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ON LAMPORT S COMPARISON BETWEEN LINEAR
AND BRANCHING TIME TEMPORAL LOGIC (*)

by Susanne GRAF (*)

Communicated by K. APT

Abstract. — We consider the problem of the comparison between a temporal logic of linear
time TLL and a temporal logic of branching time TLB, already studied by Lamport, for a more
restricted class ofmodels. To this end, we define a common class ofmodelsfor the two logies which
are the transition Systems. By adopting as criterion ofcomparison Lamporfs strong équivalence, we
obtain the incomparableness of the two logies considered, that means, in each one of the two logies
there exists a formula which expresses a property, non-expressible in the other. From our proof of
incomparableness we obtained a stronger result, stating that there exists no linear time logic more
expressive than TLB.

Keywords: à venir

Resumé. — Nous reprenons la comparaison effectuée par Lamport entre une logique temporelle
du temps linéaire TLL et une logique temporelle du temps arborescent TLm sur une classe de
modèles plus restreinte. Pour cela, on définit une classe commune de modèles pour les deux logiques,
qui sont les systèmes de transitions. En adoptant comme critère de comparaison Y équivalence forte
de Lamport, on obtient rincomparabilité des deux logiques considérées, c'est-à-dire dans chacune
des deux logiques il existe des formules exprimant des propriétés non exprimables dans Vautre. A
parur de notre preuve d'incomparabilité on a obtenu un résultat plus fort qui assure la non existence
de logiques linéaires plus expressives que TLB.

Mots clés : à venir

1. INTRODUCTION

Temporal logic is an appropriate formalism to reason about concurrent
programs [6]. There are two principal views of the underlying model of
time [5]. One considers that time is linear, i. e. at each instant there is only
one possible future. The other is that time is branching, i. e. at any instant,
time may split into different possible futures. So, linear time logic describes
events on a single time path and model is a set of paths. Branching time
logic allows to reason about different possible futures and a model is a
tree-like construction.

(*) Received in Maren 1983, revised in April 1983.
(*) I.M.A.G., B.P. n° 68, 38402 Saint-Martin-d'Hères.
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In [5] a comparison is effected between a linear time and a branching time
logic, and their adequacy for the expression of the properties of concurrent
Systems is discussed. In this report the problem of comparison considered
in [5] is studied, with the différence that the underlying class of models is
restricted and we obtain a more gênerai resuit. The same problem has been
tackled in [4] where the same class of models has been considered but a
comparison criterion different from the one adopted in this paper has been
taken.

We proceed in the following way. In section 2 we define a common class
of models for linear and branching time logies which are transition Systems.
In section 3 the syntax and the semantics of the two logies given in [5] are
introduced. The comparison criterion between logies adopted and some results
on it are presented in section 4. Finally, in section 5, we prove the incompar-
ableness of the two logies considered and so confirai the resuit of [5] for a
smaller class of models.

Z THE CLASS OF MODELS C

We define a common class of models C for the two logies to compare.
M is called a model over a set of propositional variables P, iff:

M = (W, R, A), where

W= { w}, a countable set of states.
R ^ W x W, a total binary relation on W, which represents direct accessabil-
ity between states.

A e W - • 2P, a function from W into 2P. A associâtes with each state w
the subset of propositional variables that hold in w.

So a model can be considered as a transition System (W, R).

For a model M the set of exécution paths EXM is defined as,

EXM : = { s = s o 5 ! . . . \st€WA(sb si + 1)eR, V i ^ O } .

So is EXM the set of the maximal paths produced by R, Furthermore we
adopt the following conventions :

If s = sosi . . . eEXM then:

s+ : = s 1 s 2

+n: =snsn+1=snsn

first (s) : = s0.
We have the following properties of EXM.
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PROPOSITION 1: The set of exécution paths EXM of a model M in C has the
following properties:

(1) lfseEXM then s+eEXM (suffix closure).

(2) ïf U f e W9 w € W and s, s' e EXM then tws e EXM and t' ws' e EXM implies
tws' e EXM (fusion closure).

(3) ïf VieN, x(€W and steEXM, then xQsoeEXM and V i>0 ,
x0 . . . XiSi€EXM implies xox1 . . . eEXM (Koenig's closure).

For a proof see in*[2].
The only property required in [5] for the set of exécution paths is (1). It is

easy to see that the three properties above are independent. So, our class of
models, which are transition Systems, is in fact smaller. This restriction to
transition Systems seems to be quite reasonable as this model is at the basis
of any realistic discrete System [7].

3. SYNTAX AND SEMANTÏCS OF THE TEMPORAL LOGICS TLB AND TLL

A. The temporal logic of branching time TLB

The set of wellformed formulas FB of TLB is defined in the usual way over
the set of propositional variables P with the logical operators and the unary
modal operators ALL and S O ME. The dual operators of ALL and SOME
are denoted by POT and ÏNEV respectively.

Interprétation of the formulas

We represent by EXM(w) : = {se£XM | f irst(s) = w} the set of the exécu-
tion paths starting from w and write M, w \= f to express the fact that the

B

formula f is true in a state w of a model M.

We define N inductively:

B

If/./'eFjthen:
1. M, wN fiffeP andfeA(w).

B

2. M, wl=-i ƒ iff M, w¥f
B B

3. M, wt= jfv/ ' i ff Af, wl= /orM, wN ƒ'.
B B B

4. M, wYALL/iff Vse£XM(w), Vn^OM, first(s+n) N ƒ
B B

5. M, wt=SOM£/iff BseEJ^Cw), Vn^OM,
B
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By dualisation of 4. and 5. we obtain:
6. M, w N PO T f iff 3 s e EXM (w), 3 n ̂  0 M, first (s+n)N ƒ

7. Af, wt/iVEF/iff Vse£XM(w), 3n^0M, first(s+n) N ƒ
B B

We say that a formula ƒ is true m M (M N ƒ) iff it is true in all states of
B

W, and ƒ is valid (h ƒ) iff it is true in all models of C.

B. The temporal logic of linear time TLL

The set of wellformed formulas FL of TLL is defined as FB over the set of
propositional variables P with the logical operators and the unary modal
operator Q. The dual operator of • is denoted by O.

Interprétation of the formulas

We write M, s h ƒ to express the f act that the formula f is true on the
L

exécution path s e EXM of a model M and we define N inductively.
L

Uff'eFLthen:
!.. M, s\= fiïfeP and ƒ e A (first (s)).

2. Af, sN-i/iff M, sK/
L L

3. Af, sl= /v/'iffM, sl= /orM, sN ƒ'.
L L L

4. M, sN D/iffVn^O, M, s+nN ƒ
L L

By dualisation of 4. we obtain:
5. M, s t O/iff 3n^0 , Af, s+"N ƒ

L L

We say that a formula ƒ is true in M (Af N f) iff it is true on all exécution

paths of T£XM, and/ is valid (1= f) iff it is true in all models of C.
L

4. A CRÏTERION OF COMPARISON OF LOGICS

Comparing the "expressive power" of two logies LI and L2, the set of
w. ƒ ƒ of which are respectively denoted by FL1 and FL2, consists in verifying
that for any formula ƒ e FL1 there exists a formula geFL2 that has the "same

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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meaning" as ƒ. To compare the meanings of the formulas of L 1 and L2 it
is necessary that these logies have the same class of models (up to isomorph-
ism). This allows to compare two formulas by comparing the sets of the
models in which they are true.

DÉFINITION 1: Let LI , L2 be logies on a class of models C, feFLl and
geFL 2 . Then we say that ƒ and g are equivalent (ƒ=g) iff:

VMeQ MN foMt g.
LI LI

DÉFINITION 2 (strong équivalence [5]): Let LI, L2 be logies on a class of
models C. Then we say that L 1 is less expressive than L 2 (L 1 ̂  L 2) iff:

V/eF t l, 3geFL2,f=g.

We think that strong équivalence is the appropriate comparison criterion
because in practice formulas are used to express spécifications of programs,
i. e. global properties of models. So we do not want to define a finer
équivalence relation by comparing the formulas with respect to their capabili-
ties to express properties of states (in branching time logic) or pàths (in linear
time logic) as it is done in [4], even if there are satisfiable formulas (for
instance the formula -~ip APOT(P)) strongly equivalent to false. However such
such a formula cannot be used to describe global properties.

PROPOSITION 2: If LI, L2 are logies on a class of models C, then:

3 feFLX, 3M ls M2eC,(MlM f A M 2 F ƒ)
LI LI

AVgeFL 2 . (M2t g=*Ml N g)
UI L2

implies L 1 $ L 2,

Proof: obvious.

5. COMPARISON OF TLB AND TLL

THEOREM 1: TLB£TLL.

Proof: We consider the formula f = POTpeFBi where peP, and two
models Ml, M2 such that:

(I) M\VP0Tp/\M2tP0Tp
B B
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Thus by proposition 2 we obtain the proof [5].
It remains to find Ml, M2 satisfying (I) and (II).
We define the models M 1, M2 over P = {p}, as:

-Ml=(Wl9RuAx)

= ({w0 , w t } , {(w0, w0), (wl5 w x )} , Ai : ^[1(w0

represented by:

W0 : 0 Wj : (P)

Figure 1

We have for M ï, EXM1 = { w ^ wf }.

-M2 = (W29 R2, A2) = (Wl9 KiU{(w0, v

represented by:

w 0 , 0
Figure 2

We have for M2, £XM2 = £XM1 U {wj w? \ n^O}.
1. It is easy to see that (I) holds for the M1 and M 2 given.
2. From AX = A2 and E X ^ g E X j ^ we obtain,

VgeFL, VseEX^MZ *ï g*>M\, s¥ g.
L L

This proves (II). •
This proof is similar to that given in [5], adapted to our class of models.

Furthermore, notice that the proof of theorem 1 does not depend on the
modal operators of the linear time logic considered. That means, that «ven if

R.A.I.R.O. Informatique théorique/Theoretical Informaties



LINEAR AND BRANCHING TIME TEMPORAL LOGIC 351

other temporal operators are added to TLL in order to increase its expressive
power, the resulting linear time logic will not be more expressive than the
branching time logic considered. So we obtain the proposition:

PROPOSITION 3: LTB%LTLfor any linear logic LTL, extension of LTL.

THEOREM 2: TLL%TLB.

Proof: We consider the formula ƒ = Q Û V \3b V QceFu where a, b,
ceP, and two models M1, M 2 such that:

(I)

and
(ii)

B B

Thus by proposition 2 we obtain the proof.
It remains to find M 1, M 2 satisfying (I) and (II).
We define the models M 1, M 2 over P= { a, b, c} as:

Figure 3 Figure 4

Obviously, for any exécution path seEXMl we have:

if Ml ,

Thus we have: M11= ƒ

and Ml , « ! * • * thenMl , sK
L L

For the path 5 = w0 wf e EXM2 we have : M 2, s V f
L

So we obtain (I).

We prove (II) by induction on the structure of formulas in primitive form.
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(1) If geP then (Ml, w h g o M 2 , whg, Vwe W : =WX) because
B B

W1 = W2 and At = A2.
(2) Let gu g2 be formulas such that:

(a) Ml , wNg;oM2, wNgi? VweW, for i= l , 2.
B B

Then one obtains for any formula geFB:
(a) if g=~~ig1 then VweW, M 1, wt=goM2, wf=g straightforward by

B B

définition of N and (a);
B

(b) if £=#! vg2 then Vwelf, Ml , wt=goM2, whg straightforward by
B B

définition of \= and (a);
B

(c) if g = ALLgx then VweW,

M l , wN^oVw'ePf, Ml , w' t=gl5 because Rx is strongly connected,
B B

oVw'e^ , M2, w'tgi, by (a),
B

o M 2, wNg, because R2 is strongly connected;
B

(d) if g = SOMEg1 then Vwe W,

Ml , w N g o M l , whgi, because
B B

7^J?i> by (a) ,
B

; N g, because v
B

From (1) and (2) we obtain VweW, VgeFB:

M 1, w h g o M 2, whg.
B B

Which implies (II). D
The proof given in [5] does not go through in our class of models because

it dépends on the fact, that the sets of exécution paths choosen do not satisfy
the Koenig's closure property.

Notice that the proof of theorem 2 dépends essentially on the operators of
the branching time logic considered. Indeed, if operators "until" like in [1]
are added to TLB then our proof is no longer valid (e. g. we have
M l ¥E(a Wc)vb but M2, w0 VE{a M c) vb).
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CONCLUSION

Even by restricting the class of models to transition Systems, we proved u
in [5] the incombarableness of the logies TLB and TLL. Furthermore, there i
no linear time logic which is more expressive than TLB because formulas o!
the form POTp cannot be expressed. We did not prove the same genera!
result for branching time logic, and we think that it is interesting to find a
branching time logic, extension of TLB, which is more expressive than TLL.
or to prove that such a îogic cannot exist. We have the strong feeling that ;i
pure branching time logic, that means a logic where not, as in [3], formula
on paths are introduced, cannot express all formulas of TLL.
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