
RAIRO. INFORMATIQUE THÉORIQUE

EGIDIO ASTESIANO

GERARDO COSTA
Nondeterminism and fully abstract models
RAIRO. Informatique théorique, tome 14, no 4 (1980), p. 323-347
<http://www.numdam.org/item?id=ITA_1980__14_4_323_0>

© AFCET, 1980, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1980__14_4_323_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Informaties
(vol. 14, n° 4, 1980, p. 323 à 347)

NOWDETERMINISM
AMD FULLY ABSTRACT MODELS (*)

by Egidio ASTESIANO and Gerardo COSTA (X)

Communicated by M. NIVAT

Abstract. — We study the semantics ofsome nondeterministic languages derivedfrom PCF [8]. In
particular we discuss how Milner" s results in [5] can (or cannoi) be applied to obtain models,for our
languages, which arefully abstract with respect to the (standard) operational semantics.

Résumé. — Nous étudions ici la sémantique de quelques langages non déterministes, dérivés du
PCF [8]. En particulier, nous discutons dans quelle mesure les résultats de Milner [5] peuvent être
utilisés pour obtenir des modèles, pour nos langages, qui soient « pleinement abstraits » par rapport à la
sémantique opérationnelle usuelle.

1. INTRODUCTION

ïn [4], Milner introduced the concept otfull abstraction as a formalizalion of
the idea of complete agreement between a mathematical (denotational)
semantics, expressed by the function ^ [], and an operational semantics,
given by the function Eval, for a language J?.£f[] is fully abstract w. r. t. Eval
if for every two terms M and N9 of the same type: Sf [M] = 5^ [N] iff
Eval (<jg [M]) = Eval (^ [N]), for any context # [] such that <€ [M] and <€ [N] are
programs (remark that 9> [] is defined on ail terms of if, while Eval is defined
for programs only). In the paper, we shall use the name extrinsicfull abstraction
to dénote this property, when we are not interested in specifying the operational
semantics.

More recently, in [5], Milner has considered a different notion of full
abstraction, which expresses an intrinsic property of the mathematical semantics
(or model), without any référence to the operational behaviour; we shall call it

(*) Receveid March 1979, revised October 1979.
C) Istituto di Matematica dell'Università di Genova, via L.-B.-Alberti, 4, 16132 Genova, Italy.

R.A.I.R.O. Informatique théorique/Theoretical Informaties, 0399-0540/1980/323/$ 5.00
c Bordas-Dunod

3 2 4 E. ASTESIANO, G. COSTA

intrinsic fuli abstraction. This property is defined by the condition: for any two
terms of tHè same type, M and JV, V \M \ = $f [N] iff Sf {<% [M]] - $f [<é [N] 1, for
any context <ê\] such that <&[M] and V[N] are programs.

These two properties are strongly related; indeed it is easy to see that if £f []
is intrinsicly fully abstract, then it is also fully abstract w.r.t. Eval, whenever
Eval (P) = Sf \P | for any program P; and this seems to be a minimum
requirement for ouf semantic functions.

After the concept of extrinsicly fully abstract semantics has been introduced,
some papers have shown the difficultés of finding such semantics for
deterministic [2, 8] and nondeterministic [3] languages. An important step
towards the solution of this problem, in the light of the above remark, has been
made in [5], where Milner has given a powerful technique for building intrinsicly
fully abstract models (hence semantics, see [2]) for typed A,-calculi.

We discuss here the application of Milner's results to nondeterministic
languages derived from À,-calculus. To this end we introducé a hierarchy of three
languages, NDLO, NDL1, NDL2: NDLO is a nondeterministic version of
PCF [8] already investigated in [3], while NDL1 and NDL2 are successive
extensions of it (which will be justified in the following).

We consider for each language a "natural" interprétation and show that,
while the interprétations for NDL1 and NDL2 are SFP interprétations (even
articulate for NDL2), the one for NDLO is not; hence Milner's results can be
applied to obtain intrinsicly fully abstract models for NDL1 and NDL2, but not
for NDLO. Then, following Plotkin's style [8] we give an operational semantics
for NDL1 and NDL2 and show that their Milner's models are fully abstract with
respect to these semantics.

This paper shows, for one respect, that Milner's conditions, not very
restrictive for deterministic languages, are perhaps restrictive in nondeterminis-
tic cases, since NDLO is a "natural" extension of PCF; hence the need for other
powerful techniques in building fully abstract models. But it seems to us that also
another interprétation is possible, namely that NDLO is too poor, since its
primitives are not able to perform some basic opérations on sets.

We have tacitly assumed throughout the work a "call by name" rule as a
natural one, since our aim was to discuss the connection with Milner's results.
But we think that this is a point that deserves discussion and in [1] we consider a
different operational semantics, which in volves a sharing technique of
évaluation, and outline a fully abstract model for it.

We assume here that the reader is familiar with références [8] and [5].

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 325

2. THE LANGUAGES NDLO, NDL1, NDL2.

2.1. Types

We consider the set T of functional types generated, in the usual way, from

ground types o and i. In what follows, a and x range over T and x ranges over

{o, i } . We write a x x . . . x a n - ^ x instead of (a i - > (. . . - • (a„ -> x) . . .)) and

call first order type any type of the form XjX . . . x x „ -> x, for n ^ 1.

2 . 2 . Terms

The set of terms in NDLJ, J = 0, 1, 2, is the set generated by:
— CJ, the set of ground constant symbols (typical element c);
— FJ, the set of first order constant symbols;

using typed ^-abstraction and application, where:
- C0 = {tt9£[of type o], 0, 1, . . . , n9 . . . [of type i]};
- Cl = C2 - CO u { 0O [of type o], 0„ e_ [of type i] };
- FO={(+1), (-1) [of type w i] ; Z [of type i -> o], 7FK [of type

o x x x x - > 4 ? x [°f ^yPe >c x x -^ x]};
- Fl = F 0 u { £ [of type i-^o]};
- F2 = Flu{3r ') , (r!)[oftypeo-*o]}.
There are two différences between NDLO and the language used by Henessy

and Ashcroft. In [3], the set of primitives includes IF simbols of higher type and
does not include^r's; or appears only in combinations like M or_N, where M and
N are of the same type, not necessarily ground. We have chosen to introducé or's
as first order functions for technical reasons (it allows us to place ourselves in the
framework of Milner's paper [5]); the semantic meaning is not changed.

For higher type or's and ƒ F's, the fact is that w. r. t. the interprétation we have
in mind for them (which is the same as in [3], and seems to us the natural one)
those symbols are not needed, as we can define the corresponding functionals by
closed terms, using ground or's and JF's.

Hence we can say that NDLO is "the same as" (or at least equivalent to) the
language in [3].

For what concerns the primitives 0K, e, E, (3 7"), (7~!), their meaning, and the
reasons why we have introduced them, will be seen in section 3.

2.3. Notations

We adopt the usual conventions for suppressing redundant parenthesis in
writing terms and we shall often omit subscripts in primitive symbols and
variables. We use letters M, N to dénote arbitrary terms, adding sometimes a

vol. 14, n° 4, 1980

3 2 6 E. ASTESIANO, G. COSTA

subscript to indicate the type. Closed terms of ground type will be called
programs.

Following Piotkin [8] we define QG and Y™ by: OK = YyL(\X\X\\
ao^x=XX\Çl^Y^ = a{^o)^o and Y%+v = lX(X(YyX)),whercX stands
for X0^0. Then M(n\ n^O is the term obtained from M by replacing all
occurrences of Yo by Y%\ for all a 's .

Finally, we c&llfinite any term which contains Fs only in the combination for
Qx (e. g. M(n) is finite, for any M, n).

3. MODELS AND DENOTATIONAL SEMANTICS

3.1. Domains

It has been pointed out by Hennessy and Ashcroft in [3] that, considering a
non deterministic language, and looking at ground or's as denoting set union, if
we want to model a call-by-name with copy-rule évaluation mechanism, we
should consider that first order primitives dénote functions mapping subsets into
subsets, rather then éléments into subsets (see [1] for the inverse approach:
assuming denotations of first order primitives to be functions from éléments into
subsets we discuss an adequate operational semantics). So we shall take, here,
our ground domains to be powerdomains. We need to extend the usual définition
[7, 10] to accomodate the empty set. In our case, we regard it as a maximal
element; but we are aware of the fact that this might be unsatisfactory in other
situations.

We assume the reader is familiar with the notions of (flat) cpo, finite (isolated)
element, (co —) algebraic cpo, consistently complete cpo, continuous function
(see e. g. [8, 2]). We use the symbols C, FK LJ and <=, n , O to denoje: the order
relationj the glb, the lub (in domains) and inclusion, intersection, union (in sets),
respectively. Moreover, if A is a set and Al9 A2^A, then ^4 t\^42 stands for

Given aflat cpo D, the (Egli-Milner) ordering between non-empty subsets of D is
given by

1 i f f
, laeA s.t. a D j |_ or (leA) A(A\{ 1 }gB).

Then the power-domain of D. P [D], is: defined to be the set {A \0^
A = x=>J_Gy4}, togelher with the above order.

R.A.LR.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 327

We shall consider an extended power domain, ï% [D], obtained by adding the

empty set to P [D] and extending L^ by

{_L] JZ 0 ; A and Ç) are incomparable if A # { _L }.

LEMMA 3.1.1: For any denumerableflat cpoD, P0 [D](P [D]) is an w-algebraic,
consistent!)? complete cpo, whose finite éléments are thefinite (non-empty) sets;
moreover in P0 [D] and P[D] the binary union function is continuous. •

Consider flat cpo's D o , . . . , Dn and a monotonie function g:
D t x . . . xDn -» D 0 and dénote by g the function fr om 2Dl x . . . x2 D n i n to2 D ° ,
given by

g(Al9 ...9Att) = {g(al9 . . . , a^a^A^.

It is easy to verify that the restrictions of g to the powerdomains and to the
extended powerdomains are continuous fonctions. We shall use the same symbol
g for both (notice that # (. . . , © , • • •) = 0) . The same applies to any function

x 2D» - 2 ^ (fi: 2D> x . . . x 2 D »

3.2. Interprétations

Following Milner [5] we specify a domain (cpo) for each ground type and the
interprétation for constant and first order symbols, leaving the F s uninterpreted
(as we have not higher type domains; the meaning of the P s will be given in the
model); we refer the reader to Milner's paper for motivations.

We shall consider just one interprétation for each language and keep it fixed
for the rest of the paper. Let J be 0 ,1 , 2; then the interprétation J} for NDLJ is
given by the cpo's DJ

0, D{ and the constant/continuous function J 3 (a), for any
constant/function symbol a; and precisely:

a) DO° = -P[T1; Dl ^ D o
2 = P0 [T]; D t °= P [N J ; D / = D t

2 = P0 [N -] ,
where T is the usua lcpo of truth values, f̂J = { 0 , 1 , 2, ., . }, f^je= N ü {e}, e for
"error" , and N ± , N* are the respective flat cpo's;

b) Jj(c) = {c), any ground constant symbol c\

(c) ^j (orx) = union function;

d) Jj (IFX) — condx, where condx is the usual conditional function on D^;

e) ^o ((+l)) = succ; Jo ((—l)) = pred; J0 (Z)^zero, where succ, pred, zero
are the usual successor, predecessor, zero functions on N : (remark that
pred(0) = ±);

vol. 14, n°4, 1980

328 E. ASTESIANO, G. COSTA

ƒ) Jfl ((+ l)) = smxe ; Jt ((- l)) = predc; Jl (Z) = zeroe; J, (£) = error, where
ƒ = 1, 2 and, if x ranges over Ne

L , we have:

e = ^x.if x = e then e else x + 1,
À,x.if (x = O)V(x = e) then e else x - 1 ,

e = ?ix.if x = 0 then tt chcff,
error = A,x.if x = e then tt dscff;
g) J2 (3 T) = (3 tt); S2(T\) = (tt\)9 where, if BgT,

0 ")(«)=

3 .3. Models and semantics derived from models

The définitions given below are not spécifie to the languages we consider, but
apply in gênerai to typed X-calculi with primitives, both deterministic [8, 5, 2]
and nondeterministic (at least as far as nondeterminism is of the kind we have
considered).

Let J be 0, 1 or 2 in what follows. Then an order extensional model (model for
short) Jl for the couple (NDLJ, J>j) is given by [2]:

(i) a family { Df | a e 7 } of cpo's, s. t. Df =D^ ;
(ii) a two place continuous mapping — . — : Dƒ_ T x D^ -• Df, for any a, x in

r , such that:
ü then ± . d = ± ,

f o r a n y ffïff' i n D ^ x -

Notice that the converse of this implication is given by the monotonicity of ..

So we can identify Df_x to a subset of [Z>f -• 2)-f].
(iii) for any term M o , a continuous mapping Jd [Ma]: Env*^ -> D^ (where

Env^ dénotes the set of environments, i. e. type-preserving maps from VAR into
u a e T D ^ ; which is a cpo w. r. t. the pointwise order) such that, V peEnv*:

R.A.I.R.O. Informatique théorique/The o retical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 329

for any constant /first order function symbol ot;

M [MN] $ = Jt [M] p.Jt [N] p;

M [kX?M] p.d = M [M] p[d/X?],

where p [d/Xf\ (x) = if x = Xf then d else p(x), for any d in D-f ;

where fix dénotes the least fixed point operator.

The (denotational) semantic mapping, denotational semantics for short,
associated to M is the (type-preserving) mapping

Jt []: NDLJ -> uCTe:r [Env^ -

\^Jt [JV];we
dénote by ==^ the induced équivalence. We say that ^ (^ {]) is an intrinsicly
fiilly abstract model (semantics), whenever, for any two terms M, N of type a,
MÇ^JV iff «'[M]JZur«'[JV] for all contexts # [] s.t. * [M] and ^ [N] are
programs (a context is simply a term with one or more holes).

We shall need later on the foliowing lemma.

LEMMA 3.3.1 [5]: In any model M, if M, M' are closed terms of type

OiX . . . x a n->K, then: ̂ [M]C,^^[Mf]for all contexts <g[] s.t. <g[M]and

<&[M'] are programs iff for all closed Nt of type ai9

We say that an element d in D^ is (finitely) defmable in the language NDLJ if
there is a (finite) closed term M in NDLJ such that d = M IMC](J_), where J_
dénotes the totally undefmed environment.

3.4. Continuous functions models

Let J be 0, 1 or 2, as before, and I be 0 or 1.

A first example of model for {NDLJ, ,ƒ,) is Sfj, the usual Scott-Milner
continuous functions model built starting from ground domains DJ

0, D
J
X.

However it is easy to notice that S^?
l is "too large" in the sense that too many

finite éléments in Da* are not definable, for a non-ground.

A "smaller" model, J^j, (for NDLJ, Jj) can be given following Hennessy and

Ashcroft (see [3] for motivations and details). Indeed, if g x is the usual set

inclusion relation on D[, one can take D ^ * » to be { ƒ | ƒ: D£ -* D£,, ƒ is jZ-

vol. 14, n°4, 1980

330 E. ASTESIANO, G. COSTA

continuous and <=-monotonie}; on those domains, üx_>v;< can be defined
pointwise and the construction iterated (notice that this kind of model does not
fit (NDL2, J2) because (3 tt) and (tt\) are typically non <=-monotonie). The
following lemma shows that <= -monotonicity is not sufficient, as a restriction, to
ensure full abstraction. We conjecture that the lemma is true for £f2 also, but we
have not yet a proof of this.

LEMMA 3 .4 .1 : The models J^fj and Sf Y are not intrinsicly fully abstract for
(NDLJT, • / ,) , ! - 0 , 1.

Proof: One can show (see Appendix) that no function cp, s.t.

0 ({ tt], { 1 }) = ©({ ±},{tt })={ tt }, ©({/ƒ }, { ƒƒ}) = { ff)

can be defined in N D I J . Now consider Mx and M2 defined as in [8], where X is
n = l , 2:

, (X « Qo) (IFV (X Qo tt) (IF, (Xffff) QL n) QJ Qt).

Clearly,if |]iseither^7 [] o r ^ j] and0isasabove,(|
hence, omitting subscripts ^ , Jf7 in [I, M 1 j^M 2 an^ M i^M 2 . However,
using lemma 3.3.1 and non-definability of cp it is immédiate to show that
<ê[M1] = ci[M2]i for any context # [] s.t. « [M J and ^[M2] are programs.
Indeed: M„ is of type (ÖXO-^O)-> I; if AT is any term of type (o x o -> o) and we
dénote [M„N](1) by a„, then otB = ([M„](l))((N](l)); to get a ^ a 2 we
should have that [JV](J_) satisfies the conditions for cp. •

3.5. SFP interprétations and Milner's models

An SFP object [7] is any cpo D Tor which an ascending chain \|/ ±, . . ., \[/ n, '. . .
of finite projections exists such that its lub is the identity on D, idD (by finite
projection we mean a continuous function v|/: />—>£> s,t, \|/o\|/^\J/3 v|/\ZjdD and
\|/(£>) is a finite set).

An interprétation is SFP [2] when, for each ground type x, the interprétation
domain DK is an SFP-object and all finite éléments in Dx together with a chain of
finite projections whose lub is idD are finitely definable.

An SFP-interpretation is articulate [5] if, for each ground type x: £>x is
03-algebraic and consistently complete; the binary glb-function for Dy (which
exists and is continuous because of the given conditions on DJ is definable; for
some fixed x and âeD~, a finite and # 1 , and each finite a in Dxi the
ZI .function (Z3a) = X(deDx) if dZ\a then âelse 1 is finitely definable.

def

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 331

LEMMA 3.5.1: a) Jo is not an SFP'-interprétation;

b) J\ is an SFP-interpretation which is not articulate;

c) J2 i-s an articulate SFP-interpretation.

Proof: a) It is the condition about definability of finite projections for P[l\l±]
which is not fulfilled. Indeed, using Plotkin's techniques [6, 9] one can show that
no function cps.t.(p({0, l}) = {0, 1} andcp(n) = { _L },somen^2,isdefmablein
NDLO {see Appendix);

b) J x is not articulate because some I]-fonctions cannot be defined as they

are not monotonie w.r.t. inclusion (e.g.(Z]{ tt})).

To show that J?x is SFP, the non trivial part (given lemma 3.1.1) is the
definability of finite projections for Dx

x; \|/„ is given by the term ID(n\ where

= XXX (IF(EX1) e(MX1)),

REMARK : Analising the above définition (which is a recursive définition of the
identity on P o [ÎV']) we see the technical reasons for introducing^, £, 0X (with
the given interprétation). We point out, however, that for ^(and e) there is also a
deeper motivation: we think that 1 should stand for lack of information and/or
for non termination only and not for précise illégal situations like 0 — 1.
Technically, we need^, and the fact that 0 — 1 is e (and not _L as in [8] and [3]), to
insure termination of the process, when starting from a finite maximal element
(i.e. a finite set not containing _L). The symbol E and its interprétation, the
function error, are needed (in M) to test this termination of the process, i.e. the
fact that by successive décréments by 1 we have explored the whole set. Finally,
0X provides us with the equivalent of a null statement;

c) «ƒ 2 is SFP as J ! is such. To prove that it is articulate, we give the définitions

of the I>functions and glb-functions.

In what follows :: = , NEG, AND stand for "is defined by", XX(IFXfftt)9

^XXX2(1FXX{IFX2ttff)ff), respectively.

Z]-functions:

We choose x = o and a — {tt}. Moreover, if a is finite, let (> a) be the function

Xd.iS d I ja then {tt} else if d#a then {ff} else _L

(where d#a means that d and a have no upper bound).

Clearly if M defines (>a), the term XX(IF(MX) ttQ) defines Q a) .

vol. 14, n°4, 1980

332 E. ASTESIANO, G. COSTA

>-fonctions for P0 [T]:

1) (>_L) ::=XXtt;

2) (> 0) ::=EMPTYO=XX (NEG ({1T) (lF X tj ft)));

>{ljf}) :: = {3F) = XX(IF(EMPTYOX)£{NEG{(T\)X))\

"S> {ff}) " = (^0 s a m e a s (3F) b u t replacing(rî) with (3 T);

>{LJftt\):: = M = XX{AND{(3T)X){{3F)X)\

{(> {ff tt}) :: = XX(IF{MX)((T\)(IFXtttt))ff).

> -functions for P0 [l\l£] :

2) (> 0 ::

In what follows let ifM' then M" else W" stand for IF M'M" M'" and M - n
stand for n times (— 1) applied to M,

If A dénotes a fini te element in P©[NÎ],i.e.a fini te set, different from Ç) and
{_L}, and J5is in P0[N*], then:

±eA gives:

B3A iff

B #A iff (

_L^̂ 4 gives:

S # ^ iff (3c : c#±, ceB, c^A) v (leB,

Hence:

3)

(> {e}) ::=(E\) = XX((T\)(EX));

5) let A be { J_, n l s . . ., nm}, njsN, A # { 1 , 0}, then

tt e/se ff).. .) else ff)\

(>Au{e}) ::=XX(if{3E)X then N\X else ff);

R.A.LR.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 333

6) for the case ±$A, A^(p,{0},{e}, the gênerai formula is rather long, we
prefer to give an example (written following the pattern):

(> {1}) :: = XX (if(3E)X then ff else if (3Z)X then ff else

if (3 Z) {X -1) then (if (E !) (X -2) then tt else ff) else ff).

Glb functions:
First notice that, for flat D, if A and B are non-empty subsets of D, then

Ar\B = (AnB)\j(ïf(3d, deA, d$B or conversely) then { _L } else 0 . Then
letting x, y and w stand for Xï, X\ and Xx£x"x and denoting the two glb
functions by [~l0 and Fll respectively we have:

n x :: = Xx(Xy(if (EMPTY, x) then {if(EMPTYKy) then 0X else QK) else Px)),

where:

P0 = ifxthenQtelseQf;

Qt = if(3T)y then gr0U

(if (Tl)y then {if (T\)x then 0O else Qo)

else (if(T\)x then Qo else O0))
else Qo ;

Q f is like Qt but for the replacement of (3 7), (Tl) and tt by (3 F), (F !)-see above-
and ff, respectively.

Px =ifEx then Qe else Mxy;

where: Qe is obtained from Qt by changing type and replacing (3 7), (Tl), tt with
(3 E)9(EÏ),e.

M=Y(Xw(Xx(Xy (if Zx then Qo else

if (E !)x then (if (E !) y then 0X else Çïx)

else

where Qo is obtained from Qt in the (now) usual way. Q

REMARK : It is not hard to see that part c) can be proved also for a language
obtained by adding to NDL1 symbols for (C 0 , (C { tt}), (C { 1 , tt }), and
probably this is a minimal extension of NDL1 to this purpose.

However the above functions are rather strange from a computational point of
view;e.g.Q{ tt})({j^})= {1} implies that having computed {ff} we force
our computation to loop (as we have already pointed out, we think that a stuck

vol 14, n°4, 1980

334 E. ASTESIANO, G. COSTA

computation should not correspond to J_). For this reason we have preferred to
use (3 T) and (Tl) as primitives.

Another point is that (3 7") and (7" !) require a certain amount of parallelism
in the évaluation mechanism (see next section), However this is mandatory if we
want an articulate interprétation, as we need some non ^ -monotonie primitives,
which always require parallel évaluation of their arguments.

The above lemma implies that Milner's results [5] apply to (NDL1, J ^) and
(NDL2, J2) so we have as a corollary.

THEOREM 3.5.2: The couple (NDL1, ^ T) 7 = l , 2 admits an intrinsicly fully
abstract model, which is unique for 1 = 2. D

For the construction of this model, which we dénote by MY, we refer the
reader to Milner's paper; here we shall be mainly concerned with its properties.

We simply mention some relations between Jtx and the models in section 3.4.
If = and <= dénote isomorphism (between domains) and inclusion up to

isomorphism, respectively, we have:

(i) Df* = Df> =D?> =D.f • = D f ' ;
(ü) DfzT c [Df2 -• Df2] (see the définition of model, section 3.3);

(iii) defining <=x on Df1 by isomorphism with D* and i c o n D ^ inductively,
we have:

D^x 5 {f I /e[Df l ^Df1], f is E-monotonie}.

The inclusion in (iii) is strict, indeed one can see that if cp is the natural
extension to sets of the parallel disjunction [8] then <p is in ffl x while it has no
image in M ^ (see Appendix), Intuitively, this happens because the
nondeterministic ar is not sufficient to substantially change the sequential nature
ofNDLl.

For the inclusion in (ii), we conjecture that it is strict. In other words, we
believe that we have not introduced enough parallelism in NDL2.

At this point, one could ask what happen if we added a parallel condi-
tional, pcond, to NDL2 (notice that, differently from [8], we should have:
pcond (JL, x, y) = xr~ly, as our groünd domains are not flat). We leave this
question open; we think it would be worthwhile to investigate it from a more
gênerai point of view, i. e. the study of languages to express opérations on sets.

For what concerns (NDLO, ; / 0) , lemma 3.5.1 a) implies that we cannot use
Milner's results to give a fully abstract model for it. Hence, for this language, we
are not able to improve the results in [3] (Berry's stable models [2] do not apply to

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 335

our case; indeed the interprétation of or, the union function, is not stable and not
even consistently multiplicative).

Hence, from now on we shall be concerned with NDL1 and NDL2 only.

4. OPERATIONAL SEMANTICS

4 .1 . Direct dérivation

Following Piotkin [8] we define a relation -> (direct dérivation) between terms,
by the rules below (they are for NDL2; for NDL1 consider rules 1 to 8 only).

We have already remarked that (3 T) and (T !) require a parallel évaluation of
their argument. For instance, to compute (3 T) (or PQ), assuming that P and Q
are programs, we cannot simplify (or PQ) into either P or Q, but we must
compute P and Q in parallel until. we know that the set of all possible
computations starting from (gr PQ) contains ££or it is empty or it is just {ff} (see
rules 9, IV, V). ~

We have used, in connection with (3 T) and (Tl), the auxiliary relation -~>; its
purpose is to make our rewriting system "almost monogenic", see lemma 4 . 1 . 1 ,

and to avoid defining -> in terms of ->•.

The relation -> is defined by the following rules:

1) or MN -> M; gr MN -• IV;

2)

3) ZO^tJ;

4) E^tt; En^ffi

5) lf ff MN ̂ N; ÏFtt MN -> M; 1 F 0oMxJVx -> 0X;

6) 7M^M(7M);

7) (XXM)N-*M'[N/X\;

Sa)
MN^M'N'

8b) —"

9a)

vol. 14, n°4, 1980

3 3 6 E. ASTESIANO, G. COSTA

Pi given by: ttep^if Nepl9 then g£oNN'9 gr_0N
f Nspl7 for any N' of type o;

9b)

p2 given by : ff,0oep2; N, N'ep2=>o^oNN'ep2;

9c)

p3 given by: t±ep3; N, N'ep3 =>oroNN' or O0_N,

9d)

where P4 —piupi' and p'A, p4' are given by: ffep'^, Nepf
4=>gr 0NN\

qroN
fNep^ for any N'; Ç>oepr^', N, N'ep^ or_ 0NN'epï;

10 a)

10b) M ^
(r !) M ^ (7 !) M /

where —» is given by all the above rules, but for 1) and 8 b), and the following rules:

(I) f(orMN)^or(fM)(fN), / e{ (+ l), (-1), Z, £} ;

(II) IF {or MN) M'M"~+qr (IFMM'M") {IFNM'M");

(III)

(IV)

(Va) ,
or Mc™>or M £

h M™>M\c_ ground constant
or cM™>or cM'

orNM ~~>grM'N"

^M' ,c_ ground constant

LEMMA 4.1.1: To any program P we can associate a unique tree, the
computation tree for P, with the following properties:

a) the root is labeled by P;

b) ifa is a node labeled by Q and Q -+ g', without using rule 1, then oc has a
unique son labeled by Qf;

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 337

c) if a is a node labeled by 0 = ^ [or_ ö i Ô2L where %> [] is a single hole
context, and we reduce Q by reducing qr Q1Q2, using rule 1, then a has exactly
two sons, a 1 and a 2, and ai is labeled by ^[Qi]l

d) a is labeled by a ground constant iff CL is a leaf.

Proof: It is clear that the thesis of the lemma is equivalent to say that for every
program P, (o) below is true; (o) one and only one of the following conditions
holds for P:

(i) P is a constant;
(ii) a unique program P' exists s.t. P -• P', without using rule 1);

(iii) two programs P' and P", uniquely determined, exist s.t. P -» P' and
P - > P " , using rule 1).

To show this, following the style in [8], we prove that any term M in NDL2
(hence in NDL1) vérifies property Y (we say that M is ¥) defined by a), b) and c)
below.

a) a program P is *F iff (o) above and (00) below are true; (00) one and only one of
the following conditions holds for P:

(iv) P is in simple farm, i. e. it is composed of ground constants and or's only;
(v) a unique program P' exists s.t. P™>P';

b) a closed term M a^T is ¥ iff, for every closed term JVa which is *¥, (M a^T Na)
is¥;

c) a term M with free variables a l, . . . , a„ of type <ju . . ., on respectively, is
^iff, for every closed tefms JVai, . . . , NOn whichare*ï /

)M[A/r
a/a1, . . ., Na/oin]

is x¥. Any term like the one above will be called a ^-closure of M.
The proof is by structural induction and by cases; we develop hère only a few of

them.

M = orx. Let P be orx N ! N 2 (JV1, N 2 closed and ¥) . For (o) we have that only
(iii) holds for P; indeed only rule 1) applies to P (for instance, rule 8 a cannot be
used as no réduction applies to orx Nj). For (00) we have: either P is in normal
form, or just one out of rules IV, Va, Vb applies to P.

M = (— 1). Let P be (— 1) N, where N is closed (hence it is a program) and ¥ . By
hypothesis (o) is true for N, so we obtain: if (i) holds for JV, then (ii) is the only
condition true for P (we use rule 2); if (ii) holds for JV then (ii) holds for P (we rule
8 b); otherwise, (iii) holds for both P and N (still using rule 8 b). For (00), suppose
(iv) holds for JV; then: if N = n9 we can apply rule 2), otherwise
JV = or lJV 1N 2 (N 1 , JV 2 simple forms) and we can apply to P rule (I) only; in
both cases (v) is true for P. Otherwise, suppose that (v) holds for JV; then either
N=gr_lN1N2 and we apply rule (I) to P, or JV#or lJV1JV2 and there is a
unique N' s.t. N™>N\ hence P—»(-l)JV' and this is the only possibility.

vol. 14, n° 4, 1980

338 E. ASTESIANO, G. COSTA

M = (3T). Let P be (3 T) N, N program and ¥ ; we can prove (o) and (oo)
together. Either Nepiup2—see rules 9 — and then P -> c, P™>£, where c e { u,
ff} ,orN£plKjp2 and therefore N cannot be a simple form and (v) must hold for
~ït so N^N\P^>(3T)N', P->(3 7)AT and (v) holds for P.

M = r . Let P=YN1...N„ be a program and Nl9 ...,Nn be xff. By
inspection of the rules defining -> and —> which concern application and F we see
that only (ii) and (v) hold P; precisely: P -» P' and P™>P', where

M = M 1 M 2 ï w i t h M 1 a n d M 2 which are T.If M is closed, so are M x andM 2 ;

hence M is *F as M x is such (by definition). If M is open, let M be any ^-closure of

M; M can be decomposed as Mx M2, where Mj is a Y-closure of Mpj = 1,2. By

définition: M i and M 2 are *F as M ! and M2 are such; hence M is *F and so is M.

M = À-XCTM1; with M i which is T. If M is closed, let P = MN1.. .Nn be a
program where JV1} . . ., Nn are T; then by inspection of the rules for -> and —>
we see that the only possibilities are: P -> P ; and P—>p'; where
P ' = M 1 [J V 1 / X T N 2 . . .Nn . If M is open, any of its ^-closures has the form
XX°Mf

l7 where M i is such that if Na is closed and ¥ , then Mi [iVG/Xa] is a
T-closure of M x . Hence M i is VP, so we can argue as above. D

4 . 2 . Operational preorder.

If we dénote by ->• the reflexive and transitive closure of -•, the above lemma
allows us to define the set of (possible) results of a program P, Eval (P), by:

çeEval(P) iff P ^ c;

ooeEval (P) iff there is an infinité séquence P = POi Pu . . . , P n , . . . s.t.
Pt —> Pi+i (we say that P may diverge, or simply diverges). Notice that co is a
new symbol.

We have suppressed subscripts 1 and 2 in -» and Eval; we do the same for Ço p

and [Iop below.

Let P, Q be programs and M, N be terms (of the same type), the operational
pre-order for them is given by:

-ff f either oo $ Eval (P) and Eval (P) \ { 0 } = Eval (Q)\ { 0 },

1 or oo e Eval (P) and Eval (P) \ { 0 , oo } ç Eva l (6) \ { 0 },

iff ^[M]rop^[N]

for all contexts ^ [] s.t. <g[M] and *[iV] are programs.

We dénote by = o p the équivalence associated with Co p-

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 339

5. EXTRINSIC FULL ABSTRACTION

5 .1 . Main theorem

What follows applies uniformly to NDL1 and NDL2, together with their
models JÉx and Jd'2, therefore we shall drop subscripts 1 and 2, as we did in
Eval, and write M instead of JMJ and also [\ instead of Ji3 \].

THEOREM 5.1.1: The two preorders Co p and JC„# coïncide, i, e, the model isfully

abstract w.r.t. the operational semantics ([4]; in this sense it is extrinsicly fully
abstract).

The proof of this theorem falls into three parts: first we show that the
denotational and the operational semantics are equivalent on finite programs,
then we extend this équivalence to all programs and finally we easily dérive the
extrinsic full abstraction from the intrinsic one.

We point out that the last two parts rely on very gênerai properties of -> and
[]; it is the first part only which is spécifie to the language (s) we consider,
namely one has to prove that the 8-rules which characterize -• are "correct" with
respect to the interprétation of first order primitives.

5 .2. Equivalence of the two semantics on finite programs

We recall that the définition of finite term has been given in Section 2 .3 . For
finite terms, we can define a relation -> , as follows:

a) rules 1) through 9 d) in the définition of ->, but for rule 6) (about Y);

b) the following rules (we call them O-rules):

(+1)0,-0,; (-1)0,-0,;
F F

ƒ 0 , -*Q0J ƒ€{£ , Z} ; /FXOO MiV-Q, ;
F F

• Mep5 Mep6

(37-)M-+Q0' (r!)M-»Q0 '
F F

where p5, p6 are given by:
- Qoep5;Nep5,N

fep2=>or0NN\ gi^'Neps;
- Qoep6;Nep6,N'ep3=>oioNN\groN

fNep6;

c) the following rules, which replace 10 a) and 10 b):

u p6

(3 T)M -> (3 T)M' ' (Tl)M -• (T\) Af'
F F

vol 14, n°4, 1980

340 E. ASTESIANO, G. COSTA

where —» is given by : all the rules for -•, but for 1) and 8 b); rules (I) to (V) given for
F F

-~>; the rules (VI a) and (VI b) obtained from rules (V a) and (V b) by replacing £
with Qx .

LEMMA 5.2.1:Everyj ini teprogramadmits ,w.r . t . -+,acommutation tree(i.e.a
F

unique tree satisfying conditions a), b), c) of lemma 4.1.1 and d'\ a is labeled by a
constant or Qy iffit is a leaf) which is finite.

Hint to the proof. The proof is similar to that of lemma 4 .1 .1 ; one uses
property 3> whose définition on programs is: a program P is O iff the thesis of the
lemma is true for P and moreover P admits a (unique) finite computation
seq uence w. r. t. >. •

r
If P is a finite program, Eval f(P) is defined by:

ce EvaF (P) iff P X c; Qx e Evalf (P) iff P A Ox .

PROPOSITION 5.2.2: Por any finite program P

c £ [P] (l) #fçeEvalF(P), for c±%;>

±E[P](±) z F

ïn proving this proposition we use an intermediate step (and assume that the
reader is familiar with Milner's paper [5]).

We say that a term is in normal form iffit is composed of ground and first order
constant symbols and ground Q*'s only; we dénote n. f.'s by u/s. Moreover, let J
be the homomorphic extension of J to n.f.'s, setting t / (ü x) = ± .

Given the nature of Milner model, the proof of the proposition above consists
mainly in showing that, for finite programs, our operational semantics is
equivalent to one in which they are reduced to their (unique) normal form, using
normal réduction (i.e. left-most (3-reduction only). The following lemma is the
main step to prove this fact.

LEMMA 5.2.3: IfP is a finite program, then:

a) ifP —• P' without using rule ljetw,wf be the normal farms to which P and P',
F

respectively, reduce by normal réduction; then 3 (w) = <f{w')\

a') the analogue of a) ij P h> P';

6) ifP -> P' and P -• P"(using rule 1) and w, w\ w" are the n.f 's for P, P', P'\
F F

then J{w) = 3{wf)<j 3\vo").

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 341

Proof (folio wing once more the style in [8]): Let 0 be the prédicat e on fini te
terms deûned by:

(i) if M is a fmite program then M is 0 (i. e. Me0) iff a), a% b) above hold
for M;

(ii) if MCT _ T is closed then Mc ^ t is 0 iff so is (Af o - T iVo) for every closed JVa

which is 0;
(iii) if M is open with free variables a 1, .. ., oc „ of type a x, . . . , a „ then M is 0

iff so is M [N1/ali .. ., Nn/an] for every closed JV1} . . . , JV„, of type a 1 ; . . .,
a„, which are "07

We show that any fmite M is 0; here we detail a few cases only..
M = ƒ e{(+l),(-l),Z,£}:LetPbe/JV,foriVclosed(henceprogram)and 0.

We have to prove that a), a'), b) hold for P.
Part a) is easily proved (two cases: N=£, N -• JV').

Parta'J.IfN^orNi JV2ïtheneitherJV=ç,orJV-v>N';inbothcases,asJVis6

and it is a program, a') is clearly true for P.

If N = gr N1N2i then ƒ N~> OL (ƒ ̂ i) (/N2); now: f (QL N1 N 2) ^ f {or
F p

) = w; and gji(f Nx) (f N2) -> J2E.(/^I) (fiv2) = w'l clearly . / (w) = J (wr).

Partft). [/ N ^ P i and / iV^ P2]iff[iV-> iVx and N ^ iV2
F F F F

hence as b) holds for N it clearly holds for ƒ AT.

M = (3T): Let P be (3 T) TV, AT program and 0.
Part a). By lemma 5.2.1 we have only two cases:
al) Nspj,j=l, 2, 5; then a) is proved by induction on the number of or/s

in JV;
al) N$p1vp2up5 and N^>N' and P -• P' = (3T)N'; we easily geta)

for P, as a') holds for N.
This proves also part af), as P^>Pf iff P->P' .

F F

Part b) is trivially true as rule 1) does not apply to P.
For the cases M = M 1M2 and M = X XM ±, we argue as we did in the proof of

lemma 4.1.1 •

Proof of Prop. 5.2.2: By the définition of Milner's model we have:

[P] (1) = [w] (_!_), where P -+vo\ moreover if cpx is the isomorphism between Dx"
P

and Dx (remember we have suppressed subscripts 1 and 2), then cp ([w]

vol. 14, n°4, 1980

342 E. ASTESIANO, G. COSTA

From lemma 5.2.3 we have: $ (w) = u { J (a) 1 a G Eval (P)} (finite union),
which concludes the proof. Notice that a main point in the proof is that both w
and a finite computation tree for P exist and are unique. •

5 . 3 . Equivalence of the two semantics on (gênerai) programs

To prove the analogue of proposition 5.2.1 for arbitrary programs, we need
two lemmas. Let P be any program and recall that pW = P [Y{n)/Y].

LEMMA 5 .3 .1 : [P I (±) = U {[P{n)] (±), n^O}.

Proof: This fact is a conséquence of the gênerai property of models:
r] (±) = U{ [r < ")] (-L)»n^0} . •

LEMMA 5.3 .2:P $>çiff3 nsA.P{n) ^c,Vn>n;PdivergesiffP{n)^ Ü
F F

The proof of this lemma requires a few steps. Let ^ be the least relation
bet ween terms [8] s. t.:

(i) QoSMa and Y™£Yut for all o, n^O;
(ii) M^Af;

r ^ a n d M a ^ T A

LEMMA 5.3.3 [8]: If M is finite and M SN, then:

a) M -• M ' implies: either M'SN, or N -*• N' and M'S
F

a') the same as a) replacing - • and -» by —>;
F F

b) N -> N' implies: either M is irreducible and Mi&N', or M -•
F

i>°) t/ze same as b) replacing -> anii -> by —> and —».
F F

We omit the proof which is rather tedious and it is done by cases
(corresponding to the définition of ^ ,->,—>, ->, —>). Notice that a') and b') are

F F

just auxiliary to the proof of a) and b). •

COROLLARY 5.3.4: IfP is any program, then:

a) ij P (n) A c, some n, then P^c;
F

P) ifP diverges, then P (n) - ^Q x , Vn.
F

R.A.I.R.O. Informatique théorique/Theoretical Informaties

ONDETERMINISM AND FULLY ABSTRACT MODELS 343

Proof: Part a) dérives immediately from part a) of lemma 5.3.3 and the
définition of ^ (c ̂ Q => Q = c) ; part (3) is a conséquence of part b) of the lemma,
the def, of S and the fact that all compilations from P{n) terminate. •

Proof of lemma 5.3.2; The if part of a) and the only if part of b) have alréady
been proved (5.3.4).

If part of b): The dérivation P(n) ->• O can clearly be decomposed as:
F

pC»> = Q0_^ ö i ••• -> Qn ^n,"wEërë""gj-* "6j+i without using Q-rules.
F F F F

Therefore there is a "corresponding" (segment of) dérivation
P = QÓ -• . . . ->Q'n9 where g j is obtained from g ; by replacing all Y™ 's with
Ya 's. Hence the computation tree for P has arbitrarily long branches; by König's
lemma this implies it has an infinité branch.

Only if part of a). In the dérivation P -» c, rule 6 (about Y) is used a finite
number of times, say n. It is clear that there is a "corresponding" dérivation
P^Xc, for all n^n. •

THEOREM 5.3.5: ce[P] (1) iff çeEval (F), for c#Ç); X e [P] (X) (

The proof follows easily from lemma 5.3.1 (and the définition of the order
between subsets) and from lemma 5.3.2. •

5 .4, Proof of the main theorem

We have to show that, for any two terms M, N of the same type» M [Zjg N iff
M Co p N. Indeed:

Niff <€ [M] Ç ^ V[N]foTéaV[] s. t. <g [Af] and <€[N] are programs

(by intrinsic full abstraction of M) iff * [Af] Co p * [JV] for all <ê [] s. t. <g [M]

and ^ [N] are programs (by theorem 5.3.5 and the définitions of C op and of the

order in powerdomains) iff M Ç o p iV. •

ACKNOWLEDGEMENTS

The authors wish to thank G. Piotkin for showing them his techniques oflogical relations to prove
non definability [6, 9].

vol. 14, n°4, 1980

3 4 4 E- ASTESIANO, G. COSTA

REFERENCES

L E. ASTESIANO and G. COSTA, Sharing in Nondeterminism, Proc. of the 6th I.C.A.L.P.,
Graz, 1979, Lecture Notes in Comput. Sc, Springer, Berlin, Vol. 71,1979, pp. 1-15.

2. G. BERRY, Stable Models ofTyped %-calculi, Proc. of the 5th I.C.A.L.P., Udine, 1978,
Lecture Notes in Comput. Sc, Springer, Berlin, Vol. 62, 1978, pp. 72-89.

3. M. HENNESSY and E. A. ASHCROFT, The Semantics of Nondeterminism, Proc of the 3rd
LC.A.L.P., Edinburg, 1976, Edinburg University Press, 1976, pp. 478-493.

4. R. MILNER, Processes, a Mathematical Model for Computing Agents, Logic
Colloquium '73, Studies in Logic and the Foundat. of Math., North Holland-
American Elsevier, Vol. 80, 1975, pp, 157-174.

5. R. MILNER, Fully Abstract Models ofTyped X-Calculi, Theoret. Comput. Se, Vol. 4,
1977, pp. 1-22.

6. G. PLOTKIN , Lambda Definability and Logical Relations, Memo SAI-RM-4, School of
Artif. Intell., Edinburg, 1973.

7. G, PLOTKIN, A Powerdomain Construction, S.I.A.M. J. Comput., Vol. 5, 1976,
pp. 453-487.

8. G. PLOTKIN, LCF as a Prôgramming Language, Theoret. Comput. Se, Vol. 5, 1977,
pp. 223-255.

9. G. PLOTKIN, Personal communication, 1978,
10. M. B. SMYTH, Power Domains,!. Comput. System Se, Vol. 16, 1978, pp. 23-36.

APPENDIX

Hère, we specialize to our case a method for proving undefrnability due to
Plotkin [6, 9], and use it to show that the natural extension to sets of the parallel
disjunction is not definable in NDLO and NDL1 (lemma A.l) and that finite
projections are not definable in NDLO (lemma A.2).

Let Dx be D£, J = 0,1,2, x = o, i; (we keep J fixed) and £>0 _> x be [D0 -» DJ. For
a fixed n, n^ 1, consider a family of relations R f lcD;, such that:

(i) < A, . . ., A > e RK, for any finite A in £>K ;

(ü) i^j (ƒ)> • • -, <fj (f)yeRaif)i for every first order primitive symbolƒ
[such as (+1), or, . . .] of type o (f), in NDL J;

(iü) < / i , . . . , / B >eR f f ^ t iff </1(x1), . . . , fn (X„))GR T , for every
<x l 5 . . ., x„> in Ra.

It is easy to show that {Jij [M\ (1), . . . , M3 [M] (1) > eRai for all finite
closed M, of type er, in NDLJ.

Consider q> eD~, where a = x t x . . . x xr-> x (i. e. 9 is first order), and
suppose that for some finite A^'s and Bt's, condition (o) below is true
when cp = cp .

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 345

(o) {<p(An, ...,Alr) = Bi9

If now a family of relations { Ra, a e T) exists which satisfies (i), (ii), (iii) and
such that:

(iv) < A l j s . . . , i n j) 6 R x , l è / ^ r ,

(v) < » ! , . . . , B „) e R -
then cp is not definable in NDL J. Indeed, if it was definable by a term M, we
could find 4 ^ 0 such that M 5 [M (^] (l) vérifies (o), in contradiction with the
définition and properties of {./?OL}_and_cpnditions (iv) and(v).

A (minimal) family of relations satisfying (i) through (iv) can be defined
(constructively for ground types) as foliows:

where

C/K° = { <A, ...,A}\Ais finite in

ƒ primitive symbol of type

(We say that Rx is the closure of t/x° under primitive fonctions)
(••) RCT^X is such that < / l 9 . . . , ƒ „ > e R o ^ , iff fox every < x 1 } . . ., xw> in

K « n < / i (* i) , . . . 9 / B (x B) > i s i n R t .

Then a proof of non definability consists in selecting a suitable instance of (o),
thus selecting n, and in showing that { Ra, a e T} "constructed" as above vérifies
condition (v). The two folio wing lemmas are examples of this technique.

LEMMA A.l: The natural extension (to subsets) of the parallel disjunction is not

definable in NDLO and NDL1.

(The parallel disjunction, pd, is the least monotonie funcdon such that:

tt) = pd(tt, 1)=«; pd(ff,ff) = ff.)

Proof: We show that no (finite) function cp such that:

cp({-L}, { « }) = { « } ; c p ({ « } > U })

9({#}> {#}) = {#}>

can be defined in NDL1 (hence in NDLO).

vol. 14, n"4, 1980

3 4 6 E. ASTESIANO, G. COSTA

Let Ro and JRl be the ternary relations which are the closure under primitive
functions of l/0° and U® below.

U?- { < A, A, A > | A finite in D*} ;

U° = { < A9 A9 A > \A finite in Do"}

v{<{±},{tt}9{ff}\<{tt}t{±},{ff}>}.

Then < { £t}, {tt}, {ff}}$R0; indeed, by straightforward induction on m
and by cases, one can prove that: if < A, B, C > e C/X

m then: either A = B = C or
leiuBuC.

Just to exhibit one case of the proof, let < A, B, C>e L/O
m + 1 and (Aj, Bj,

then:

i s e i t h e r

< ^ 2 > 5 2 , C 2 > o r < 3 ,

or <i2ui3)52u53)C2uC3>. •

LEMMA A.2: N o finite function 95 . t. 9 ({ 0, 1}) = {0, 1} and <p ({ n }) = { JL },

some n ^ 2 , can be defined in NDLO (hence finite projections are not definable in
NDLO).

Proof: Let n be a fixed integer, n ^ 2 , and Ro, RY be the binary relations
obtained by closure under primitive functions of

U? = {(A,A>\A finite in Z>0
0},

C7l° = { < ^ M > | A finite in D l °}u{<{0 , l } , { n } > } .

We show that <{0, 1} , { ± } > £R t , proving by induction on m that:

a) if < A9B}eU? then:

_LeJB => l e i

and

beB, bï± => (beA)v(leA);

b) if <^5 fl>6C7l
M then:

l e B => l e i

R.A.I.R.O. Informatique théorique/Theoretical Informaties

NONDETERMINISM AND FULLY ABSTRACT MODELS 347

and
peB, p # 1 => (p e A) v (1 e i) v (p — n9 p — n + 1 e i) ;

where x — y = if x^y then x — y else 1 .

We detail three cases of the induction step for a) and b); notice that both a) and
b) are clearly true for m = 0.

Consider <,4, B} in U™ + 1; (A', B'}, (Af\ B") in t/t
m and <Ao, Bo}

i n L/O
m.

Case < A, B} = (fr^d (A%pred (B')>

If 1 e 5 then: either l e B ' and then _LG^4', hence 16;4; or 0eB' and then
(OeA') v (l e X ') , hence l e A .

If peB, p^ ±, then p + leB' and then we have:

either (±eA') v (p+leA ') ;

hence (leA) v (peA);

or p + l-n,p + 2-neAf;

hence (p —n, p —n + leX) v (l e i) .

Case (A,B> = (^ml(AoiA', A"\ c^id(Bo,B
f, B"))

If 1 eB then either (ot) or ((3) or (y) holds, where:

(oc) ±eB0; then ±eA0, hence l e i ;

(P) («6BJ A (igJB'); then ((«Gi40) A (l e i ')) v (±eA0), hence I e 4 ;

(y) (ffeB0) A (XeBrf); then we conclude as in(p).

If pe 5, p# -L, then either (5) or (e) below holds:

(8) {tteB0) A (peB'); then one out of (61), (52), (83), (54) holds;

(51) I e 4 ; then l e A ;

(52)(«Gi40) A (l e ^ ') ; then l e ^ l ;

(53) (îteAo) A (peX'); then p e i ;

(54) (tteA0) A (p —w, p —n+l€i4'); then p — n, p-n+leA;

{z)(ffeB0)A(peBtf); then we conclude as in (5).

Case(A, B} = (zero(Af\zero{Bf)y, whennow (A, B>isin t/o
m+1. Wehave:

- tteB=>0eB'=>(0e^') v (±eA')=>{tteA) v (LeA);

- ffeB=>peB\ p>0=>either (ji) or (v) holds:

(u) (p€^') v j le^ ') ; then (//ei) v (le i) ;

(v)p-n, p-n+ l e i ' ; then (ffeA)v (le i) .

The remaining cases are similar. •

vol. 14, n°4, 1980

