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DECIDABILITY OF PERIODICITY
FOR INFINITE WORDS (*)

by Jean-Jacques Pansior (1)

Communicated by J. BERSTEL

Abstract. — We show that it is decidable whether an infinite word generated by iterated
morphism is ultimately periodic or not.

Résumeé. — Nous montrons qu’on peut décider si un mot infini engendré par morphisme itéré
est ultimement périodique.

1. INTRODUCTION

Let X be a finite alphabet and g a morphism of the free monoid X*,

prolongable in uye X%, i.e. such that g (uy)=uou, ue X*. Then:
g (u)=g"""(u)g' ' (w
and g defines a unique word, in general infinite, denoted by:
g° (ug)=uoug (u)...g' (). ..

An infinite word # is (ultimately) periodic if M =vw®=vwww. .. for finite
words v and w. The question of deciding whether g° (u,) is periodic or not
has been raised recently, in connection with the w-sequence equivalence
problem for DOL systems [1, 2], the adherence equivalence problem for DOL
languages [3], and with the subword complexity of infinite words [4].

We give a simple proof of decidability for this question, using the notion
of elementary morphism (see [5]). After some preliminaries, we give an algo-

rithm for elementary morphisms in section 2 and for arbitrary morphisms in
section 3.

(*) Received April 1984, revised May 1985.
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A subword u of an infinite word . is biprolongable if and only if there
exist distinct letters x and y such that ux and uy are subwords of .#. Let c (n)
be the number of distinct subwords of .# of length n. Then ¢ (n) < c(n+1) and
A is periodic if and only if c¢(n) is bounded. But if u is a biprolongable
subword of ., |u|=n, then c(n+1) = ¢ (n)+ 1. Hence the following property.

LEMMA 1: An infinite word M is ultimately periodic if and only if the length
of its biprolongable subwords is bounded.

Let g: X* — X* be a morphism. It is simplifiable if there exist an alphabet
Y, | Y| <|X| and two morphisms f: X* - Y*, h: Y* - X* such that g=ho f.
A morphism g is elementary if and only if it is not simplifiable. In this case
g is injective and the set {g (x), x€ X} is a code with bounded delay from left
to right ([5], p. 131). In particular if g(xu) is a prefix of g(yv), x # y then
g (xu) has a bounded length.

Finally a letter xe X is growing (for g) if |g"(x)|, n = 0 is unbounded. We
denote C = X the set of growing letters and B=X\C the set of bounded
letters.

2. THE CASE OF ELEMENTARY MORPHISMS

LeMMA 2: The infinite word M =g° (u,), with g elementary, is ultimately
periodic if and only if ./ has no biprolongable subword of the form xu, xeC,
ue B*.

Proof: Assume xu, is biprolongable. There exist infinite suffixes xu, y, v,
and xu, z, w, of .# for distinct letters y, and z,. But since # =g (#), g(y,v,)
and g(z, w,) are also suffixes of .#. Because g is elementary, their greatest
common prefix, u,, is finite, and g (xu,)u, is biprolongable. Similarly there
exists u; such that g(g(xu,)u,)u; is biprolongable, and so on. Thus we can
construct an infinite sequence of biprolongable words, with unbounded length
since x is growing. Hence ./ is not periodic by lemma 1.

Conversely, assume that there is no biprolongable factor of the form xu.
We consider two cases.

First case: .# contains only a finite number of occurrences of growing
letters. Then there is only one such occurrence, and g (uy) =uyu with ue B*.
Moreover | g' ) |, i =0, is bounded, and there is a smallest n such that
g"* 1 (u)=g'(u), i < n. But then:

M=ugug(u)...g (W' @)...8"W)°
is ultimately periodic.

Informatique théorique et Applications/Theoretical Informatics and Applications



DECIDABILITY OF PERIODICITY FOR INFINITE WORDS 45

Second case: . contains an infinite number of occurrences of growing
letters, # =0y X, &, X, 0,..., x;€C, a;€ B*. Let n be the smallest integer such
that x,,,=x; i <n. Since there is no biprolongable word of the form
xu, we have M =ogx;0;...%;_10_, [X;%...%,0]° and # is ultimately
periodic. W

CoROLLARY 3: If M =g®(u,), with g elementary, we can decide if M is
ultimately periodic.

Proof: Consider the following procedure:

Compute the subset of growing letters, C.

If g (u,) contains only one occurrence of letter from C then .# is ultimately
periodic.

If g (u,) contains several occurrences of letters from C then:

— compute the shortest prefix p of .# containing two occurrences of the
same growing letter x;:

P=0gX 0y ... X;0;X; ... %, 0, X

nn Vi

— for all xu prefix of some x;a;, i <j < n, check if xu is biprolongable;
— . is ultimately periodic if and only if no xu is biprolongable.

This procedure gives the right answer by lemma 2. Moreover each step is
effectively computable: one can determine if a letter is growing, and one can
determine if a given word xu is biprolongable (this comes from the fact that
for a given n one can compute all subwords of length n of #, see [5], p. 210-
212). W

3. THE CASE OF ARBITRARY MORPHISMS

THEOREM 4: It is decidable whether .4 =g® (u,) is ultimately periodic or not
for an arbitrary morphism g.

Proof: By induction on the size of the alphabet, | X|.

If | X|=1 then .# is always periodic.

Assume the theorem is true for alphabets of size < | X| and let g: X* — X*
be an arbitrary morphism. If g is elementary then we decide if .# is periodic
by corollary 3. If g is not elementary we compute Y, f: X* - Y* and
h: Y* - X* such that g=ho fand |Y| < |X| Let g =fch, and uy=Ff (uo).
Then:

g (uo) =g (f (uo)) =1 (g (o)) =f (uo w)=ug f (u),
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where g(ug)=uou. So g’(up) starts with u; and defines an infinite word
M =g"*(uy). Moreover M =h(M’) and A =f(M), and A is ultimately
periodic if and only if .#’ is. Therefore, by induction hypothesis we can
decide if .#" is periodic or not. Since the construction of g’ from g is effective

(see [5], p. 17), we can decide whether .# is periodic or not. This proves the
inductive step. W
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