect.
Notes Comput. Sci., Vol. 226, 1986, pp. 275-283.

7. M. PENTTONEN, One-sided and Two-sided Context in Formai Grammars, Inf. Con-
trol, Vol. 25, 1974, pp. 371-392.

8. W. C. ROUNDS, Mappings and Grammars on Trees, Math. Systems Theory, Vol.
4, 1970, pp. 257-287.

9. A. SALOMAA, Formai Languages, Academie Press, New York, 1973.
10. K. SALOMAA, Alternating Bottom-up Tree Recognizers, Proc. of l l t h CA AP, Lect.

Notes Comput. Sci., Vol. 214, 1986, pp. 158-171.
11. G. SLUTZKI, Alternating Tree Automata, Proc. of 8th CA AP, Lect. Notes Comput.

Sci., Vol. 159, 1983, pp. 392-404.

vol. 22, n° 3, 1988


