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AN ALGORITHM FOR THE SOLUTION
OF FIXED-POINT EQUATIONS

FOR INFINITE WORDS (*)

by Stephan HEILBRUNNER (X)

Communicated by M. NIVAT

Abstract. — The solutions offixed-point équations for generalized (infinité) mords have previously
been obtained asfrontiers of infinité trees. An algorithm is given which computes an explicit solution
using a shuffle opération on words. This solution can be proven equal to the previous one so that the
structure of the frontier s of infinité trees is completely analyzedfor those context-free grammars which
contain exactly one production rulefor each syntactic variable.

Résumé. — On sait que les solutions d'équations au point fixe pour les mots généralisés [infinis)
peuvent être obtenues comme frontières d'arbres infinis. Dans cet article, on donne un algorithme qui
calcule une solution explicite grâce à une opération de mélange (shuffle) sur les mots. On peut montrer
que cette solution est égale à la précédente, de sorte que la structure des frontières d'arbres infinis est
complètement élucidée dans le cas des grammaires algébriques ayant exactement une règle de réécriture
pour chaque variable syntactique.

1. INTRODUCTION

Infinité words, i. e, séquences of éléments of some alphabet indexed by the set
of natural numbers have been considered in a number of papers (in particular [7,
8,9]). A more gênerai type of infinité words, i. e. "séquences" of éléments of some
alphabet indexed by an arbitrary, linearly ordered set were obtained in an very
natural way by considering the frontiers of infinité dérivation trees for context-
free grammars. These generalized words will be called (infinité) strings in this
paper.

Strings and Systems of fixed-point équations for strings were introduced and
solved in [6] and [1]. The solutions were given in terms of frontiers of infinité
trees which were defmed as the limit of a fairly complicated substitution process.
The problem of fmding simple opérations on strings such that the solutions can
be computed and represented in an finitary way was posed and partially solved in

(*) Received December 1978, revised July 1979.
l1) Hochschule der Bundeswehr München, Neubiberg.
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1 32 S. HEÏLBRUNNER

[1] by introducing "regular" opérations on strings in connection with "quasi-
rational" Systems of équations. In this paper we shall add a shuffle opération and
present an algorithm which computes an explicit solution for ail Systems of fixed-
point équations for strings.

The theory of strings turns out to be a generalization of the theory of order
types which has a long tradition in set theory [3, 4, 10]. The définition of order
types and strings poses a foundational problem in that it involves generalization
on ail sets. There are two ways of circumventing this difficulty. One way is to
augment set theory by axioms characterizing order types and strings. The other
way is to chose a canonical System of représentatives ior order types and strings
within the System of sets generated by the usual axioms of set theory. Details are
given in [2]. We would like to point out that an intensive search in the order type
literature did not unfold a theory of solving fixed-point équations for order types.

2. INFINITE STRINGS

Let W be a nonempty set. Given two ordered (2) sets D and E and two
functions R:D -> Wand S: E -> JVwe say that R and S are equivalent iff there is a
bijective, order preserving mapping H: D -• E such that R = SoH. Consider ail
the functions which map ordered sets into W. Note that the ordered sets may be
different for different functions. The équivalence classes of such functions are
called strings with respect to W. Strings are called order types if Wconsists of one
element. For foundational problems connected with this définition recall the
remarks in the introduction. By string {R) we dénote the équivalence class of the
function JR. For each we W we define the function Rw: {1} -> Wby Rw(l) = w
and call V= { string (Rw):weJV} the vocabulary. The empty string is denoted by
8. It is generated by the function R:0-> W, where0 is the empty set.

We turn to the concaténation of strings and define the addition of ordered sets
first. Suppose that { Da: a e A } is a set of disjoint ordered sets where A is ordered,
too. The sum

£ Da is the set [j Dtt,
aeA aeA

ordered such that the order in each Da is preserved and such that Da<Dâ

whenever a<â. Given strings ra with représentatives Ra: Da-+ Wwe define the
function

R: X Da-+W by
aeA

(2) Order in this paper means linear (total) order.
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SOLUTION OF FIXED-POINT EQUATIONS 133

for all a e A and deDa. Concaténation is then defined by

£ ra~string {R).
aeA

The set A is called the argument of the concaténation. If the argument ist
{1,2, . . . , n} we aiso write r1 r2 . . . rn to dénote concaténation.

The following rules can be derived from the définitions: (i) Concaténation is
well defined for ail ordered sets of strings. (ii) Concaténation is associative, (iii) If
B is an ordered set and sb a string for each b e B then the existence of a bijective,
order preserving mapping H: A^>B such that ra = sH{a) for ail aeA implies

aeA beB

Moreover, (iv) the reserve implication is true, if ra, sb e Vfor ail a and b. (v) Any

string r can be written as £ ra with r ae F for suitably chosen A. Because of (v)
aeA

we suppress W and talk of strings over V.
Simple examples of concaténations with infinité arguments are the opérations

of répétition defined now. Let Z be the set of integers with the natural order. Let r
be some string and define r f = r for ail i e Z and

r(ù=Yi ?i and rœ* = 5] *>

Obviously, rro= £ rt and r0* = £ rt so that we obtain the following table.
i>0 t<0

Rule

Equation

Solution

r(ù = rr<ù

x = rx x = xr

There are other obvious rules for répétition

3. SHUFFLING

Let r and t be some strings and consider the équation x~xrxtx. For any
solution of this équation we dérive successively

x = xrxtx;

x = xrxtxrxrxtxtxrxtx;

x = xrxtxrxrxtxtxrxtxrxrxtxrxrxtxtxrxtx txrxtxrxrxtxtxrxtx
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134 S. HEILBRUNNER

The trick which solves these équations is to assign fixed places to the r's and
f s as soon as they appear in some équation and insert the r's and t's emerging in
the following équations in proper places in between. This can be done if the r's
and t's are placed on the real line at rational points because there are sufficiently
many numbers between any two rational numbers. In this way we obtain a dense
and perfectly shuffled string of r's and f's.

The following theorem guarantees the unique existence of strings of this kind.
Recall that an ordered set is open if it has neither a first nor a last element.

THEOREM 3.1 : Let 7VÇ) be afinite or countable set of nonempty strings,
Then, there is an ordered set A and there are strings rae Tfor each aeA such that:

(i) A is open and countable;
(ii) a1eAAa2€AAal<a2 implies V teT, 3 a GA, ra=tAa1<a<a2.

Moreover, if there is another set B with strings sbe Tfor each beB satisfying (i)
and (ii) with A replaced by B then

a&A beB

Proof: We define i a s a subset of the real open interval (O, 1). Let pt be a

different pr ime number for each teT and define

A = <~r i>OAteTAa<pi
t> and rq = t for <?= —.

J Pt

It is not hard to verify that A satisfies (i) and (ii).
The proof of the second claim is due to [11] if the notions used there are

interpreted appropriately. Details are giveri in [5]. For the sake of completeness
we outline the proof.

Let A and B be given accordingly. Both sets are countable so that we may
assume

A = { a l f a 2 , a 3 , . . . } a n d B = { b t , b 2 , b 3 , . . . } .

We define infinité séquences of sets Ao, Alf . . . and Bo, Blf . . . Let

A0~B0 = Ç). Fo r i = l , 2, . . . do the following. If ü s even take the element, say

b, with the smallest index which is in B \ B t. Détermine an element a e A \ A (-

such tha t ra = sb and

\{b'\b'<bAb'eBt}\ = \{a'\a'<aAaeAi}\.

Associate a with b, and define Ai+1=At\{a} and Bi+1^Bi\{b}.

If i is odd start with an element in A \ A t and proceed in the analagous way.

R.AJ.R.O. Informatique théorique/Theoretical Informaties



SOLUTION OF FIXED-POINT EQUATIONS 135

The set of pairs obtained by this procedure is an order preserving bijection h
from A onto B with ra = sh{a).

DÉFINITION : For any finite set T of strings we define the shuffle of T by

where A and ra are chosen according to theorem 3.1 if 7 V 0 and by r n = e
if T=<D.

Our theorem implies that Tn is well defined and implies the following rules*
(i) T*T^=T^;

(ii) VteJ , T^tT^^T*;
(iii) (K u S)n = T71 whenever

Special cases of (iii) are the équations

= {T*ty=T* for each teT.

Returning to the équation x = xrxtx we see that {r, t } n is a solution because rule
(ii) allows the computation

{r, t } V { r , t j^ . t t r , t } n = {r, t}nt{r, t}n = {r, t } n .

As another example for an application of rule (ii) consider the équation
x = uxrxv. We compute

so that wro {va* ru"Y vm* solves the équation x = uxrxv.
Finally we note that rule (iii) allows the solution of rather complicated

équations. As an example consider x = u{u, x}ni; which contains a dense string
of infinitely many occurences of the unknown x. It is easy to verify that the string
u{u, v}nv solves this équation.

4. THE ALGORITHM

In this section we present the algorithm to compute an explicit and finite
représentation of a solution of a System of équations of the form

Xl-«1» X 2=U1> • • •» A' n — Wrp
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136 S. HEILBRUNNER

where X= [xit .. ., xn} is an alphabet of unknowns and where the strings ut

are strings over V{J X. An équation is called finite if it contains only a finite
number of occurences of unknowns.

A regular expression is an expression consisting of concaténations, répétitions,
shuffles, and denotations for strings. Note that our regular expressions are
extensions of the ones used in [1], Every regular expression dénotes a string in the
natural way. Examples of regular expressions are the expressions used at the end
of section 3.

THEOREM 4.1 : There is an algorithm (described informally beiow) which
computesfor any System of finite équations a System of regular expressions solving
the équations.

The complete and formai proof of this theorem is a rather technical matter (see
[5]). Hence, we shall restrict ourselves to an outline.

The first step in the algorithm is to draw the dependency graph for the given
System of équations. The nodes of this graph are the unknowns of the system.
There is a directed arc from node xt to node x} iff x} appears in the right side ut of
the équation xi = ui.

Example: Consider the System I and its dependency graph.

Q

>X i

X5 = VVV,

Figure 1. - Dependency graph for £.

This dependency graph may contain sinks, i. e. nodes of out-degree zero. The
sinks correspond to trivial équations Xi = ut whose right side contains no
unknowns. The next step in the algorithm is to eliminate the sinks from the other
équations by straightforward substitution. This transformation yields a System
whose dependency graph has no nodes of out-degree zero.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOLUTION OF FIXED-POINT EQUATIONS 137

Example {continued): Elimination of sinks for S yields Z l t

xi=ux3x2vx2u,

x3 = ÏL-Q
Figure 2. — Dependency graph for Z t

Let us call a set X of nodes in the dependency graph a closed component iff(i)
X is a component, and (ii) no node in X has an outgoing arc leaving X, Recall
that X is a component iff it is a maximal subset of nodes such that there is a path
Connecting any two nodes of X. In the example the set{x1 ,x2 ,^3,x4}isa closed
component for Z t. The set { x7} is a component but not a closed component for
E L

The next step in the algorithm is to solve the subsystems of équations
corresponding to the closed components in the dependency graph. Note that
there must be closed components if there are no sinks. Let

x 1 =u 1 x i i w1xji vu . . . , xn = unxinwnxjnvnf

be a subsystem belonging to a closed component. We assume that the right sides
are written such that the strings ulf ..., un and vlt ..., vn do not contain
unknowns. Note that every closed component allows such a représentation.
From this System we dérive two new Systems:

the initial system:

J>i=«iJV ••-. yn^unyin

and the final System:

where the ylt ..., ynt zlt . . . , zn are new unknowns.

Example(continued): We consider the subsystem { x 1 , x 2 , x 3 , x 4 } and dérive

the following Systems:

initial system:

final system:
Zl=Z2U, Z2=Z1V,

vol. 14, n°2, 1980



138 S. HEILBRUNNER

The initial and final Systems are quasi-rational in the sensé of [1] and admit
simple solutions. They are obtained as follows. Draw the dependency graph for
the initial System and label the arc belonging to the équation yj = Ujyk by Uj.
Proceed in an analogous fashion for the final System.

Example (continued):

u u e u e
* y z z - ^y 2

O'
Figure 3. — Dependency graph Figure 4. — Dependency graph

for the initial System. for the final System.

For each node in these graphs there is exactly one path of infinité length
because each node has out-degree one. The next step is to describe the infinité
strings associated with these paths in terms of concaténation and répétition. The
paths for the final System have to be reversed. This process yields solutions
yx =rlt . . . , yn = rn and z1=s1, . . . , zn = sn for the initial and final Systems.

Example (continued); Let . . . * dénote reversai

( ) e > = «ffl>=:r1, y 2 = U y 1 = u u t ù = u<ù= :r2,

= um= ; r3 , y 4 = (eue)<ù = u w = : r 4 ,

z1=((uv)<û)*=(vu)(ù* = : s u z2={{vuY)* = {uvf*= : s 2 ,

z3-(8 e>)*=8= :s3 , zA = {z{uvTr={vur = :s4 .

At this point we arrive at the crucial step of the algorithm. Let Tbc the set of all
strings of the form Sitrj such that there is an équation xk^uk of the closed
subsystem whose right side uk contains the substring xt txjf where t is free of
unknowns. Then

x1=r1Ts1, x 2 - r

solves subsystem.

Example {continued): For the considered closed subsystem we find

and

, s2vr2, s4vvvr3, s1r }

= { u", (uvf* Duw, (vuf* VVVU", (vuf* u°, (vuf* u»}

= { w40, {uvT* vu", {uvf* vvu™, {vuf* uw }

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOLUTION OF FIXED-POINT EQUATIONS 1 39

We verify the first équation in the example

T* u)
= utó r 1 ((uvf* u) = u" r 1 (vuf* = x !.

In order to prove that we obtain in this way a solution of the closed subsystem we
consider an arbitrary équation:

ki... tmxkm vk,

of the subsystem and compute

ukxkit2...tmxkmVk^ukrkiT*skit2rk2T" . . . tmrkm T*skm vk.

By définition of T we have

so that
t2rk2 T\ ..T^s^ tmrkm T*=

Moreover, recall that

rk,rki solve yk = ukyki so that rk^

and

sk, skm solve zk=^zkmvk so that sk = skmvk.

We arrive at

which had to be shown.
The remaining steps of the algorithm are qui te simple. We remove-the

équations of the closed subsystems and eliminate their unknowns in the
remaining équations by simple substitution. At this point the algorithm either
finds sinks or closed components and continues as described above until all the
équations are solved.

Example {continued): Elimination in E A of the solved subsystem yields the
équation

x7 = vuu(ù T^iuvf* uvx7 ^vu™ T*{uv)a* xlr

which is solved by the string

This complètes the solution of the original system E.
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5. OTHER SOLUTIONS

Unfortunately, theorem 4.1. does not say how to test for the equality of
solutions of different Systems. The problem is equivalent to finding a normal
form for regular expressions and a set of rules whose application transforms
them into normal form. We conjecture that our set of rules for the string
opérations defined in this paper is complete in the sense that it is powerful
enough to transform différent regular expressions which dénote the same string
into each other. If this conjecture could be proven it should not be too hard to
find a normal form.

Note that rule (iii) for the shuffle operator is needed for the simplification of the
solutions of our équations. For this purpose consider the System x\=xlux1>

x2~uxlt X3=x3x2X3 with the solution x1=uJl, x2 = uur*, x3~(uun)11, where
rule (iii) of section 3 is needed to find x3 = Xi.

Every non-trivial System of équations has an uncountable number of
countable solutions. This is a simple conséquence of the following three facts. (i)
Any équation satisfied by Tn is satisfied by ( Tu { t })n for arbitrary t. (ii) There is
an uncountable number of countable ordinal numbers. (iii) if tx and t2 are
different ordinal numbers not in T then ( ru{ t 1 }) n ^( ru{ t 2 }) T 1 '

This contradicts a claim made in [1], p. 327.
There is no straightforward semi-ordering of the different solutions. For this

purpose consider the équation x = xwx. It has the two solutions un and { u, uu}n,
among others. Obviously, un is the "simpler" solution because it is "contained"
(in the natural way) in { ut uu }n. Ho wever, un is known to be a uni versai order
type [3] which contains every countable order type. This statement is proven by a
non-symmetric version of the argument used in the proof of theorem 3.1. Hence,
{ u, uu}n is contained in wn so that u11 is not minimal with respect to containment.
Nevertheiess, a sense of minimality has been given to u^ in [1] by using the
approach to the solution of Systems of équations described below.

Another method of sol ving fixed-point équations has been put forth [ 1,5,6], It
constructs the solution as frontiers of infinité dérivation trees for the context-free
grammars associated in the straightforward way with every System of fixed-point
équations. A long and tedious proof contained in [5] shows that the solution
obtained in this way agrées with the solution obtained by the method presented
in this paper. Note that this statement gives a complete analysis of frontiers of
infinité trees for those context-free grammars which contain exactly one
production rule for each syntactic variable.
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