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TOPOLOGIES ON FREE MONOIDS
INDUCED BY CLOSURE

OPERATORS OF A SPECIAL TYPE (*)

by Hemiut PRODINGER C)

Communicated by M. NÏVAT

Abstract. - For S£gs^>(I*) the language operator Anf# (A) is defined by {z\z\Ae<S?}. If £?
fulfiiïs some properties then oc^ ( ^ ^ ^ u Anf^ (A) is a closure operator and hence topologies can be
defined. These topologies are characterized by different points of view.

Furthermore some topological properties are discussed in terms of properties of ££'.

Resumé. — Pour unefamille.de langages j2f<=s£(X*) l'opérateur Anf^(A) est défini par
{z\z\Ae9?}. Si S£ satisfait certaines conditions. Inapplication ou (A) —A u Anf^-(A) est une
fermeture ce qui permet de définir des topologies. Ces topologies peuvent être caractérisées sous
différents points de vue.

En plus, certaines propriétés topologiques seront considérées dépendant des propriétés de ££'.

1. INTRODUCTION AND PRELIMINAIRES

There are several papers giving a connection between topology and the theory
of formai languages [1, 2, 5, 8, 11].

For example, in the classical paper of Chomsky and Schiitzenberger [4],
convergent séquences of languages are considered. For this purpose a topology
over the set of formai languages is necessary. In the present paper topologies over
the free monoid E* are considered. However, there are methods to lift
topologies over X to topologies over the powerset ty (X) ; a special one is
described here.

The methods to obtain these topologies are closely related to [7] and [2]; the
last paper contains an extensive motivation to make such considérations.

As announced, there are studied topological spaces (L *, (9) in connection with
the concept of the operators Anf^(^4) = {z|z\^4eJêf} presented in [7]
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R.A.LR.O. Informatique théorique/Theoretical Informaties, 0399-0540/1980/225/$ 5.00

© AFCET-Bordas-Dunod



226 H. PRODINGER

In chapter 2 those sets <£ are characterized which lead to closure operators.
This is seen by different points of view.

In chapter 3 some examples are presented.

In chapter 4 properties of topological spaces are seen as properties of if,
especially some séparation properties.

In chapter 5 some remarks are made concerning continuity, generalizations of
closure operators and topologies on the set of formai languages.

Now the essential définitions needed hère are given. (Ail topological
conceptions are to be found in [3].)

Let S dénotes a fmite alphabet, S* the set of ail words over Z, 8 the empty
word, Z + = L * — {e}, xR the mirror image of xeS* ,

x\L = {z\xzeL},

Init(L) = {x| there is a z such that xzeL}.

^(Z*)means the powerset of Z*, y 0(I,*) = <$(!,*)-{0}.

A function a : SR (X) -• 9? (X) is called a closure operator iff it fulfills the axioms

(Al)

(A2)

(A3)

(A4)

[A, B stand for arbitrary éléments of 3̂ (X); hère only X = S* is treated.]
It is well-known that it is equivalent to speak about the set of closed sets or of

the corresponding closure operator with properties (A1)-(A4).

2. GENERAL PROPERTIES

Throughout this paper Z dénotes a fixed alphabet.

DÉFINITION 2.1 : For S£ ^ (2*) let

and
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TOPOLOGIES ON FREE MONOIDS 227

the function defmed by

a ̂ (A) = i u Anf̂  (A).

LEMMA 2 . 2 : For all A, S£:

A n W ) (A) = a<?{A) = Ax Anfacsp) (A) = aa(jSP)

(x dénotes disjoint union).

Proof: x6AnfŒ(J?)(i4) iff x \ i 4 e j ? u {41 e e i } which is equivalent to
{A)KJ A = VL#(A). xea^(A) means xeA or x \ / l e i f . If x$A then

'e$x\A and thus x\Aed (Jèf). If xeA then & e x \ i and so x\A$d (if),
which vérifies the second equality; the third one is clear by définition.

This shows that it dépends only on 3(JSf) whether or not oĉ  is a closure
operator. Anf#(A)^at.#, (A) for all A is equivalent with if = a (if ' ) : First,
Anf̂  (A)- Anf̂ , (A) u ^ yields 4 E Anf̂  (A) for all A, thus a(jgf) = JSf\
From c^ (^) = a^, (yl) for all ̂  it can be deduced that a (if ) = a (JS? ') in a similar
way as in theorem 4.7 of [7]. Now assume if = a (£? '). Then if = a (if ) = ot (if ')
and thus Anf̂  (A) = ot̂  (.4) = ot̂ , (̂ 4) for all A. Thus Anf̂  is a closure operator iff
if = a (^£) and a^ is a closure operator.

Now the sets 5£ for which Anf̂  is a closure operator are characterized.

THEOREM 2.3: Let if = a (if). Then Anf̂  i's a closure operator iff the following
axioms are valid:

0£i^; (Tl)

if Ae&, AQB then Be^; (T2)

if AuBe^ then Ae& or Be<£\ (T3)

iff Anf̂  (A)e ̂ . (T4)

/- Since Anf̂  ((/)) = 0 iff Ç) ̂  if (Al) is equivalent to (Tl). By [7] (T2) and
(T3) are equivalent to (A2). (A3) is clear because of the assumption if = a (J^). By
[7] (T4) is equivalent to (A4).

Characterizing those sets if for which OL^=ad{se) is a closure operator one
obtains weaker axioms for d(J£).

THEOREM 2.4: a^ is a closure operator iff the following axioms are valid:

(Tl')

if Aed(£>), A^B, s$B then Bed(^); (T2')

if AUBGÖ(JS?) then Aed{^) or Bed(^); (T3')

if Anfô(JSP) (A) G ô (&), ei A then Aed(&).
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228 H. PRODINGER

Proof: It is sufficient to show that (T1)-(T4) hold for a (if) iff (Tl ')-(T4') hold.
For (Tl) and (Tl ') this is clear.
Let (T2) be true for a (if) and Aed{&), A^B, e$B. Then by (T2) Beot(if)

and e££, thus Bed(&).

Let (T2') be true and Aea(^),A^BAÎEeB then Beoc(if). If E$B then e$A
and by (T2') Be3(if)£a(if) .

The proof for (T3) and (T3') is analoguous.

Let (T4) be true for a (if) and Anf3(jan {A)ed(&)9 s$A. By (T2') is
A u Anfa(JP) (X) - Anfa(if) (X) e 5 (if) £ a (^) and by (T4) is A e a (if). Since e <M,

' >4 e 3 (if) holds.
Let conversely (T4') be true. If ,4 e a (if) then se Anfa(in (A) and so Anfam

(X)ea(if). Let Anfam (A) e a (if). If e e i or eeAnfô(^ {A) then vie a (if)'. If

e ^ u A n f ^ (X)-Anfa(^ (A)eÔ(^)
then by (T3')Aed (if) or Anîôi<?y{A)ed(if). In the first case there is nothing to
show. In the second one (T4') can be.used.

The next goal of this paper is to characterize those topologies on S * which are
induced by closure operators of the form oĉ> from different points of view.

DÉFINITION 2.5: Let a^ be a closure operator. The corresponding topological
space is denoted by X^ =(Z*, (9#), where (9% dénotes the family of open sets.

First those operators/: ^ (S*)->^B (E*) are characterized which cari be
represented as

DÉFINITION 2.6: An operator ƒ is called leftquotient-perrnutable (lq-
permutable) if for all x, A:

) = x\f'(A).
LEMMA 2 .7 : An operator f is representatie as Anf^ iff f is lq-permutable.

Proof: In [7] it is shown that each Anf̂  is lq-permutable.
Conversely let ƒ be lq-permutable and defme 5£f = {A\sef(A)}. Then

xef(A) iff eex\f(A) which is equivalent to x\AeJ£f and this means
xeAnf^, (A).

REMARK : Since AnfJ?i ^ Anf̂ 2 for if x # if 2 (see [7] ) the set if / of lemma 2.7 is
unique.

For fixed ü£ the relation xeAnf^ (A) dépends only on x\A, i. e. if
x\A = y\B then x e Anf̂  (̂ l) iff y e Anf̂  (B).

DÉFINITION 2.8: An operator ƒ is leftquotient-dependend (lq-dependend) if
whenever x\A = y\B then xef(A) iff y e f (B).

R.A.I.R.O. Informatique théorique/Theoretical Informaties



TOPOLOGIES ON FREE MONOIDS 229

The lq-dependence is characteristic for the operators Anf̂  :

LEMMA 2.9: The following two properties of f are equivalent:
(i) ƒ is iq-dependend;
(ii) fis lq-permutable.

Proof: Let (i) hold. Since w\(x\A) = xw\A, wef(x\A) iff xwef (A)
which is equivalent to wex\f(A).

Let (ii) hold and x\A = y\B. Then f (x\A) = f (y\B). That means
eef(x\A) = x\f(A) iff ee f (y\B) = y\f(B) and so xef(A) iff yef(B).

COROLLARY 2.10: An operator f is representable as Anfg, iffit is Iq-dependend.

As a conséquence the following theorem is obtained:

THEOREM2.11: Let X = (2,*,&) be a topological space. The following
statements are equivalent:

(i) X^X^for some <£\
(ii) the closure operator f of X is lq-permutable ;
(iii) the closure operator f of X is Iq-dependend

Proof: If X = X# then ƒ = aJSP =Anfa(j20 is both lq-permutable and Iq-
dependend. (ii) and (iii) are equivalent due to lemma 2.9. If/^is lq-permutable
then ƒ = Anf̂  for some S£ and since ƒ is a closure operator X = X# holds.

Next the topological spaces X# will be characterized in terms of their open
sets.

DÉFINITION 2.12: if g «p (E*) is called left-stable if whenever Ae& and
, x\Ae& and

LEMMA 2.13 : A e(9# iff for allxeA (x\^4)c $ <£. (Ac dénotes the complement of
A, i. e. Z*-X.).

Proof: A e(9^ iff Ac is closed, i. e. oĉ  (AC) = AC u Anf̂  (ylc) = y4c. That means
c) g ^ c or equivalently A £ [Anf̂  (ylc)]c. Thus yl eö?^ iff ̂ 1 g [Anf̂  (̂ 4C)]C.

If A^ [Anf̂  (>4c)]c"and x e ^ then x\Ac = (x\A)c££>. If conversely
[Anfg, (i4c)]t", then there is a x e i such that xe Anf̂  (Ac), i.e.
Ac£>

LEMMA 2.14: Ö?̂  te left-stable.

Proof: Let be 4e(9^ and xeE*. Then Anf̂  (Ac)gXc, thus
x\Anfy(i4c) = A n f a , ( x \ i c ) g x \ i c and so x\Ac is closed. Therefore
x\Ae(9#. To show that x y l e ^ assume the contrary. If xA^G^ then
by lemma 2.13 there is a xyexA such that (xy\xA)ce«Sf. Since
xy\xA=y\A & contradiction is obtained.
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230 H. PRODINGER

LEMMA 2.15: LetX = (L*,(9)bea topologicaispace where(9 is left-stable. Then
X = X#for some i?'.

Proof: Let if = *P(S*)-{ A| there is aOetf? such that eeO and A<^OC}.
First (T1')-(T4') will be verified for d {££)\
Since (9 * Ç> and 0 g Oc, (Tl ') holds.
Let be A G Ô {£?), A g B, e $ B and assume that £ £ 3 (if). Then B$ if, i. e. there

is a Oe0 such that eeO and B^Of. Hence A^OC and >1£3 (if). Thus (T2') is
shown by contradiction.

To show (T3 ') let be A u B e ô (if) and suppose that A $ d (if) and B $ d (if).
Then there are Olt O2e(9, eeO x , O2 such that AsO\and SgOc

2. Therefore
Au B^(01n02)

c and O x n O 2 is open and contains e. So A u B i ô {££) would
hold.

Now (T4 ') will be shown: Let be Anfô(if) (A) e d {££) and assume that A $ d (£?).
Then A £ Oc where 0 eO and e G 0. Since 0 is left-stable, for ail x G 0 the foliowing
holds: x\0e& and e e x \ 0 and x\A^(x\0)c. That means that for all xeO,
x\A$d {£?) or equivalently x£Anfa(J^ (A). Hence 0 g [Anf5(^(.4)]c

J i. e.
Anf5(Ĵ  (^4)^3 (if), which is a contradiction.

Hence a^ is a closure operator and it remains to show that 0 ^ = 0 .
Let be i4ed?. Then for all xeA, eex\A and x\AeO and therefore

(x \ i4 ) c ^ i f for all xeA which means by lemma 2.13 that AeO^.
Let conversely be Ae&j?. Then for all xe^4 (x\,4)c<£i? hence for all xeA

there is aOxG0 such that eeOx and ( x \ i ) c c ( ) c
x i. e. O x g ( x \ ^ ) . Since (9 is

left-stable x0xe(9 and x O x ^ x (x\i4) for all xeA. Now
4 = (J x c (J x O . i (J x(x\>4) = i4

XËJ4 XÊ/4 xe>4

and therefore A= (JxOxisin6?.
xeA

Combining the above results leads to:
THEOREM 2.16: Let X = (L*, (9) be a topologicai space. Then X = X# for some

<£ iffG is left-stable.

3. EXAMPLES

LEMMA 3 . 1 : 0 ^ = 0 ^ iff ô (S£^ = 5 (if 2).

Proo/:* Let be if ;=Sp (S *)-{i4| there is a 0 6 0 ^ such that e e 0 a n d ^ c O c } .
Then by lemma 2.15 3 (jgfÉ) = 5 (if;) ( i=l, 2)'holds. Hence G^i=(9^i iff

THEOREM 3.2: The following statements are equivalent:

(i) (9^ is the discrete topology;

(ii)

R.A.I.R.O. Informatique théorique/Theoretical Informaties



TOPOLOGIES ON FREE MONOIDS 231

(iii) &g contains a nonempty finite set.

Proof: d (JSf) = 0 iff for all A Anfô(^ (A) = Ç) i. e. A closed. [It should be noted
that 0 ^ = 0 ^ iff 3(jSf1) = 3(J27

2)J
That (i) implies (iii) is clear. Let conversely (iii) hold. Then there is a 0 e(9^, and

0 is finite and nonempty. Let z e 0 be of maximal length. Then
{ z } = 0 n z I * 6 ^ , hence z \ { z } = { e } e ^ , which means that Z + is closed,
i. e. E£ Anfôm (L+). So e \ 2 ; + =ï + $£? and by (T2') ô(jSf)=0.

For x, j ; e E * let the order relation ^ be defined by x S y iff j> = xz for some z
and 0^ the right topology.

THEOREM 3.3: 0^ =& {Z#).

Proof:33={x£*|xeZ*}isa base for the topology (9g [3]. It will be shown
that95 is a base for 0<po(I.). Let be 0e^û ( I* } . Then by lemma 2.13 (x\0)c$%$ 0

(S*) for ail xeO. This means that x \ 0 = S* for ail xeO. Thus 0= (J xS*.
xeO

REMARK : (i) The corresponding closure operator is Init. (ii) The open sets are
exactly those sets of the form LE* for arbitrary LcE*.

Next let if = a W where % is the family of infinité sets (over X*). Then it can
easily be verified that Anf̂  is a closure operator and for ail A :

(yl) = /4u Anf(y4).

[In [7] Anf(>4) is defined to be {w\there are infinitely many z such that

wzeA) .]

THEOREM 3 . 4 : 3 3 = {X,4 | xe£*, Ac finite} is a base for 6m.

Proof: Let be Oe0*. Then by lemma 2.13 ( x \ 0 ) c £ ^ or equivalently x\Oc

is finite for ail xeO. Since 0= (J x (x \0 ) the statement holds.
xeO

REMARK: Each set LA where L ^L*, Ac finite is open, but there are open
sets 0 which are not of this form (e. g. let S = {a, b} and 0 = { an bvo \ w # an} ).

Now 3 other examples are presented in short. Let aeZ and

<£a^{A\ there is&axeA},

£ea = {A\ there is a xaeA},

J£a = {A\ there is a xayeA}.

Then it is easily shown that X^n, X^a, X^a are topological spaces; they can be
seen as right topologies with respect to the partial orders ^ a, ^

 a, Sa defined by

x S a y iff x = y or y = xaz ;
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232 H. PRODINGER

iff x = y or y = xza;
iff x = y or y = xz1az2.

4. CONNECTIONS OF TOPOLOGICAL PROPERTIES AND PROPERTIES OF S£

In this chapter some investigations are made upon the topological spaces X#.

LEMMA 4 .1 : <9#2 is coarser thon 0^x iff ô ( i? 'JçS (JSP2).

Proof: Let g"t= <$ (S*)-{yi | there is a Oefl?^ such that seO and ,4gO c}.
Then by Lemma 2.15 ô (£?l) = d (JSP£) (i = l, 2) holds. Hence fl^ gfî>^ iff
j ^ i ^ z iff S ( i f i )gô (JâPi) iff 3 (JSfJgd (JSf2). (Compare lemma 3.1.) *

LEMMA 4 . 2 : Let Ö^. , i e l be topologies. Then there are families J5fn and j£fu

suc/i t/iat G g = P) fî5^_ anrf (J tf?^ is a subbase for &# .

Proof: By theorem 2.16 it suffices to show that Ç\ (9%. as well as the family of
iel

arbitrary unions of finite intersections of (J (9<?i are left-stable. But this is trivial
iel

because of the fact that concaténation of a single word (division by a single
word) can be distributed over arbitrary unions (intersections).

THEOREM 4.3: The family of the topologies 0% is a complete lattice where
^o(z*) IS tne 0-e/emen£ cind O0 is the l-element.

Proof: The statement follows immediately from lemmas 4.1 and 4.2.

THEOREM 4.4: Each X^ is a T0-space (Kolmogorojf-space).

Proof: Let be x, y e S*, x^y. Without loss of generality let y^x hold. Then
y $ Init ( {x } ) and because of

is [ocg, ( { x} )]c an open set containing y but not x.

THEOREM 4.5: Thefollowing two statements are equivalent:
(i) X# is a Tx-space {i. e. each set {x} is closed);

(ii) ô(J5?) contains no set of cardinality 1.

Proof: Let (i) hold. Would be { z } e d (if) then 8 G OĈ  ( {z } ) and { z} would not
be closed.

îf conversely (i) does not hold, then there is a x such that ay, ( {x} ) contains a
v^.v. Therefore y \ { x } e ô ( i ? ) and since 0<£<9(i?)/\{x} contains exactly
onc element.
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Next those families S£ will be characterized for which X# is a 7Vspace
(Hausdorff-space).

LEMMA 4.6: X# is a T2-space ifffor each z^e there is an open set 0 such that
860 andOnz 0^0.

Proof. - Let X# be a T2-space and z ̂  e. Then there are open sets OlfO2 such
that eeO1 ( ZGO 2 and 0 1 n 0 2 = Ç).LetbeO = 0 1 n z \ ( 0 2 n z S * ) . Since 0 is
obtained by applying allo wed opérations to open sets, 0 is open. Furthermore
eeO. Since 0gO x and z 0 g O 2 , OnzO = 0 holds.

To show the converse let be x, y e E *, x # y. If neither x ̂  y nor y ̂  x holds then
x X * and y E * are suitable open sets which separate x and y. Now let be x ̂  y i. e.
y~xz, whefe z^e. By assumptions there is an open set 0 such that eeO and
0 n z 0 = Ç). Therefore xO and yO = x{zO) are open and disjoint.

THEOREM 4.7: The following statements are equivalent:
(i) Xg is a T2-space;
(ii) for all Z^E there is a set A such that

and

Proof: Let (ii) hold. By lemma 4.6 it is sufficient to show that for all
z and s can.be separated by open sets.

Let be z / e . Then there is a A such that zeA, zA$<£ and AC$S£\ From
lemma 3.1,5 (J3?) = 3 C5f')* where if' is the set defined in lemma 2.15. For any
set B which does not contain e, B e <£ iff B e d (JS?), hence B e <£ iff £ e ££ '. The
sets ẑ 4 and 4̂C do not contain e, thus z^4^if ' and Ac^^ff. This means by
lemma 2.15 that there is an open set 0 containing e such that zA^Oc. Therefore
Açz\Oe or equivalently z \ 0 g Ac. Would be z \ 0 e i ? then by (T2') Ace<e
would hold, which is not possible. Hence z \ 0 £ JS? which means that z is not in
the closure of 0 and so in the interior of Oc. Thus 0 and the interior of Oc separate
£ and z.

Let conversely (i) hold. Let be z / £. Then by lemma 4.6 there is an open set 0
containing £, such that O n z O = 0 . Set A = z \ O c . Since z $ 0, z e Oc and so £ G A
holds. Would be zAe& then, because of (T2'), 0CGJS? and soeea^ (OC) = OC

which is a contradiction. Hence z ̂ 4 £ jSf. Would be ̂ 4C = z \ 0 e J*f then z G a^ (0)
which means that z is not in the interior of Oc which is a contradiction to
OnzO = 0 . Hence
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234 H. PRODINGER

COROLLARY 4.8: J^po(Z,j and Xm are not T2-spaces.

Proof: Since &^o{z*) is coarser than &<% it is sufficient to show that Xm is not a
r2-space.

Since for ail z^£, i g S * , z,4<£<^ implies A is fmite and thus A'etfl, (ii) in
theorem 4.7 cannot be true for %.

Because of corollary 4.8, X o(£,j and X ,̂ are not compact. But the following
theorem holds:

THEOREM 4.9: X V (Z*) ««<* X^ are quasicompact.
Proof: Let be Anf (A) = {w\w\A is infinité} as in chapter 3.
It is sufficient to show that (9% has the finite intersection property.
Let At {iel) be closed sets such that f] At = 0. Would ail At be infinité then

iel

eeAnf (A^^Ai would hold and so eef]At. Therefore there is a.finite
iel

Aio = {xlt ...,xn}. Fo r each j there is a At_ such that Xj$At . Hence

5. MISCELLANEOUS

In this chapter some additional remarks are made.

THEOREM 5.1: The mapping \|/z : (E *, G# ) -» (Z *, &# ) defined byy\fz (x) — zx is
always continuons.

Proof: Assume A to be a closed set. From ueAnf^ (z\^4) it follows
u\(z\A) = zu\AeJ£, hence zueAnf'#(Â)£A, thus u e z \ i 4 as required.

Remark that an analoguous statement for pz (x) = xz is not true in gênerai. For
if = ̂ P o (^ *) («S? = ^)> z = fe counterexamples are obtained by taking {s, a, ab}
({a}{b}*u{e}) .

From this it follows that the mapping (x,y)-> xy is not continuous in gênerai ;
the same is true for x -> xR.

To speak about convergence seems to be not very interesting if one takes
corollary 4.8 in account.

Now some statements are made in order to generalize the concept of a closure
operator.

A closure operator a on a partial ordering is defined by the axioms (A3), (A4)
and

If x^y then a(x)^a(y). (A2')
Since (A2') is weaker than (A2) this is a gêneralization.
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TOPOLOGIES ON FREE MONOIDS 235

THEOREM 5.2: Let <£ = oc (J5f). Then Anf^ is a closure operator in the above
sense iff{T2) and (T4) are valid.

Proof: Contained in the proof of theorem 2.3.

More gênerai is the following concept of Lapscher [6].

a is called a closure operator iff (L2) and (L3) are valid:

and

[In the case <p (E*, e ) this reads oc (A u a (i4)) = a {A n a (A)).]

Now some properties are given guaranteeing that some mappings are closure
operators in the sense of Lapscher.

If A, Be& then AnBeg>, (T5)

If A, Beg then Ac$g. (T6)

From [7] it can be deduced that then

Anf^ (A n B) = Anf^ (A) n Anf^ (B)

and

If x^y

S

ix = inf(x, a (x))

' then a {x

x —sup(x, a(x))

exist and

VII

a (sx) = 0 » ) .

(L2)

(L3)

Remark that i f # 0 , (Tl), (T2), (T5) means that if is a filter.

Assume in the sequel that (T1)-(T6) are valid.

DÉFINITION 5.3:

= (AnfJ?(A)<jA)n(Anf^(^c))c = Anf^{A)u(A

LEMMA 5.4: 9^ (Ac) = (cp^ {A))c.

Proof:

(Ac))c]c

THEOREM 5.5: (p_̂  is a closure operator in the sense of Lapscher.

Proof: (L2): If A^B then ot^ ( ^ ) c a ^ (B) aiid Anf^ (Ac)^Anï^ (J5C).

(L3):
<p<?(A)vA = A u Anf^ (X) u {A
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(p .̂ (A) n A = (((p

Hence

cp̂ , (̂ 4 u <p̂  04)) = cp̂ , (c

nJAnfgp (A u Anf̂ , 04))

n [Anf̂ , (Ac) n Anf^ ((^

since from

H. PRODINGER

*(A)YvA*r = {Vx (A<)vAr = (*x (AC)Y.

= [Anfg, (^ u Anf̂  (>!)) u A u Anf̂  (>4)]
c ] c = [Anf^ (A) u Anf^ (Anf^ 04)) u i u Anf^ (A)]

Lnf^.(^))c)]c =ajSf (.4) n [Anf̂ , (>lc)]c=:(p^ (A),

it follows Anf^ (X)gAnf^ (Xc)c, and thus

f̂  (̂ Lc)) = Anf^ (Ac).

Remark: One can say that <p̂  (̂ 4) "approximates" A, since the différence is
"not too much" and cp^ (̂ 4) is a "simpler set", in the sensé of the following
theorem.

THEOREM 5.6: Assume that <£ fulfills additionally

If Le g, z e l * then z\Leg>. (T7)

Let x~L y be the classical right congruence defined by

xzeL iff yzeL for all z

and xQL y be defined by x~L y or {z\xzeL and yzeL}eJ£ or

{z\xz$Landyz$L}e<et

then:

Proof: The proof is not hard but long and therefore omitted.

Remark: A similar argument shows
x ~ *<? (L) y iff x - L y or {z\xzsL and j/z e L} e S£.

The last remark deals with the possibility to define topologies Qn
{see [3]).

(This seems tp be not quite uninteresting since languages are somehow more
interesting than words from some points of view.)

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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A concrete possibility is presented.
Assume (X, (9) to be a topological space and let the bar dénotes its closure

operator. Define

a:
by

{Ax\XeA}^{j{
XeA

It is easy to verify the axioms (Al) —(A4).
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