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TOPOLOGIES ON FREE MONOIDS
INDUCED BY CLOSURE
OPERATORS OF A SPECIAL TYPE (%)

by Helmut PropinGer (')

Communicated by M. NivaT

Abstract. — For % =W (Z*) the language operator Anfy (A) is defined by {z|z\de &L }. If &
fulfills some properties then oy (A)=A U Anfy (A) is a closure operator and hence topologies can be
defined. These topologies are characterized by different points of view.

Furthermore some topological properties are discussed in terms of properties of &.

Résumé. — Pour une jamille de langages £ =R (X*) lopérateur Anfy(A) est défini par
{z|z\\Ae¥}. Si & satisjait certaines conditions. I'application o., (Ay=A U Anfg (A) est ‘une
fermeture ce qui permet de définir des topologies. Ces topologies peuvent étre caractérisées sous
différents points de vue.

En plus, certaines propriétés topologiques seront considérées dépendant des propriétés de & .

1. INTRODUCTION AND PRELIMINARIES

There are several papers giving a connection between topology and the theory
of formal languages [1, 2, 5, 8, 11].

For example, in the classical paper of Chomsky and Schiitzenberger [4],
convergent sequences of languages are considered. For this purpose a topology
over the set of formal languages is necessary. In the present paper topologies over
the free monoid =* are considered. However, there are methods to lift
topologies over X to topologies over the powerset P (X); a special one is
described here.

The methods to obtain these topologies are closely related to [7] and [2]; the
last paper contains an extensive motivation to make such considerations.

As announced, there are studied topological spaces (£ *, @) in connection with.

the concept of the operators Anfy,(4)={z|z\\Ae L} presented in [7]
(Z<BEY).
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226 H. PRODINGER

In chapter 2 those sets % are characterized which lead to closure operators.
This is seen by different points of view.

In chapter 3 some examples are presented.

~ In chapter 4 properties of topological spaces are seen as properties of &,
- especially some separation properties.

In chapter 5 some remarks are made concerning continuity, generalizations of
closure operators and topologies on the set of formal languages.

Now the essential definitions needed here are given. (All topological
conceptions are to be found in [3].)

Let = denotes a finite alphabet, Z* the set of all words over X, ¢ the empty
word, Z* =%*—{¢}, x" the mirror image of xeT*,
xN\L={z|xzeL},
Init(L)={ x| there is a z such that xze L}.
B (X*) means the powerset of T*, i ;(Z*) =P (Z*)— {T}.

- Afunction o.: R (X) — R (X) is called a closure operator iff it fulfills the axioms
(A1)-(Ad):

(D)=0; (Al)
a(AuB)=a(Ad)ua(B); (A2)
Acoa(A); (A3)

o (o (A)) =0 (A). (Ad)

[A, B stand for arbitrary elements of §3.(X); here only X =X * is treated.]

It is well-known that it is equivalent to speak about the set of closed sets or of
the corresponding closure operator with properties (A1)-(A4).

2. GENERAL PROPERTIES

Throughout this paper  denotes a fixed alphabet.
DermniTiON 2.1: For Z =B (Z*) let
a(P)=L u{A|ecAd},
0(L)=L—{A|ceA}
and

ty B (E¥) > B(EH)
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TOPOLOGIES ON FREE MONOIDS 227

the function defined by
oy (A)=A U Anf, (4).
LemMma 2.2: Forall A, ¥
Anf, 4 (A) =0y (4)=Ax Anfyy (4) =05 (4)

(x denotes disjoint union).

Proof: xeAnf, 4 (4) iff xN\AeZLu{A|eecA} which is equivalent to
xeAnf, (A)u A=a,(A4). xea,(4) means xe 4 or x\AeZ. If x¢ A then
e¢x\ A and thus x\ 4€d (&). If xe 4 then eex\ 4 and so x\ A¢0 (&),
which verifies the second equality; the third one is clear by definition.

This shows that it depends only on d(%) whether or not o, is a closure
operator. Anf, (4)=0,. (A) for all A is equivalent with ¥ =a (¥’): First,
Anf, (4)=Anf, (4)u A yields A<Anf,(4) for all A, thus o(¥)=2.
From ~ , (A)=u0,. (A) for all 4 it can be deduced that «(¥)=0o (£ ) in a similar
way as in theorem 4.7 of [7]. Now assume ¥ = (& '). Then ¥ =a (¥)=a(ZL’)
and thus Anf,, (4)=0a,, (4)=a,,. (A) for all 4. Thus Anf,, is a closure operator iff
¥ =o(¥)and a, is a closure operator.

Now the sets .# for which Anf,, is a closure operator are characterized.

THEOREM 2.3: Let & =a(%¥). Then Anf,, is a closure operator iff the following
axioms are valid:

Q¢ Y (T1)

if Ae¥, A<SB then Be¥,; (T2)

if AuUBe¥ then Ae¥ or Be¥; (T3)
Ae¥ iff Anf,(Ad)eZ. (T4)

Proof: Since Anf,, (Q)=0Q iff @ ¢ ¥ (Al) is equivalent to (T1). By [7] (T2) and
(T3) are equivalent to (A2). (A3)is clear because of the assumption . = o (%). By
[7] (T4) is equivalent to (A4).

Characterizing those sets % for which o, =, is a closure operator one
obtains weaker axioms for 0(%).

THEOREM 2.4: o, is a closure operator iff the jollowing axioms are valid:

J¢0(L); (T1")

if Aed(¥), A<B, €¢B then Bed(¥); (T2
if AUBed(¥) then Aed(¥) or Bed(¥); (T3
if Anf,, (4)ed(ZF), e¢A then Aed(Z). (T4")
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228 H. PRODINGER

Proof: 1t is sufficient to show that (T1)-(T4) hold for o (%) iff (T1')-(T4’) hold.
For (T1) and (T1’) this is clear.

Let (T2) be true for a(%) and A€ (%), AS B, ¢¢ B. Then by (T2) Bea (%)
and €¢ B, thus Be 0 (%).

Let(T2")betrueand Aea(¥), A B.Ifce Bthen Beo(¥).Ife¢ Bthene¢ A
and by (T2') Be d(&L)ca ().

The proof for (T3) and (T3’) is analoguous.

Let (T4) be true for a(¥) and Anf,, (4)ed(¥), e¢A. By (T2) is

A U Anf, 4, (4)=Anf, , (4)e0(¥)co (&) and by (T4)is Aea (£). Since e ¢ A4,
Ae€d (&) holds.

Let conversely (T4) be true. If Aea (%) then e€Anf, ,, (4) and so Anf,,,,
(A)ea (). Let Anf,,, (A)ea (&). If e€ A or e€ Anf,,, (4) then Aea (£). If
e¢ AU Anf, ) (A)=Anf,, (4)ed (L)
then by (T3') A€ d (&) or Anf,,, (4) €d(Z). In the first case there is nothing to

show. In the second one (T4’) can be used.

The next goal of this paper is to characterize those topologies on £* which are
induced by closure operators of the form o, from different points of view.

DEeriniTION 2.5: Let o, be a closure operator. The corresponding topological
space is denoted by X, =(Z*, 0,), where O, denotes the family of open sets.

First those operators j: B (Z*) - P (X*) are characterized which can be
represented as Anf,, .

DerFiNiTION 2.6: An operator f is called leftquotient-permutable (lg-
permutable) if for all x, A4:

FxNA)=x\f (4).
LeMMa 2.7: An operator f is representable as Anf,, iff f is lg-permutable.
Proof: In [7] it is shown that each Anf,, is Ig-permutable.

Conversely let f be lg-permutable and define ¥ ,={A|cef(4)}. Then

xe f(A) iff eex\f(4) which is equivalent to x\ A€.¥, and this means
x€Anfy, (A).

Remark: Since Anf, #Anf,, for & # %, (see[7])theset &£ ;oflemma 2.71s
unique.

For fixed & the relation xeAnf, (4) depends only on x\ 4, i.e. if
X\ 4=y \ B then x e Anf,, (4) iff ye Anf,, (B).

DeriniTioN 2.8: An operator f is leftquotient-dependend (1q-dependend) if
whenever x\ A= y\ B then x e ' (4) iff ye j (B).

R.A.LR.O. Informatique théorique/Theoretical Informatics



TOPOLOGIES ON FREE MONOIDS 229

The 1g-dependence is characteristic for the operators Anf,, :

LEMMA 2.9: The following two properties of f are equivalent:

(i) fis lg-dependend;

(ii) fis lg-permutable.

Proof: Let (i) hold. Since w\ (x\ 4)=xw\ 4, we f (x\ 4) iff xwe f (4)
which is equivalent to we x\_f(4).

Let (i) hold and x\ A=y\ B. Then f(x\\ 4)=f(y\ B). That means
e fxN\A)=x\J(4) iff ee f (y\B)=y\S (B) and so xe f(4) iff ye f(B).

CoROLLARY 2.10: An operator f is representable as Anf,, iff it is lg-dependend.

As a consequence the following theorem is obtained:

THEOREM 2.11: Let X =(Z*, ) be a topological space. The following
statements are equivalent:
(i) X=X, for some &,
(i) the closure operator f of X is lg-permutable;
(iii) the closure operator f of X is lg-dependend.

Proof: If X=X, then f=a, =Anf,,, is both lg-permutable and lg-
dependend. (ii) and (iii) are equivalent due to lemma 2.9. If f is 1q-permutable
then j = Anf, for some .# and since fis a closure operator X =X ., holds.

Next the topological spaces X, will be characterized in terms of their open
sets.

DerFiNiTION 2.12: £ < B (Z*) is called left-stable if whenever Ae.¥ and
xeXl* x\4eX and x A ¥.

Lemma 2.13: Ae0y iff for all xe A (x \ A)° ¢ £ . (A° denotes the complement of
Aji.e. Z*—A).

Proof: Ael, iff A¢is closed, 1. e. oy, (A°)=A° U Anf, (A°)=A°. That means
Anf, (A°)c A° orequivalently 4 £ [Anf, (4°)]°. Thus A €0, iff A =[Anf, (4)]°.
If A< [Anf, (4°]° and xeAd then x\ A°=(x\A)¢.#. If conversely
AE[Anf, (A9)]°, then there is a xeA such that xeAnf,(4°), i.e.
NN\A‘eZ.

LemMa 2.14: O, is left-stable.

Proof: Let be Ae®, and xeX* Then Anf,(A)cA°, thus
x\Anfy, (A9)=Anf, (x\ A )=x\ A° and so x\ A°¢ is closed. Therefore
x\AelO,. To show that x Ae0®, assume the contrary. If xA¢0, then
by lemma 2.13 there is a xyexA such that (xy\xA4)°e . Since
Xx\x A =¥\ a contradiction is obtained.

vol. 14, n°2, 1980



230 H. PRODINGER

LEMMA 2.15: Let X =(Z*, O) be a topological space where O is left-stable. Then
X=X, for some &.

Proof: Let =P (£*)—{ 4| there is a 0@ such that €0 and A< 0°}.

First (T1')-(T4') will be verified for ¢ (¥):

Since 0 # @ and @ < O°¢, (T1’) holds.

Letbe A€0(¥), A< B,e¢ Band assume that B¢ 0(%). Then B¢ %, 1. e. there
is a 00 such that e€0 and BC Of. Hence A0 and 4¢3 (¥). Thus (T2') is
shown by contradiction.

To show (T3') let be A U Bed (%) and suppose that A¢ 0 (¥) and B¢ (Z).
Then there are O,, 0,€0, €0, 0, such that A0 and B 05. Therefore
AUB< (0;n0,)°and O, N 0, is open and contains €. So A U B¢ 0 (%) would
hold.

Now (T4') will be shown: Let be Anf, ,, (4)€0(%) and assume that A¢ 0 (Z).
Then A< O° where 00 and £ €0. Since @ is left-stable, for all x €0 the following
holds: x\0€0 and e x\ 0 and x\ 4 =(x\ 0)°. That means that for all xe0,
x\A¢0 (&) or equivalently x¢Anf,,, (4). Hence 0 < [Anf,, (4)], i. e.
Anf; o, (A)¢0 (&), which is a contradiction.

Hence o, is a closure operator and it remains to show that 0, =0.

Let be A€@. Then for all xeA, eex\ 4 and x\ 4€0 and therefore
(x\A) ¢ Z for all xe A which means by lemma 2.13 that 4Ae0,.

Let conversely be A€, . Then for all xe 4 (x\ 4)°¢ £ hence for all xe 4
there is a O, €0 such that e€ 0, and (x\ 4)°c 0% i. e. 0,S(x\ A). Since O is
left-stable x 0, €@ and x 0 .= x (x\ 4) for all xe 4. Now

A= {Jxg Jx0,2 (Jx(x\4)=4

xeA xeA xeA

and therefore A= ( ) xO, is in 0.

x€eA

Combining the above results leads to:

THEOREM 2.16: Let X =(Z*, 0) be a topological space. Then X =X ,, for some
L iff O is left-stable.

3. EXAMPLES

Lemma 3.1: 0y =04, iff 0 (£ 1)=0(ZL ).

Proof: Let be .,?{:.SB(Z*)—{A| thereisa0e0y such thateeOand A< 0°}.
Then by lemma 2.15  (¥;)=0 (&) (i=1, 2) holds. Hence 0, =0, iff
Of, =04, iff 8 (L)=0(L3)ifl 0(ZL,)=0(Z>).

THEOREM 3.2: The jollowing statements are equivalent:

(1) O is the discrete topology; .
(i) 0(L)=0;

R.A.LLR.O. Informatique théorique/Theoretical Informatics



TOPOLOGIES ON FREE MONOIDS 231

(iii) Oy, contains a nonempty finite set.

Proof: 8 (£)=Q iff for all A Anf, 4, (4)= i. e. A closed. [It should be noted
that O, =0, iff 0 (¥ ,)=0(Z>)]

That (i) implies (iii) is clear. Let conversely (iii) hold. Then thereisa 0@, and
0 is finite and nonempty. Let zeO be of maximal length. Then
{z}=0nzZ*e0,, hence 2\ {z}={e} €0, , which means that £ * is closed,
i.e.e¢ Anf,,, (7). So eNZ =2 " ¢.Z and by (T2') 3(£)=0.

For x, ye Z* let the order relation < be defined by x <y iff y=xz for some z
and O the right topology.

THEOREM 3.3: 0 =(9‘B°"3*)'

Proof: B={xX*|xeX*} is a base for the topology O [3]. It will be shown

that®B is a base for Oy 5., . Let be 0€ Uy (5. Then by lemma 2.13 (x \0)*¢B o

(Z*) for all xe0. This means that x\0=X* for all xe0. Thus 0= [ | xZ*.

xe0

ReMARK : (i) The corresponding closure operator is Init. (i) The open sets are
exactly those sets of the form L X* for arbitrary LS Z*.

Next let & = o (%) where % is the family of infinite sets (over £*). Then it can
easily be verified that Anf, is a closure operator and for all 4:
Anf,, (4)= A U Anf(A).

[In [7] Anf(A4) is defined to be {wlthere are infinitely many z such that
wzeA}]

TueoREM 3.4:B={x A| xeX*, A finite} is a base for O, .
Proof: Let be 00, . Then by lemma 2.13 (x\ 0)¢ % or equivalently x\ O°¢

is finite for all x€0. Since 0= { ] x (x\\0) the statement holds.

x€0

Remark: Each set LA where L = Z*, A° finite is open, but there are open
sets 0 which are not of this form (e. g. let £={a, b} and 0={a"bw|w=#a"}).

Now 3 other examples are presented in short. Let ae £ and
L,={A|thereisaaxecA},
Fe={A| there is a xac A},
Fa={A| there is a xaye A }.

Then it is easily shown that X, , X ., X 4, are topological spaces; they can be
seen as right topologies with respect to the partial orders < ,, < ¢, <« defined by

x<,y iff x=y or y=xaz;
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232 H. PRODINGER

x<%y iff x=y or y=xza;
x<ay iff x=y or y=xzjaz,.

4. CONNECTIONS OF TOPOLOGICAL PROPERTIES AND PROPERTIES OF ¢

In this chapter some investigations are made upon the topological spaces X , .

Lemma 4.1: O is coarser than O, iff 0 (£ ,)<0 (£ 2).

Proof: Let £ =P (S*)—{ A| there is a 00, such that g0 and 4A0°}.

Then by Lemma 2.15 0 (¥))=0 (¥;) (i=1, 2) holds. Hence O, =0, iff
L= lffa (Z1)co(Zy)iff 0 (£ 1)s0 (Z,). (Compare lemma 3.1)

Lemma 4.2: Let O, , i€l be topologies. Then there are families £ and .S?
such that 0, = (O, and | ) Oy, is a subbase for O,

iel iefl
Proof: By theorem 2.16 it suffices to show that ()@ as well as the family of
iel
arbitrary unions of finite intersections of ( | O, are left-stable. But this is trivial
iel
because of the fact that concatenation of a single word (division by a single
word) can be distributed over arbitrary unions (intersections).

THEOREM 4.3: The family of the topologies O, is a complete lattice where
Oy v is the O-element and O is the 1-element.

Proof: The statement follows immediately from lemmas 4.1 and 4.2.

THEOREM 4.4: Each X ,, is a Ty-space (Kolmogoroff-space).

Proof: Let be x, ye L*, x#y. Without loss of generality let y< x hold. Then
y¢1Init ({x}) and because of

ag ({* })={x}UAnf, ({x})cInit ({x})
is [ory, ({x})]° an open set containing y but not x.
THEOREM 4.5: The following two statements are equivalent:
(i) Xy is a Ty-space (i. e. each set {x } is closed);
(ii) 8(%) contains no set of cardinality 1.
Proof: Let (i) hold. Would be { z } € 9 (¥) theneea, ({z})and { z } would not
be closed.

If conversely (i) does not hold, then there is a x such that a.,, ({ x } ) contains a

y#x. Therefore y\ {x}€0(&£) and since Q ¢0(Z)y\ {x} contains exactly
once element.

R.A.LR.O. Informatique théorique/Theoretical Informatics



TOPOLOGIES ON FREE MONOIDS 233

Next those families % will be characterized for which X, is a T',-space
(Hausdorff-space).

LemMA 4.6: X , is a T,-space iff for each z#¢ there is an open set O such that
£€0and 0nz 0=0.

Proof. — Let X , bea T',-space and z #¢. Then there are opensets O, , O, such
thate€0,,z€0,and 0, n0,=Q.Let be 0=0, N z\ (0, nzZ*). Since 0 is
obtained by applying allowed operations to open sets, O is open. Furthermore
€€0. Since 00, and z0<0,,0nz0 = holds.

To show the converse let be x, ye £*, x # y. If neither x < y nor y < x holds then
xZ*and y £* are suitable open sets which separate x and y. Nowlet be x< y1i. e.
y=xz, where z#¢. By assumptions there is an open set 0 such that e€0 and
0N z0=0. Therefore x 0 and y O =x(z0) are open and disjoint.

TueEOREM 4.7: The following statements are equivalent:
(i) X4 is a Ty-space;
(i) for all z+#¢€ there is a set A such that

geA, zA¢ L and A¢ L.

Proof: Let (ii) hold. By lemma 4.6 it is sufficient to show that for all z#¢
z and € can.be separated by open sets.

Let be z#¢. Then there is a 4 such that e€ A, zA¢ ¥ and A°¢.¥. From
lemma 3.1, 0(&)=0(&£’), where ¥’ is the set defined in lemma 2.15. For any
set B which does not contain ¢, Be % iff Bed (%), hence Be Z iff Be £ '. The
sets z4 and A° do not contain g, thus zA¢ ¥’ and A°¢.#’. This means by
lemma 2. 15 that there is an open set 0 containing € such that z 4 £ O°. Therefore
A2\ O° or equivalently z\ 0 A°. Would be z\ 0€ & then by (T2') A€ ¥
would hold, which is not possible. Hence 2\ 0 ¢ % which means that z is not in
the closure of 0 and so in the interior of O¢. Thus 0 and the interior of O° separate
€ and z.

Let conversely (i) hold. Let be z#¢. Then by lemma 4. 6 there is an open set 0
containing g, suchthat0 Nz 0 =@.Set A=2z\ 0°.Sincez¢0,ze 0 andsoce 4
holds. Would be z A € & then, because of (T2), 0°€e £ and so eea, (0°)=0°
which is a contradiction. Hence z A ¢ . Would be A°=z\0€.¥ then zea,, (0)
which means that z is not in the interior of O° which is a contradiction to
0nz0=0Q. Hence A°¢ &#.
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234 H. PRODINGER

CoroLLARY 4.8: Xy (v and X, are not T ,-spaces.

Proof: Since Oy, 5. is coarser than @, it is sufficient to show that X, is not a
T ,-space.

Since for all z£¢e, ASX*, z A¢% implies A is finite and thus A°e%, (ii) in
theorem 4.7 cannot be true for %.

Because of corollary 4.8, X ;. and X, are not compact. But the following
theorem holds:

THEOREM 4.9: X, (X*) and X, are quasicompact.

Proof: Let be Anf (4)={w|w\ 4 is infinite } as in chapter 3.

It is sufficient to show that @, has the finite intersection property.

Let 4; (ieI) be closed sets such that ﬂ A;=0. Would all 4; be infinite then
iel

eeAnf (4;)€ A; would hold and so seﬂAi. Therefore there is a finite
iel

A, ={xy, ..., x,}. For each j there is a A, such that x;¢ 4, . Hence

A, NA . 0 A =0,

5. MISCELLANEOUS
In this chapter some additional remarks are made.

THEOREM 5.1: The mapping V,: (Z*,0,) - (X*, 0,) defined by ,(x)=zx is
always continuous.

Proof: Assume A to be a closed set. From ueAnf, (z\ A4) it follows
uN(z2\ A)=zu\ A€ ¥, hence zue Anf, (A)< A4, thus uez\ A4 as required.

Remark that an analoguous statement for p, (x) = xz is not true in general. For
£ =P o(Z*) (£ =7%), z=b counterexamples are obtained by taking { ¢, a, ab }
({a}{b}*u{e})

From this it follows that the mapping (x, y) — xyis not continuous in general;
the same is true for x — x*.

To speak about convergence seems to be not very interesting if one takes
corollary 4.8 in account.

Now some statements are made in order to generalize the concept of a closure
operator.

A closure operator o on a partial ordering is defined by the axioms (A3), (A4)
and

If x=y then a(x)<Za(y). (A29)
Since (A2') is weaker than (A2) this is a generalization.

R.A.LR.O. Informatique théorique/Theoretical Informatics



TOPOLOGIES ON FREE MONOIDS 235

THEOREM 5.2: Let ¥ =a (&). Then Anf,, is a closure operator in the above
sense iff (T2) and (T4) are valid.

Proof: Contained in the proof of theorem 2.3.
More general is the following concept of Lapscher [6].
o is called a closure operator iff (L2) and (L3) are valid:

If x=y then a(x)=Za(y), (L2)
s,=sup(x, a(x)), (L3)
and
i.=inf(x, a (x)) exist and o (s,)=o (i,).

[In the case P (X*, =) thisreads a (Av a (A))=a (Ana (4))]
Now some properties are given guaranteeing that some mappings are closure
operators in the sense of Lapscher.

If A4, Be¥ then AnBe%, (TS)
If A, Be% then A‘¢%. (T6)
From [7] it can be deduced that then
Anf, (A nB)=Anf, (4) N Anf, (B)

and
Anf, (4) nAnf, (A°)=0.

Remark that £ #Q, (T1), (T2), (T5) means that & is a filter.
Assume in the sequel that (T1)-(T6) are valid.

DEeFINITION 5.3:

@y (A)=(Anf, (A) U 4) N (Anf, (49)) =Anf, (4) U (4 N (Anf, (49))).

LemMma 5.4: @4 (A°)=(04 (A)".
Proof:
(9g (A)°=[(Anf, (4) U 4) N (Anf, (4))]°
=((Anfy () N A9) U Anf, (49)=0, (4.
THEOREM 5.5: @, is a closure operator in the sense of Lapscher.
Proof: (L2): If A= B then a, (4)Sa, (B) and Anf, (A°)2Anf, (B°).

(L3):
¢y (A)u A=A U Anf, (4) U (A N (Anf, (49))°)=0a, (A).
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236 H. PRODINGER

Py (A)NA=(0g (A LAY =(pgy (A)L A) =(ag (A°)".

Hence

02 (AU @y (D)= 0y (g (4) =0y (4 U Anf, (4))
=[Anf, (A U Anf, (4)) U A U Anf,, (4)]
N [Anf, (4 U Anf,, (4))°1° =[Anf, (4) U Anf, (Anf, (A)) U 4 U Anf,, (4)]
N [Anfg (A°) N Anfy, (Anfy(4)))]° =oe (4) N [Anf, (A9)] =04 (4),
since from
Anf, (X) N Anf, (X)=0
it follows Anf, (X)< Anf, (X€)°, and thus
Anf, (Anf, (4))°) 2 Anf,, (Anfg (A))=Anf, (4°).
Py (AN Qg (A)=0g (0tg (A))=(Pg (g (A°)°

=(0g (AN =04 (A7) =04 (4).

Remark: One can say that ¢ (4) “approximates” A, since the difference is

“not too much” and ¢ (4) is a “simpler set”, in the sense of the following
theorem.

THEOREM 5.6: Assume that ¥ fulfills additionally
If Le¥, zeXl* then z\LeZ. (T7)

Let x~ y be the classical right congruence defined by

xzelL iff yzeL jorall z
and x 0, y be defined by x~, y or {z|xzeL and yzeL}e % or
{z|xz¢ L and yz¢ L} &,
then:
X~ ogpw Y i x8.y.
Proof: The proof is not hard but long and therefore omitted.

Remark: A similar argument shows
X~y @y Mf x~py or {z|xzeLandyzeL}e¥.

The last remark deals with the possibility to define topologies on B(X)
(see [3]).

(This seems to be not quite uninteresting since languages are somehow more
interesting than words from some points of view.)
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A concrete possibility is presented.

Assume (X, 0) to be a topological space and let the bar denotes its closure
operator. Define

a: P (BEX) - BB
by _
{A;|reA}~> | {B|BgA4, }.

rAEA

It is easy to verify the axioms (A1) —(A4).
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