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COMMUTATIVITY IN GROUPS PRESENTED BY FINITE
CHURCH-ROSSER THUE SYSTEMS (*)

by Klaus MADpLENER (1) and Friedrich Orro (%)

Communicated by Jean BERSTEL

Abstract. — Let G be a group that can be presented by a finite Church-Rosser Thue system.
Then, whenever two elements u and v of G commute, the subgroup {u, v); of G generated by u
and v is finite, or it is infinite cyclic. In particular, each finitely generated abelian subgroup of G
is either finite or isomorphic to Z. Further, if the center of G is non-trivial, then G itself is already
finite or isomorphic to Z.

Résumé. — Soit G un groupe présenté par un systéme de Thue fini ayant la propriété Church-
Rosser. Si deux éléments u et v de G commutent, alors le sous-groupe {u, v); de G qu’ils
engendrent est fini, ou cyclique. En particulier, tout sous-groupe abélien finissent engendré de G
est fini ou isomorphe @ Z. De plus, si G posséde un centre non trivial, alors G lui-méme est fini ou
isomorphe a Z.

INTRODUCTION

Thue systems are string-rewriting systems that have been studied extensively
in computability theory, combinatorial (semi-) group theory, and formal
sk

language theory. A Thue system T on X induces a congruence relation «» on
T

2* and hence, languages can be defined as unions of congruence classes. In
addition, T presents a monoid .#; which is taken to be the factor monoid

ES
of the free monoid £* modulo the congruence <.
T
Thue systems that satisfy the Church-Rosser property [4, 5, 11] are of

special interest, since a finite Church-Rosser Thue system defines a unique
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94 K. MADLENER, F. OTTO

normal form for each of its congruence classes, and any word can be reduced
in linear time to the normal form in its class [5]. Hence, it is only natural to
ask which monoids can be presented by finite Church-Rosser Thue systems.
Observe that we are only interested in finite systems, since every countable
monoid can be presented by an infinite Church-Rosser Thue system.

So far only a few results could be obtained in this direction. Cochet [10]
proved that a group G can be presented by a finite special Church-Rosser
Thue system if and only if G is isomorphic to the free product of finitely
many (finite or infinite) cyclic groups. Gilman [13] conjectured that a group
G can be presented by a finite monadic Church-Rosser Thue system if and
only if G 1s isomorphic to the free product of a finitely generated free group
and finitely many finite groups, which is exactly the class of groups that have
presentations with a simple reduced word problem [15]. For two-monadic
Church-Rosser Thue systems this conjecture has been proved only recently
by Avenhaus, Madlener, and Otto [3]; however, the general case is still open.
Finally, Avenhaus, Book, and Squier [2] established that whenever M is an
infinite commutative monoid that is cancellative, then M can be presented
by a finite Church-Rosser Thue system if and only if M is either the free
cyclic group or the free cyclic monoid. Diekert [12] has generalized this result.
For groups his result states that whenever a group G presented by some
finite Church-Rosser Thue system has an abelian subgroup S of finite index,
then any abelian subgroup of G is either finite or isomorphic to Z. However,
Z and Z,*Z, are the only infinite groups meeting these requirements [12].

Here, we restrict our attention to groups presented by finite Church-Rosser
Thue systems. We investigate under which conditions two elements u and v
of such a group commute. Of course, if the subgroup {u, v )¢ of G generated
by u and v is cyclic, then u and v commute. However, if ¥ and v commute,
and if u has infinite order, then this already implies that {u, v > is cyclic
(Theorem 2.3). In fact, it turns out that the centralizer Cg(u) of u in G is
isomorphic to Z.

To prove this result we establish a lemma that may be of interest in its
own right : Let T be a finite Church-Rosser Thue system on X such that the
monoid .# presented by (Z; T) is a group. Then for each word ueX*, the
language A%({u}*) NVIRR(T) of irreducible descendants of powers of u is
regular. Observe that the descendants of a regular set modulo a finite Church-
Rosser Thue system may in general form a non-recursive set [22]. Further,
the lemma is effective in that a regular expression presenting the set
A%({u}*) NIRR (T) can be constructed effectively from u and T. Thus, given
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FINITE CHURCH-ROSSER THUE SYSTEMS 95

a finite Church-Rosser Thue system T on X such that .#, is a group and a
word ue X*, the order of u in .#; can be determined effectively.

From our characterization theorem we can easily derive that each finitely
generated abelian subgroup that can be presented by a finite Church-Rosser
Thue system is either finite or isomorphic to Z. Further, if G can be presented
in this way, and if the center of G is non-trivial, then G itself is already finite
or isomorphic to Z. Finally, if G contains a finitely generated abelian
subgroup that is normal in G, then G is already either finite, isomorphic to
Z, or isomorphic to Z,*Z,. These results extend the ones obtained by
Diekert considerably.

Finally, even though our result does not settle the problem of which groups
can be presented by finite Church-Rosser Thue systems, it gives an easy
criterion to verify that a given group does not have a presentation of this
form.

Based on the techniques developed in this paper it can be shown that the
groups in discussion are context-free groups. This and some related results
will appear in a forthcoming paper. Hence, from Muller and Schupp’s
result [18] we can conclude that the groups presented by finite Church-R osser
Thue systems form a proper subclass of the class of groups that are finite
extensions of free groups. Actually, we conjecture that this subclass is exactly
the class of groups appearing in Gilman’s conjecture.

1. MONOID PRESENTATIONS AND ELEMENTS OF FINITE ORDER

In the following the basic notions and definitions for this paper are given.
For more details and for a thorough discussion of the various applications
of Thue systems the reader may consult the excellent overview papers by
Book [7, 8].

An alphabet T is a finite set the elements of which are called letters. The
set £* of words over Z is the free monoid generated by Z, where the empty
word e serves as the identity. For a word we X*, the length of w is denoted
by |w|:|e|=0, and |wa|=|w|+1 for weZ*, aeX. The identity of words is
written as=, and the concatenation of words u and v is simply written as uv.
Numerical superscripts are often used to abbreviate words: w®=e, and

w'tl=w"w for weZ*, neN.

A Thue system T on X is a subset of T* x X* An element (I, r) of T is
called a rule. For a Thue system T on £, dom(T)={leZ*|3reZ*:(l, r)eT}
is the domain of T, and range(T)={reX*|31eZ*:(l, r)e T} is its range. The

vol. 22, n°® 1, 1988



96 K. MADLENER, F. OTTO

sk
Thue congruence < induced by T is the reflexive transitive closure of the
T

relation <, which is defined as follows: wu«<wv if and only if
T T

Ix, yeZ* (I, NeT:[lu=xly and v=xry] or [u=xry and v=x1y]. For a word

*
weZ*, the congruence class {veX* | we v} of wis denoted by [w];.
T

The set of congruence classes {[W]T|we2*} forms a monoid under the
operation [u]y° [v]; =[uv]; with identity [e];. This monoid is denoted as .# .
It is the factor monoid of the free monoid X* modulo the Thue congruence

ES
<. If M is a monoid such that M ~ #,, i.e., the monoids M and # are
T

isomorphic, then the ordered pair (Z; T) is called a presentation of M with X
being the set of generators, and T being the set of defining relations. The
monoid M is called finitely presented, if there exists a finite presentation of
M, i.e., a presentation (Z; T) with £ and T both being finite. In this paper
we will only be dealing with finite presentations.

Let T be a Thue system on X. We define a mapping ord;: Z* - N as
follows :

*
min{keN, |IneN:w""* —w"}
T

if there are integers n=0 and k=1
ord;(w):=

*
such that w"** — w"
T

0 otherwise.

The value ord, (w) is called the order of w modulo T. If ord,(w) # 0, then w
is said to be an element of finite order for T, otherwise w is said to be an
element of infinite order for T. Obviously, a word weX* is an element of
finite (infinite) order for T if and only if w presents an element of finite
(infinite) order of the monoid .#;. In particular, if the monoid #; is

%
cancellative, then weX* is an element of finite order if and only if w«se
T

for some integer k = 1.

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 97

Two words u, ve X* are called cyclically equal (modulo T) (u = v) if there
T

* *
are words x, y€ X* such that u < xy and v < yx [20]. We claim that the order
T T

of words is invariant under the relation of cyclic equality.

LemMa 1.1: Let T be a Thue system on X, and let u, veX*. If u = v, then
T

ord, (u) =ord (v).

Proof : Let u and v be cyclically equal. Then there exist words x, yeX*

* *
such that u < xy and v yx. Assume that u has finite order. Then we have
T T

*
integers n = 0 and k = 1 such that u"**«> 4", and hence,
T

* * * * *
v"“‘”H(yx)"”‘”=y(xy)"+"x<—>yu"+"x+—>yu"x«—»y(xy)"x<—>v”“.
T T T T T

Thus, v has finite order, too, and ord;(v)<ord,(u). By symmetry we can
conclude that ord, (u)=ord;(v). [

In the following we are interested in Thue systems that satisfy certain
restrictions. A Thue system T on X is called length-reducing, if |I|>|r[ for
each rule (I, r)eT, and it is called monadic, if it is length-reducing and

*
range(T) < = U {e}. The reduction relation — defined by T is the reflexive
T

transitive closure of the relation —, which is defined through u — v if and
T T

only if uowv and |u|>|v|. So for a length-reducing Thue system T the
T

relation — corresponds to the process of substituting an occurrence of the
T

left-hand side of a rule by an occurrence of the corresponding right-hand
side. A word weX* is called irreducible, if no reduction step — can be

T
applied to w, otherwise it is called reducible. IRR (T) denotes the set of
*
all irreducible words modulo T, Af(w)={veX*|w—v} denotes the set
T

of all descendants of w modulo 7T, and for any language

vol. 22, n° 1, 1988



98 K. MADLENER, F. OTTO

L c 2% A¥(L)= U A%¥(w). A length-reducing Thue system T on X is called

we L
a Church-Rosser Thue system, if each congruence class contains a unique
irreducible word, which can then be taken as the normal form for its class [5].

2. THE RESULT

Let T be a Thue system on X. The monoid M, presented by (Z; T) is a
group if and only if, for each word weX*, there exists a word w' e X* such

*
that ww’ < e. Obviously, this is equivalent to saying that for each letter ae X,
T

*
there exists a word a’eZ* such that aa’<—e. In general, it is undecidable
T

whether or not such words a’(aeX) exist, since it is undecidable in general
whether or not the monoid .#; defined by a given presentation (Z; T) is a
group. However, if we restrict our attention to finite presentations involving
Church-Rosser Thue systems, then this problem becomes decidable [24]. In
fact, given a finite Church-Rosser Thue system T on X such that .Z is a
group, one can effectively determine an irreducible word a~* for each letter

*
aeX such that aa™! — e. We then extend the function ~':Z — T* to all of
T

T* by defininge ':=eand (aw) ':=w"la !, weZ* aeX. So in the follow-
ing we will associate a fixed function ~':X* — X* with each presentation
(Z; T) provided T is Church-Rosser and .#, is a group. We then write w*
to mean (w™ )Y, i.e., w'is defined for all integers .

1 1

Let the monoid . ; given by the presentation (X; T) be a group, and let

Uy, Uy, ..., u,€X* Then the subgroup {u,, ..., u,) 4, of M thatis gener-
ated by {uy, u,, ..., u,} is the least subgroup of .#; containing all the
elements presented by u,, u,, ..., u, i.e.,

<u15 LR un>./ﬂr

={weZ*|Im=0, vy, ..., v,e{uy, ..., u,b Uy, oo, u ')
*

WUy e . D)
T

A subgroup S of ., is called cyclic if it is generated by a single element,
i.e., S={u),, for some word ueX*

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 99

Finally, recall that a word weX* is called primitive if there are no word
xeX* and integer k>1 such that w=x* otherwise, w is called imprimitive.
In either case, the shortest x such that w=x* is the root of w.

In this section we will only be dealing with finite Church-Rosser Thue
systems presenting groups. We will derive a characterization for those pairs
of words that commute modulo a Thue system of this type. We first state a
special case of the characterization theorem we are aiming at. This special
case will be very useful for proving the main result.

LemMma 2.1: Let T be a finite Church-Rosser Thue system on T such that
the monoid M 1 is a group, and let ue T* be a non-empty primitive word such
that {u}* < IRR (T). Then for each word ve £* and each integer m = 1, if u™
and v commute, then ve{u) 4,.

* *
Proof : Let veZ* and m=1 such that u™v < vu™ If v« e, then nothing
T T

*
*
has to be shown, and so we may assume that v<>e. Since u™v <> vu™, we

T T
*
have u™" v« vu™" for all n=1. Let w, denote the irreducible descendant of
T * * . .
u™"v. Then u™"v — w, and vu™" - w,, since T is Church-Rosser.
T T

CLAIM : There exists an integer n=1 such that u™w,=w,u™.
*

Proof : Let k>1. Then u™ *v — w, implying |w,|<m-k-|u|+|v| On the
T

other hand, u™: ":wkv_l, and hence, w, v~ ! 5 u™-* according to the choice
ofu,andsom~k‘T|u|§|wk|+|v_1|. Let '

o =|w,|—m-k-|ul+|v7!
Then o, =0, and

|wel=m k- |u|—|v™*|+oy

* *
We have u"w, o u™u™ *y=u"* " VDyew,, ., ie, u"w, > w,,, and anal-
T T T

*
ogously, w,u™ - w,,,. This means that either u"w,=w,,,=w,u™ or
T

vol. 22, n° 1, 1988



100 K. MADLENER, F. OTTO
| Wesq|<m-|u|+|w,| In the former case we are done, so assume the latter.
Then

mo(k+1)|u|—|o7 +oysy |<m|u|+|we|=m-(k+1)|u|—|o"! |+
implying that o, , ; <o,. Since

>

o =|wi[=m-ful+[o7 = m-Jul+[o[—m-|u|+]o7H|=[o]+]o7*

we conclude that there exists an integer n=1 such that
utw,=w,  =w,u" [
Since u"w,=w,u™, and since u is primitive, there exists an integer /=0

*
such that w, =u’. Hence, u™ "v > w,=u' implying that
T

* *
vH(u—l)"""u'Hul_"""
T T

b

ie,vedud . O

Let T be a finite length-reducing Thue system on X, and let R € X* be a
regular language. If T is monadic, then the language A%(R) is also regular [9].
However, if T is non-monadic, then this language is not necessarily regular.
In fact, even if T is Church-Rosser, this language can be non-recursive [22].

In what follows we are interested in languages of the form
A%({u}*) NIRR (T), where u is an element of infinite order, and T is a finite
Church-Rosser Thue system presenting a group.

LemMA 2.2: Let T be a finite Church-Rosser Thue system on X such that
the monoid My is a group. Then for each word ueX*, the language
A% ({u}*) NIRR(T) is regular.

Proof : Observe that the language A% ( {u}*) N IRR(T) is finite if and only
if the word u has finite order. So let ueX* such that ord;(#)=0. Without
loss of generality we may assume that u is irreducible. For each n=0, let
u, denote the irreducible descendant of u". Then u, # u, for all integers
n, m=0, n # m.

Let n=1. Then uu, 5 u,. 1, and since .4, is a group, u” u, ., : u,. Thus,
T T
lu,| = |u™ || tysy | = |u,| + |u] implying that

05 utt |~ [ty | < 1]+~ .

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 101

Hence, whenever uu, —i>u,,+ 1> then i<|u| + |u~"| Analogously, u,,u—j>u,, 1
T T
also implies j <|u|+|u""]|.
Let A : =max {|l||ledom(T)}, and let p: =2-(|u| +|u" ')  A—1)+A.
Since u,,#u, for all ms#n, there exists an index n(p) such that |uk| =p for
all k=n(w). Finally, let p=n(p) be chosen such that |up| <]up+1|. Since

* %
uu, > u,, < u,u, we have the following factorizations: u,=xt=sz and
T T

i j . .
u,,=vt=sw, where ux —>v and zu—w. Since u, u,cIRR(7), and since
T T

i, j<|u|+|u""|, we can conclude that | x|, |z|< (4| +|u"*|): (A\—1). By the
choice of p this yields that t=yz and s=xy for a word yeX* satisfying
|¥| 2. Thus, we have the following situation:

*

*
U,=xyz, U, ,=vyz=xyw, where ux —T> v and zu — w.
T

*

Since 1 is a group, and since u <> e, we obtain v#x and z#w. Now four
T

cases must be distinguished.
(i) v=xx, and w=2z, z for some non-empty words x,, z, e L*

sk
Then wu,,,=xx;yz=xyz,z, which implies x,y=yz;, ux—xx,, and

T

%
ZU— 2,z

T
Cram. u,,,=xxj yz for all k> 1.
Proof: By induction on k:
k=1:u,,,=xx;yz according to our assumptions.
k —>k+1: uu,,,=uxx} yz by induction hypothesis.

* .

Now uxx} yz - xx{*' yz=xx! yz, z. The word xx§y is a factor of u,,,

T
and hence it is irreducible.

The word yz, z is a factor of u,,,, and hence it is irreducible, too. Since
|»| 2%, this means that the word xxk*!yz=xx%yz, z is irreducible, i e.,
xx5"t yz=xx{ yz, z is irreducible, i.e., xx{* yz=u, 0y O
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102 K. MADLENER, F. OTTO

Thus, in this situation the language
A$({u}) NIRR(T)={u,|n=0}={u,|0=n=p} U {xxkyz|k20)

is clearly regular.

(i) x=vv, and z=w,w for some non-empty words v,, w,eX* Then
u,=vv, yw,; w and u,, ; =vyw, w=uvv, yw implying |u,| >|u,, |. This contra-
dicts our choice of index p, 1. e., case (ii) cannot occur.

(i) x=vv; and w=z,z for some non-empty words v,, z;€X*. Then
u,,;=vyz=vv,yz,z implying y =v,yz,, which contradicts the fact that v, and
z, are non-empty.

(iv) v=xx; and z=w, w for some non-empty words x,, w, €X*. Then
U, 1 =Xxx,yw;w=xyw giving the same contradiction as above.

Thus, only case (i) can occur, and the lemma is proved. []

Finally, we can state and prove our characterization theorem for commut-
ing elements in finite Church-Rosser Thue systems presenting groups.

THeOREM 2.3: Let T be a finite Church-Rosser Thue system on T such that
the monoid M ; is a group, and let ue * be a word of infinite order. Then for
each word ve X*, the following two statements are equivalent:

(1) u and v commute.

(i) The subgroup {u, v} 4, of .4 generated by u and v is cyclic.

Proof: Let u, veXZ* such that ord;(u)=0. If there exists a word yeX*
such that u, ve{y) ,,, then obviously u and v commute. To prove the

*
converse implication assume that uv < vu.
T

®

*
If vese, then (u, v} 4, =<{u) 4., and we are done. So assume that vebe.
T T

For each n=0, let u, denote the irreducible descendant of u". By Lemma 2.2
the set

R@): ={u,|n20}=A3({u}*) NIRR(T)

is regular. Since it is also infinite, there exists a set I(u)={xw'z|i=0} <R (),
where x, w, zeX* are words such that xz#e#w.

Let y denote the root of w, i.e., y is a non-empty primitive word such that
w=y" for some n=1. Obviously, we have {y}*<IRR(T). Now for each
integer {20, there is an index j; =1 such that xw'z=u;. We fix an integer
k =0 such that j,, , >j,, and in order to simplify notation we define m : =j, , ,,

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 103

j: =ji and I : =m—j. This gives

* %
Wttt z=u, o um=uwt o uul = xwhzd,
T T

K
which in turn yields u' <>z~ ! wz, since .4 is a group.
T

Using this relation we obtain

% * * L %
Yoz Vo zz twavz o zdtvz Yo zoulz T o zuz T P zulz T o (zuz T Y)Y
T T T T T

which yields zvz " tedy) up by Lemma 2. 1. Analogously,

1 1

* % Ed
V' (uz Ve zz7 twzuz T s zu! M 27 o (zuz ) "

T T T

*
implying zuz " *e{y > 4, Thus, we have u, ve(z"'yz) ,,, i.e., ue>y§ and
T

s
vyt for some non-zero integers k, le Z. Here y, stands for z7! yz.
T

Let p denote the greatest common divisor of k and I. Then p#0, and
obviously, u, ve{y§ ) 4,- On the other hand, there are integers A, peZ such
that

s
Ak+p.l=p, ie, utvreoyptrri=pp

T
Thus, yfe{u, v) 4, This means that {u, v} 4, =<{y§ .4, and hence, the
subgroup {u, v) 4, is in fact cyclic. O
Actually, the proof just given shows a bit more than we claimed, since the

word y,: =z 'yz only depends on u, but not on the word v. Thus, in
addition to Theorem 2.3 we have shown the following.

CoROLLARY 2.4: Let T be a finite Church-Rosser Thue system on X such
that the monoid My is a group. Then for each word u of infinite order, the
centralizer C(u) of u in M  is isomorphic to Z.

Proof: Let ueX* such that ord;(u)=0. Then there exists a word y,eX*
such that for each veX*, if u and v commute, then ve{y, 4, Thus,

%
Cr(u)={veZ*|uvevu} =y, >4 and so Cp(u) is isomorphic to Z. [
T

vol. 22, n° 1, 1988



104 K. MADLENER, F. OTTO

3. SOME CONCLUSIONS

From our characterization theorem we fairly easily obtain a number of
conclusions regarding the order of commuting elements and the subgroups
generated by them.

CoroLLARY 3.1: Let T be a finite Church-Rosser Thue system on X such

*
that the monoid M ; is a group, and let u, ve T* be words such that uv < vu,
T

* *
but neither u<se nor v e.
T T

(@) If u has finite order, then v and uv have finite order.

*
(b) If u has infinite order, then v has infinite order, and either v<>u~' or uv
T

also has infinite order.

%k

. *
Proof: Let u, veX* such that uve— vu, u<se, and vse. If ord;(u)=0,
T T T

* + * .
then by Theorem 2.3 there exists a word y € Z* such that u«<y' and vy’

T T
for some integers i, j#0. Now ord;(u)=0 implies that ord;(y)=0, which
then yields that ord; (v)=0. Thus, either u and v both have infinite order, or
they both have finite order.

(@) Let u and v have finite order, and let m : =ord;(v). Then m=2,

* ) *®
v"<«se, and vi¢beforalli{l, 2, ..., m—1}. If ord; (uv)=0, then

T T

* * %
() v '=w" s uev"ue ™ (uw)
T T T

implies that ord; (v) =0 according to the above remark. Thus, uv has finite
order.

(b) Let u and v have infinite order. Then the subgroup {u, v} 4, is cyclic,
and since it is infinite, we have {u, v} ,, =Z. Thus, weuy, v} 4, implies

* *
that either uv e, i.e., ve>u™ !, or ord,; (u)=0. [
T T

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 105

A group is called torsion-free, if it does not contain any non-trivial elements
of finite order. The following corollary gives a characterization for those
groups presented by finite Church-Rosser Thue systems that contain elements
of infinite order, and it states a simple observation about groups of this kind
that are not torsion-free.

CorOLLARY 3.2: Let T be a finite Church-Rosser Thue system on X such
that the monoid M ; is a group.

(a) The group M, is infinite if and only if it contains an element of infinite
order.

(b) If M 1 is infinite but not torsion-free, then M ; contains infinitely many
non-trivial elements of finite order.

Proof: (a) If # ; contains an element of infinite order, then obviously, . ;
must be infinite. Now assume conversely that the group .#; is infinite. Then
the set IRR(T7) is an infinite regular set of representatives for .# ;. Hence,
the pumping lemma for regular sets applies giving a subset { xy*z|k=0} of
IRR (T), where y#e. Since the set IRR(T) is subword-closed, this gives
{y}*<IRR(T). Thus, y describes an element of infinite order of ..

(b) Since . ; is infinite, there exists a word yeX* such that ord;(y)=0,
and since ./ ; is not torsion-free, there exists a word xe IRR (T)—{e} such
that ordy(x)=m=2. For all i=1, let x;: =y ‘xy’ Then
ord; (x;)=ord; (x)=m for all i.

* I3 . * . . . .
Assume that x; < X, ; for some integers i, j=1. Then y ~'xy' <>y ="/ xy'*J
T T

* . P : * . . .. .
implying that x«>y~/x)’, i.e., }’x«>x)’. Since x has finite order, y’ must
T T
£ 3

have finite order by Corollary 3.1. Hence, j=0. Thus, for all i#j, xi«#»xj,
T

ie, {x;]i=1} presents an infinite subset of .#; of elements of finite
order. (J

Corollary 3.2 (a) solves the Burnside problem [1] for groups presented by
finite Church-Rosser Thue systems. In fact, our proof is valid for each group
that can be presented by a complete string-rewriting system the domain of
which is a regular set. That we used length as an ordering is not important
in this situation.

If T is a finite monadic Church-Rosser Thue system on X and we XZ*, then
the order ord; (w) of w can be determined effectively. In fact, given a finite

vol. 22, n° 1, 1988



106 K. MADLENER, F. OTTO

monadic Church-Rosser Thue system T on Z, it is decidable whether or not

*
there exists a word weX*, we e, such that ord; (w)>0 [23]. However, for
T

finite Church-Rosser Thue systems that are non-monadic, this problem is
still open, while it is known to be undecidable for finite Thue systems in
general. If we restrict our attention to letters only, then we do at least have

the following result, which can be viewed as a generalization of [2, Lemma
4).

LemMa 3.3: Let T be a finite Church-Rosser Thue system on X, and let
aeX. Then the following two statements are equivalent:

(i) ordy(a)>0.
(i) Am=1: a"edom(T).
Proof: If ord;(a)>0, then there exist integers n=0 and k=1 such that

*
a"**«sa". Since T is.Church-Rosser, this implies that a"** and &" have a

T
common descendant. In particular, a"** is reducible modulo T, i.e.,
a”edom (T) for some me{1,2, ..., n+k}.

Now assume conversely that a”edom(7T) for some integer m=1. Then
there exists a word re Z*, |r]<m, such that (@™, r)e T. For each n=m, let u,
denote the irreducible descendant of a” modulo T. If u,e{ a }* for some n=m,

*
then a" <> u,=a*e IRR (T), which implies n=m > k. Thus, ord, (a)>0. So let
T

us assume that u,¢{a}* for all n=>m.
CLaM: |u,|<m for all n2m.
Proof: By induction on n:

n=m: a"‘—»r:um implying ]uml§l7’|<m‘
T

%
n—n+1: We have a" - u,, and by induction hypothesis | u, |<m.
T
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* *
Now a"*'=d"a—u,a and a*'=aa"—>au,  which yield
T T
* * . . .
au, — u,,, < u,a. Since u,¢{a}* we conclude that au,#u,a, ie.,
T T

aun;u,,ﬂ. Hence, |u,,,| <|u,| <m. O
T

Since there exist only finitely many words ve £* satisfying |v|<m, we see

*
that there are integers n; >n,2m such that u, =u,,. Hence, a"t —a"2, i.e.,
T

ord;(a)>0. [J
If, however, .# 1 is a group, then by Lemma 2.2 A*({u}*) NIRR(T) is a
regular set. Now either this set is finite, in which case there exists an integer

*
n>1 such that u" — e, or this set is infinite, in which case there exists an
T

integer p =1 such that

* *
w—>u,elRR(T), w*'—>u,, cIRR(T),
T

T
and
s | >|u,| Z2.(Jul +|u™t ). (A=1)+A,

where A :=max {|[||ledom(T)}. From the proof of Lemma 2.2 we see that
this condition is not only necessary but also sufficient for the set
2({u}*) NIRR(T) to be infinite. Thus, we have the following result.

CoROLLARY 3.4: Let T be a finite Church-Rosser Thue system on ¥ such
that the monoid My is a group. Then given a word ueX*, the order of u
modulo T can be determined effectively.

Finally, we have the following characterization for certain abelian
subgroups of groups that are presented by finite Church-R osser Thue systems.

CoRrOLLARY 3.5: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If S is an abelian subgroup of G such that S contains an
element of infinite order, then S is isomorphic to Z.

Proof: Let T be a finite Church-Rosser Thue system on X such that (Z; T)
is a presentation of G, and let S be an abelian subgroup of G containing an
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element u of infinite order. Then S is a subgroup of the centralizer C; (u) of
u in G, which is isomorphic to Z by Corollary 2.4. Thus, S=Z. [

If S is a finitely generated abelian subgroup of G, then § is infinite if and
only if it contains an element of infinite order. Thus, Corollary 3.5 implies
the following.

COROLLARY 3.6: Let G be a group that can be presented by a finite Church-
Rosser Thue system. Then every finitely generated abelian subgroup of G is
either finite or isomorphic to Z.

Another application of Corollary 2.4 gives the following characterization
of groups that can be presented by finite Church-Rosser Thue systems and
that have a non-trivial center.

CoROLLARY 3.7: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If the center C of G is non-trivial, then G is either finite
or isomorphic to Z.

Proof: Let T be a finite Church-Rosser Thue system on X such that (Z; T)
presents the group G, and assume that the center of G is non-trivial, i.e.,

*
C={ueX*|VveI*: woou} 2 e
T

If C contains an element of finite order, then by Corollary 3.1 each element
of G has finite order, and hence G is finite by Corollary 3.2 (a).

Now assume that C contains an element u of infinite order. Then G equals
the centralizer Cy(u), which is isomorphic to Z by Corollary 2.4. Thus,
G=Z. O

For groups containing a finite normal subgroup we have the following
observation.

CoOROLLARY 3.8: Let G be a group that can be presented by a finite Church-

Rosser Thue system. If G contains a non-trivial normal subgroup that is finite,
then G itself is finite.

Proof: Let T be a finite Church-Rosser Thue system on X such that (X; 7)
is a presentation of G, and let N be a finite non-trivial normal subgroup of
G. Then there are words u,, u,, ..., u,e IRR(T)—{e} such that the set
{e, uy, uy, ..., u,} exactly describes the subgroup N.
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Assume that G is infinite. Then there exists an irreducible word ueX* such

L

%
that ord, (1) =0. In particular, u™ <> e for all m = 1. The mapping u; » u~ ' u;u
T

induces an automorphism on N. Thus, there exists an index m =1 such that

* £
u "Mu U uy, ie., u, U o u"u,. Since ord,(u)#0 while
T T

ordy (u)=ord; (u™)=0, this contradicts Corollary 3.1. Thus, G is indeed
finite. [J

Using this observation we can now prove the following generalization of
Dickert’s characterization theorem [12].

CoRrROLLARY 3.9: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If G contains a finitely generated nontrivial abelian
subgroup that is normal in G, then G is either finite, isomorphic to Z or
isomorphic to the infinite dyhedral group Z,* Z,.

Proof- Let N be a finitely generated non-trivial abelian subgroup of G that
is normal in G. By Corollary 3.6 N is either finite or infinite cyclic. If N is
finite, then G is finite by Corollary 3.8. So let N={u >, for some element u
of G of infinite order. Then the centralizer C; (N)=Cg; (1) is an infinite cyclic
subgroup (Corollary 2.4) that is normal in G. Let Cg(u)= (v ) for some
element v of G of infinite order. For every element ge G, the mapping
®,: h—g " hg induces an automorphism of Cg(u)=<v)s, i.e, g vg=v
or g tvg=v"t If glvg=v, i.e.,, g and v commute, then also g and u
commute implying that geC;(u). Analogously, if g 'vg=v"!, then
g*eCq;(u). Thus, for all g, g,€G, if g, g,¢Cg; (u), then g, g5, ' €Cq(w), i.e.,
Cg(u)g,=Cgs(u) g, Hence, the index |G : C4(u)| of Cg(u) in G is at most
two. Now Diekert’s result applies giving G~Z or G=Z,*Z,. [

While it is still an open problem to characterize those groups that can be
presented by finite Church-Rosser Thue systems, our results can at least serve
as criteria to verify that a given group does not have a presentation of this
type.

Example 3.10: Let G=F, xZ,, i.e.,, G is the direct product of the free
group F, of rank 2 and the cyclic group Z, of order 2. Then G is not finite,
but Z, is a finite normal subgroup of G. Thus, by Corollary 3.8 G cannot
be presented by a finite Church-Rosser Thue system. []
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In [16, 17] Jantzen investigates the class of groups G,(n=1), where G, is
given through the presentation (Z; S,),

X={a, b}, S,={((ab)"ba, e)}.
He shows that for no n=1, there is a finite canonical (semi-) Thue system T,

% *
on X such that |u|>|v| for all rules (4, v)e T, and <> = <. Using our
Ta  Su

results we can prove that none of these groups can be presented by a finite
Church-Rosser Thue system.

Example 3.11: (a) The group G, is neither finite nor isomorphic to Z.

*

However, its center C is non-trivial, since e«>a®eC, as can be seen easily.
S1

Thus, Corollary 3.7 gives the intended result.

(b) Let n=2. Then G, contains a subgroup that is isomorphic to
Z(1/n) : ={p.n%|p, geZ} [16]. This subgroup is abelian, and it clearly con-
tains an element of infinite order. However, it is not finitely generated, and
s0 is not isomorphic to Z. Thus, Corollary 3.5 applies. []

We conclude this paper with a look at Greendlinger’s group G presented
by ({a, b, ¢, a, b,c}; {(aa, e), (aa, e), (bb,e), (bb,e), (cc, e), (cc, e),
(abe, cba))} [14].

Example 3.12: The elements presented by ab and by ca commute in
G. However, the subgroup < ab, ca ) generated by them is free abelian of
rank 2 [14]. Thus, Corollary 3. 6 implies that the Greendlinger group G can-
not be presented by a finite Church-Rosser Thue system. [

This last example answers a question raised in [21].
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