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CLASSES OF LANGUAGES
PROOF AGAINST REGULAR PUMPING (*)

b y R. SOMMERHALDER (*)

Communicated by J. BERSTEL

Abstract. — The main purpose of this note is to collect a number ofscattered properties, examples
and unanswered questions concerning classes of languages which are proof against varions farms of
pumping of the words in the language. These forms of pumping lead to different infinité hiérarchies.
Requiring that it must be possible to select from a prefix the substring to be repeated independently of
the suffix, results in yet another hiearchy of languages.

Finally a semi-pumping property will be given which is a combination of the Nerode-equivalence and
the classical pumping lemma.

Résumé. — Le but principal de cette note est de rassembler des propriétés, exemples et questions
ouvertes de divers types concernant des classes de langages formels qui tolèrent diverses formes
d'itération (pumping) des mots de leurs langages. Ces conditions d'itération conduisent à différentes
hiérarchies infimes. Si l'on exige l'existence, dans unfacteur gauche, d'unfacteur itérant indépendant du
facteur droit restant, on obtient encore une autre hiérarchie de langages.

Enfin, on donne une propriété de demi-iération qui combine Véquivalence de Nérode et le lemme de
l'étoile classique.

INTRODUCTION

In almost every course on formai languages one or more versions of the
pumping lemma for regular sets will be covered. In the classical formulation of
Rabin-Scott this lemma states that from every word of the language which is long
enough, one can produce other words in the language by deleting, or by
repeating an arbitrary number of times, some subword of the given word. Qui te a
few of the common examples in formai language theory are proof against this
type of pumping. To circumvent the trouble of ad hoc reasoning, so called
stronger versions of the pumping lemma can then be used.

In this note we will study classes of languages which are proof against these
sorts of pumping with the added requirement that repeating a subword is

(*) Recèveid April 1979, revised August 1979.
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170 R. SOMMERHALDER

allowed only, if it is done more than a minimum number of times. An other added
requirement will be that the sélection of the subword to be repeated must, to a
certain degree, be made independently of the right (or left-) context. All of this
does not result in a pumping property which characterizes the regular sets. As to
a characterizing property we do not have more to offer than a combination of the
Nerode-equivalence and the pumping lemma. This property h o wever is even
more easy to use than the classical pumping lemma and thence desserves to be
stated.

REGULAR PUMPING

In the sequel the following notation will be used:
— N is the set of all natural numbers, including zero;
— M is the class of regular sets;
— L1

<^L2 means that Lx is included in L2;
— L1<£L2 means that Lt is strictly included in L2\
— \w\ dénotes the length of a word w\
— # (wlt w2) dénotes the number of times wx occurs as a substring in w2.

In the sequel we use an arbitrary but fixed Thue-sequence, i. e. an infinité
séquence over an also arbitrary but fixed alphabet VE (with at least three different
letters) which does not contain a substring vv, with v non-empty. Préfixes of this
séquence will be denoted b y x 1 x 2 . . . x l .

Define: 0> (k) as to consist of all and only those languages L for which there exist
constantsp(L)suchthatanywordzeLwith\z\ >p{L)canbewrittenasz = uvw
such that 0< |i>| Sp(L) and {uv^li^k} g L .

The case k = 0 in the above définition gives the class of all languages which
are proof against the pumping as stated in the classical pumping lemma for
regular languages. It is clear from the définition that for all k^O we have
^ ( f c ) c ^ ( H l ) . It is also obvious that ^(1) = ̂ (2). This proves to be the only
case where & (k) = £P(k+l), whence we have the inclusion diagram shown below.

There are various languages known which show that M%Pf{§), one of those is

L1 = {we{a,b}*\#(a, w)=#(b, i r ) } .

It is also known that ^ (1) — ̂ (0) is non-empty. This is exemplified by
L2={anbm\n>m^l}.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



CLASSES OF LANGUAGES 171

<P(3)

Figure 1

1; (?(k) is strictly included in &(k+1) for ail _

To see this consider the languages LP(k) which, using our Thue-sequence, are
defined as follows

LP(k)= {x 1 x 2 . . .xf | z^l a n d ; = l or 7^

Obviously LP(k)e^>(k), just takep(LP(fc)) equal to one and pump the last
letter in any given word. Furthermore LP(fc-f l)£^(fc) whence 0P(k) is strictly
included in ^ (k+1) . To see that LP(k-\- l )^^(k) observe that for al LP(k) we
have zeLP(k) contains a subword vv (with u non-empty) if and only if there
exists an xe VE such that z ends in xx. Suppose that LP(k+l)e0>(k) and let
p(LP(k + l)) be equal to p. The prefix z = XxX2.. .xp + 1 of our Thue-sequence
belongs to LP(fc +1) whence by assumption there exist u, v, we Vg such that
z = uvw and zt = uvl w e LP (k +1 ) for all i ̂  k ̂  2. Therefore zf must end in xx for
some x e F£. If | vw | ^ 2 then z itself must end in xx, contrary to the choice of z.
Therefore | vw | ̂  1 whence 11> | = 1 and w; = e. But then if follows that
zfc = m;feeLP(k+l), contradicting the définition of LP(k+l) .

The argument above uses languages over an alphabet with at least three
different letters. It should be obvious that the given hierarchy also exists if we
restrict ourselves to two-letter languages.

F act 2: If we restrict ourselves to one-letter languages we have St = 0> (k) for all
k^O.

vol. 14, n°2, 1980 •



172 R. SOMMERHALDER

Suppose L g { û } * and Le0>{k) for some k^2. Let pk be the required
constant and let p ! = k. pk. Ifz e L and \z\ > Pi>pk there exist u and v such that
0<\v\SPk and uvleL for all i^k. Let vl=vk. Then 0 < | vt | ^ ; ^ and there
exists a ux such that z —wx t^ and zi = u1v

i
1eL for all i jgl. Therefore L e ^ ( l )

and 0»(fc) = ^ ( l ) for all k^ 1. It remains to show that ^ = ^ (1). Suppose once
more that L g { a} * belongs to ^ (1). Let p be the required constant and let q be
the least common multiple of 1,2,3, . . . , p . N o w i f z e L a n d | z | >p then zaq r eL
for all r ̂  0 because 4. r is a multiple of any number less than or equal to p. For
any Ï such 1 i£iSq define the set At as follows

Every Ai is a regular set. L is the union of the A -s and some finite set whence L
is regular too and ^ = ^ (0) = ^>(l) = ^ ) (2 )= . . .

F act 3; ^(/c) is closed with respect to e-free substitution.

Let V be some alphabet and suppose that the language L g K* as well as the
languages La, aeV, belong to 0>{k). Consider the language s(L) obtained by
substituting La for a in L. Take p' to be the maximum of {p (La) | a e V) and set
p = p (L). p'. Let z e s (L) be such that | z | > p. There exists a word
2\ —a\ a 2 • - . fl„e L and words v,-6L(, such that z = ^j y2- . . y„- Two cases arise:

- there exists an i such that \yt\ >p'^p{La). Then there exist u, v, w such
that

0<\v\Sp{Lai)Sp'^P and {MüJ 'iü|;^fc}cLu|f

whence

{^1^2- • .yi-1uvJwyi+l.. .yn\j^k}^s(L).

— \yt\ ^p' for all i ^ n . But then p = p(L).p'< \z\ ^ \z1 \.p' and therefore
| z i I >P{L), Thus there exist u = a1. . .ag, v = ag+1.. ,ah> and w; = a f t + 1 . . .a„
such that 0 < I u I ̂  p (L) and {uuJ w \j'^ k } g L. Since

we have

Since there are no other possibilités, the language
Fact 4; <P(k) is closed with respect to union, concaténation and itération.
Since M g 9 (k) fact 4 follows from fact 3 by paying tribute to the nuisance of

the empty word.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Fact S^ik) is not closed with respect to erasing homomorphism and hence
not closed with respect to arbitrary substitution. However, ^ (0) is closed with
respect to arbitrary substitution.

The négative part of this observation foliows by an example. Let
L= {ancmbn\n, m ^ l } . Then L e ^ ( l ) - ^ ( 0 ) . Take as an erasing homomor-
phism h(a) = a, h{b) = b and h(c) = e. Then h(L)= {anbn\ n ^ l } , which
language does not belong to any 0>{k), k}>0. The proof of the positive closure
result is almost identical to the proof of fact 3. Given the word zes(L) take
z 1 =a 1 a 2 . . . a „ tobea word of minimal length among those which can produce
z:{z[eL\zes(z[)}.

The argument is now the same as above, apart from the assertion
0 < | y g +1... y h | * This pre viously folio wed from the assump tion t hat each y t #= 8.
Now the assertion is true by the minimality of zx. For if yg + 1. . .}>/, = £ then
z = y i - • -ygyh+i- • -y» and zes(uw) but \uw\ < \uvw\ and uvw would not have
been of minimal length.

Fact 6: None of the classes SP{k) is closed with respect to intersecting with a
regular set and thus neither with respect to arbitrary intersection. Consequently,
none of the classes &(k) is closed with respect to complement.

Consider the language

Ll = {we{a, b}*\ #{a, w)= #(b, w)}, L1e^>(0)g^(/c).

The intersection of Li with the regular set denoted by a * b * equals
{anbn\n^0}^P(k). The other statements are now immédiate.

We will now formulate two well-known stronger versions of the classical
pumping lemma and define classes of languages which are proof against
pumping in this stronger sensé.

Define: £f{k) as to consist of ail and only those languages L for which there
exist constants p{L) such that any subword z of a word z1=y1zy2eL with
|z |>p(L) can be written as z = uvw such that 0< 11?| ̂ p(L) and
[yx uvlwy2 | Ï^/C} g l .

Define: l(k) as to consist of ail and only those languages L for which there exist
constants p ( L ) such that if in a word zeL more than p ( L ) occurrences of letters
are marked then z can be written as z = uvw such that v contains at least one and
at most p(L) marked occurrences and {uvlw\ i^k}^L.

In the sequel it will be shown that the classes ë?(k), Sf (k) and l(k) are related
as pictured in the diagram below. Note that thefamily £l(k)is not identical to the
"regular-Ogden-like" family since we have put no restrictions on u and w.

vol. 14, n°2, 1980



174 R. SOMMFRHA1.DFR

Figure 2

The inclusions shown in this diagram are immédiate conséquences of the
définitions. The fact that they are strict will be shown by considering a set of
examples.

Let L3= {fngn\n^l} and let the substitution s be defined by
s(f)={abn\n^l} and s(g}= {cbn\ w^l}. Let L^s{L3). Then

at least three of a word of L4 contains at least one b. Repeating this b one or more
times produces a word also in L4. To see that L^Sf (0) verify that a word of the
form (ab)n(cb)n can not be pumped. Therefore £f (0) is strictly included in £f ( 1 ).

-.2(0)4.2(1), #45^(0), .2(0)4^(0) and 5^(O)-5(O)#0.
Let

X={w;G{a, fc, c}* |#(aa, «;)+ #(ac, w;)+#(cc, w ) ^ l }

and let L5 - L4 u K. Now Ls e S ( l ) - J (0) . Suppose that L5 e 5(0) and that pis
the required constant. Consider the word {ah)p+x (ch)p+x and mark the first
p-I- 1 occurrences of the letter a. There must exist u, v, w, such that uvlweL5 for
all z^O. Since v contains a marked occurrence, the number of a's can not be

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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stable. Furthermore, v can not be chosen such that uv2 weL^. Therefore uv2 w
must belong to K. But then v2eK since uv$K and vw$K. Thus both the first
and the last letter of v must be a. But in this case uw$L5. Hence L5 $ SL (0). Since
obviously L5 e 2 ( 1 ) we have thàt 2 (0) is strictly included in «2 ( 1 ). Since L 5 also
belongs to 5^(0) and is non-regular (1), this same language shows that
^(0)- .2(0) and S?(Q)-ât and &{$)-& (0) are non-empty.

- # 4 3 ( 0 ) , <2(0)-^(0)#Ç) and ^(O)J^(O).
Consider the language L6 consisting of all words over the alfabet { a, b, c} in

which the number of a's, the number of b's and the number of e's are not all equal
to one another

L6={we{a, b, c}*|H(#(a, w)=#(b, w)=#(c, w))}.

To show that L6e2(Q) take p(L6) = 2 and then verify that a word can be
pumped as required by analyzing the different cases which arise considering the
number of occurrences of the various letters. Since obviously L6 is non-regular
we have that M is strictly included in 2 (0). Suppose now that L6 e £f (0)and that
p is the required constant. The subword ap+i in akbJcJ with k = p + l and

! can not be written as uvw such that uvl wbj cjeL6 for all i ̂  0.

Therefore L6^<9?{0) and =2(0)— (J S?(k) is non-empty. This same language

shows that 5^(0) is strictly included in ^(0).
The examples above show the correctness of the bottom part of the inclusion

diagram given in fïgire 2.

F act 1: Sf(k) is strictly included iri ^(fc+1) and 2(k) is strictly included in

To see this consider the languages LSQ(k) which, using our Thue-sequence,
are defined as follows

LSQ{k)={xix2
2. . .x l ; |n^l- and for all j^n, ij=l or i ^ f c} ,

Clearly LSQ{k)e£f(k)n£(k). Just take p(LSQ(k))=l and repeat any
(marked) letter. Furthermore LSQ {k +1) ^ Sf (k) u ^ (fc) whence
Sf (k) J 5^(k +1) and J2 ( /C)^J2 ( /C+1) . Suppose that LSQ(k+l) does belong to
«^ (fc) u 5 (fc) and let the required constant be p. The prefix x1x2. . .xp+l of our
Thue-sequence belongs to LSQ{k + l) whence by assumption there exist u, v,
we Vf such that 0 < |Ü| ̂ p (o r the number of marked occurrences is within these
bounds) and z^uv^eLSQik+l) for all i^ fc^2. Since m;fcM;eLSÔ(/c+l), i;
can not be just a single letter. If v is not of the form v = xv ' x for some x G VE , the
séquence MI;1 W must be a Thue-sequence, which is impossible since u # e . But if

vol. 14, n°2, 1980



176 R. SOMMERHALDER

v = xv'x then v' is non-empty because uvw is a Thue-sequence. But then
uvk w$ LSQ (i) for i>2 and thus the assumption that LSQ (fc + 1 ) e 9 (fc) u â(fc)
is falsified.

Fact 8: y (/c) is strictly included in ̂ >(fc), J(fc) is strictly included in 0>(k) and
the classes 5^(fc), ü(fc) and^(fc- l ) are mutually incomparable.

Reconsider the family of languages LP{k) as defmed following fact 1. It should
be obvious that

which proves the strictness results. This family also shows that
^ (k - l ) -<^ ( f c ) and 0>(k-l)-M(k) are non-empty. Furthermore
LSQik)G.l/'{k)r\4{k) whence â?(k-\) is incomparable with ff(k) and also
incomparable with d(k). We have already seen that the language L6 belongs to
2L (k) — 5^ (fc), which set is thus non-empty. It remains to show that Sf(k) — £(k)
is non-empty. To this end we defme with the aid of our Thue-sequence the family
of languages LS(k):

LS(k)={xlx2x
3

3X4. . .xl2n-ix2n\ ̂ 1 and ij=l or i^k}.

To see that LS(k)eS?(k), take p(LS(k)) = 2 and note that any subword of
length two or more of some word of LS (fc) contains at least one letter which may

be repeated fc or more times. The fact that LS(k) does not belong to (J ü(fc)

follows by marking only even-place letters in a prefix of our Thue-sequence. This
shows that y (fc) — £(k) is non-empty. Therefore the classes ̂ (fc) and ü(fc) are
incomparable.

Fact 9: Both £?(k) and £t(k) are closed with respect to e-free substitution,
S?(0) and J(0) are closed with respect to arbitrary substitution.

The proof of this fact is similar to the concaténation of the proof of fact 3 and
the proof of fact 5 and will be omitted.

Fact 10: Both 9* (fc) and 2, (fc) are closed with respect to union, concaténation
and itération.

Fact 11; Neither £f(k) nor ü(fc) is closed with respect to intersecting with a
regular set. Neither of these classes is closed with respect to arbitrary
intersection, or with respect to complémentation.

Consider the previously defmed languages K and L5. Since K is regular, so is

K n {(ab)n(cb)m \ n, m §; 0 } . Intersecting L 5 with this set produces

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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{{ab)"(cb)n | wè 1} which does not belong to \J £?{k). As to â(k), consider the
feso

previously defmed language L6. Intersecting L6 with the regular set denoted by

a*b*c* produces {ahb{cl\—\ (h = i = j)}, which does not belong to (J J(/c).
fcgO

The other statements are now immédiate.
The pumping possibilities of regular languages have an aspect which has not

been brought to bear upon. This is the fact that the way in which a word z is split
in parts u, v, and w such that uvlw belongs to the language should be locally
determined. That is to say that some other word zz' of the language should allow
the same splitting of z. This observation leads us to the following:

Define: $~{k) as to consist of all and only those languages L for which there
exist constants p{L) such that any word z of length greater than p(L) can be
written as z = uvw where 0< \v\ Sp(L) such that for all z' for which zz'eL we
have {uvl wz'\i^k} <=L.

The above définition gives rise to an infinité hierarchy of classes of languages.
These classes prove to be incomparable to the previously defmed «Ŝ - and ü-
classes.

Fact 12; # 4 ^ ( 0 ) 4 ^ ( 1 ) and F(1) = <T (2).

The fact that 2T ( 1 ) = $~ (2) is immédiate from the définition. Let
L1={anbp\n^l and p is a prime} and let L8=L7 u {bn\n^l}. Then
L8 6 ^ ( 0 ) - ^ . It is clear that L8 is non-regular. To see that L8 does belong to
g~(0) take p(L8)= 1 and always repeat the first letter zero or more times. It is
also clear that L 7 e 5 ~ ( l ) - ^ ( 0 ) , whence « 4 ^ ( 0 ) 4 ^ ( 1 ) .

Fact 13; g~(k) is strictly included in 3~(fc +1) for all fe^2.
Consider the family of languages LT(k) which, using our Thue-sequence, are

defined as follows

Then LT(k +1 ) e ST (k +1 ) - 9~ (k)> This is shown by an argument analogous
to the one given for the .^-classes.

Fact 14; $~(k) is incomparable with S?{k) and with £{k).
The previously defined language L6 belongs to ^ ( 0 ) - (J $~{k) and the also

earlier defined language L8 belongs to ^" (0) - (J M(ï)t so the 3r and the 3~-

classes are incomparable. Since L8 does not belong to any £f(k), it remains to be

vol. 14,n°2, 198a



178 R. SOMMERHALDER

shown that Sf ( k) - F (k) # Ç). To this end consider the languages LlST(k) and
L2ST(k) which, using our Thue-sequence, are defmed as follows

LlST{k)={xi
ix

2
2x

iixl...x2
2jx

iïni\

7 ^ 1 and for all n^j, i2n+i=2 or i 2 « + i ^ 2 / c } ,

L2ST{k)= {xïx'ixix1*. . .xlj-tx'ftl

j ^ l and for all n^j, i2n = 2 or i2nTt2k}.

LlST(k)9 L2ST(k) e F (fc) n ^ (fc) for all fc ̂  1. To see this, take
p(LlST(k)) = p(L2ST(k)) = 4. Every subword of length four or more contains a
group of two letters corresponding to odd places, which may therefore be
repeated one or more times (respectively corresponding to even places). The
language LlST(k)\jL2ST(k) however, belongs to &(k)-&~(k).

This leaves the case k = 0 which is settled by considering
L1ST(1) u L2ST(1) u L9 where

L9= U VS(VE-x)x(VE-x)V*.
xeVE

This language clearly belongs to 5^(0) — ̂ "(0) since every subword of length
four or more contains at least one letter which may be repeated zero or more
times; which letter this is however, dépends on the right context. Therefore the
2T —, the j2— and the 5^-classes are mutually incomparable.

F act 15; None of the classes &~{k) is closed with respect to union, intersection,
intersection with a regular set or complement.

We have seen that LlST(k) and L2ST{k) belong to ST{k) but that
LlST(k) u L2ST(k) does not. Let L10 be the language consisting of all words
over the alfabet VE of the form aabbcc ...ff... which do not contain a
substring ggg for some gtVE. Since L10 is a regular set and
LlST(k) nL10$ (J &{x)t &~(k) is not closed with respect to intersection with

a regular set and thus also not closed with respect to arbitrary intersection. The
case k = 0 is dealt with by adding the regular set L9 where necessary in the above
argument. As to the complement, let Fbe an alphabet with at least three letters
and let

£ i i = {wi vvw2 \tolt w2sV* and ve V+].

Then obviously

n J ( 0 ) - ^ and Z n £ IJ

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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It is possible to divide the «^-classes in <FS- and 3~Q-subclasses:

Define: &'s (k) as to consist of all and only those languages L for which there
exist constants p(L) such that any subword z of some word zt =yx zy2 with
\z\ >p(L)canbe written as z = uvw such that 0< | v| ^p(L) and for all z' such
that zxz

feL : {y1uvi wy2z
f\i^k) <j=L.

Define: $~Q {k) as to consist of all and only those languages L for which there
exist constants p(L) such that if in some word z more than p(L) occurrences of
letters are marked then z can be written as z = uvw such that v contains at least
one and at most p(L) marked occurrences and for all z' such that zz'eL:

These définitions resuit in infinité hiérarchies sine e

The 9~s- and the $~Q-classes are strictly included in the ^"-classes since

An other example of this is provided by LT{k).
The $~s -classes are strictly included in the S-classes since

The $~Q -classes are strictly included in the g-classes since

The $~s- and &~Q-classes are mutually incomparable. The languages LlST(k)
show that £TS (k)~ ^~Q (k) is non-empty. Consider the language
L12= {a, è}*.L7u{fc}*. This L12 belongs to &~Q{0). Just take p(L 1 2 )= l
and always repeat the smallest prefix which ends in a marked letter.

It is clear that L l2$ [j ^{k) and thus does not belong to any &~s(k). This

shows that ^Q{k) — $~s(k) is non-empty too, whence the &~s~ and the $~Q-
classes are incomparable.

The above définitions of the classes ZTs (k) and <FQ (k) do not add much to the
already available tools. An other possibility to sharpen the définition of pumping
is to require that the pumping of an initial subword of a word of the language will
produce only words also belonging to the language and that pumping of an
initial subword of a word not belonging to the language will produce only words
also not belonging to the language. More formally:

vol. 14, n°2, 1980



180 R. SOMMERHALDER

The class °U consists of all and only those languages L for which there exist
constant s p ( L) such that any wor d z of length larger than p ( L ) can be wri tt en as
z = uvw where 0<\v\Sp{L) such that for all z':zz'eL if and only if
{ i \

It is easy to prove that the Nerode équivalence of a language belonging to %
has finite index. It is then obvious that %~0t, The fact that the pumping
property used above to define the class U characterizes the regular sets has
independently been observed by Jaffe [3], For the purpose of characterizing the
regular sets the requirements in this définition are a little too strict in the sense
that it is not necessary to require that {uv{wz'\i^Q) ^L but that uwz'eL
suffices.

Fact 16: A language L is regular if and only if there exists a constant p such that
any word z of length larger than p can be written as z = uvw where 0< | v | Sp
such that for all words z' we have uvwz'eL iff uwz'eL.

Fact 16 should be considered a useful tooi because it will not let you down as
the classical pumping lemma in its various disguises sometimes does.
Furthermore it is at least as easy to use as the pumping lemma and more
importantly the non-regularity proofs obtained with it are very close to intuition.

There are lots of questions left open in this note. To mention a few of them:

— do there exist languages L such that both L and L belong to £f(k) — &,

— fmd further closure properties of the various classes of languages defmed
above;

— find a convincing example to show that fact 16 can be used non-trivially to
show the regularity of some set.

REFERENCES

Apart from [4] the following are to be considered as gênerai références. These papers
are also concerned with pumping although not mainly with regular pumping.

The idea of using Thue-sequences belongs to [4].
1. L. BOASSON, Un critère de rationnalité des langages algébriques. In M. NIVAT, Ed.,

Automata, Languages and Programming, 1972, pp. 359-365.
2. S. HORVÀTH, The Family of Languages Satisfying Bar-Hillel's Lemma, R.A.LR.O.,

Informatique Théorique, Vol. 12, No. 3, 1978, pp. 193-199.
3. J. JAFFE, A Necessary and Sufficient Pumping Lemma for Regular Languages,

S.I.G.A.C.T. News summer, 1978, pp. 48-49.
4. J. VAN LEEUWEN, Private communication, 1978.

R.A.I.R.O. Informatique théorique/Theoreticaî Informaties


