
RAIRO. INFORMATIQUE THÉORIQUE

BURKHARD MONIEN
Two-way multihead automata over a one-letter alphabet
RAIRO. Informatique théorique, tome 14, no 1 (1980), p. 67-82
<http://www.numdam.org/item?id=ITA_1980__14_1_67_0>

© AFCET, 1980, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1980__14_1_67_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Informaties
(vol. 14, n° 1, 1980, p. 67 à 82)

TWO-WAY MULTIHEAD AUTOMATA
OVER A ONE-LETTER ALPHABET (*)

by Burkhard MONIEN (*)

Communicated by W. BRAUER

Abstract. — Let H (k) and NH (k) dénote the classes of languages over a one-letter alphabet
acceptable by deterministic {respectively nondeterministic) two-way k-headfinite automata. It will be
shown that H (k) i H (/c+ 1) and NH (k) J NH (fc+1) holdsfor allk^l. Hierarchy results are also
provedfor the classes oflanguages over a one-letter alphabet defined by k-counter automata with linear
bounded counters and by k-register machines with linear bounded registers, respectively.

Résumé. — On désigne par H (k) et NH {k) les familles des langages sur un alphabet à une seule lettre
qui sont reconnaissables par des automates finis bilatères à k têtes déterministes (resp. non
déterministes). On montre que H (k) J H {k + 1) et que NH (k) J NH (k + 1) pour tout k ^ 1. On donne
également une hiérarchie dans les familles de langages définis par des automates à k-c ompteurs
linéairement bornés et par des machines à k-registres linéairement bornés respectivement.

1. INTRODUCTION

In this paper we show that for languages over a one-letter alphabet two-way
automata with k + 1 heads are more powerful than two-way automata with k
heads.

This resuit is related to the results of [3 and 4] concerning the refinement of
complexity classes. It is wellknown that SPACE (log n), the class of languages
acceptable within space bound log n, is identical with the class of languages
acceptable by two-way multihead automata. Each two-way multihead
automaton can be viewed as a log n-space bounded machine with restricted
storage abilities.

It was shown before that over a one-letter alphabet two-way (/c + 4)-head
automata are mozç powerful than /c-head automata ([4, 5]) and that over a two-
letter alphabet k+ 1 heads are more powerful than k ([2]; in [1] it was shown that

(*) Received October 1978, revised July 1979.
C) G. H. Paderborn, Fachbereich 17, Mathematik-Iriformatik, Paderborn.

R.A.I.R.O. Informatique théorique/Theoretical Informaties, 0399-0540/1980/ 67/$ 5.00
© AFCET-Bordas-Dunod

68 B. MONIEN

k + 2 heads are more powerful than k heads). It is also known that k +1 heads are
better than k for one-way automata [6].

The method used here to show that k + 1 heads are more powerful than k for
two-way automata, even for a one-letter alphabet, is similar to the method used
in [1 to 5]. We define transformations which map multihead languages onto
languages defined by fewer heads. These transformations allow us to use the
assumption "/c + 1 heads have the same power as k heads" repeatedly to arrive at
a contradiction.

We also prove hierarchy results for the classes of languages over a one-letter
alphabet defined by /c-counter automata and by /e-register machines whose
counters (or registers) are linearly bounded by the length of the input.

I am very obliged to I. H. Sudborough who drew my attention upon the
subject of this paper and to J. I. Seiferas who proposed a more transparent way
for the construction of the proof.

2. DEFINITIONS AND RESULTS

A two-way k-head automaton consists of a finite control and an input tape
where k heads may move independently in both directions. The input is placed
between two endmarkers (—| and h). The automaton starts in a distinguished
starting state with its k heads on the left endmarker. It accepts the input string if it
stops in an accepting state. The automaton is called deterministic if its next move
function is deterministic, otherwise it is called nondeterministic. Let Hz(k)
[NHT(k)], be the class of languages over the alphabet X acceptable by
deterministic [nondeterministic] two-way /c-head automata.

A two-way k-counter automaton consists of a finite control, an input tape
where one head is moving in both directions and k counters. With
Cz (k) [NCT (k)] we dénote the class of all languages over E acceptable by
deterministic [nondeterministic] /c-counter automata whose counters are always
linearly bounded by the length of the input.

A k-register machine consists of a finite control and k registers. (In fact a
register is just the same as a counter, namely a storage unit which can store one
natural number and on which the opérations + 1 , -1 and the predicate = 0 can
be carried out.)

The machine starts with the input number in register 1 and the other registers
storing zero. Note that such a machine can destroy its input number. It accepts
an input number by reaching an accepting state. A register machine accepts a
subset of l\l u {0}. Throughout this paper we dénote by N the set of natural

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 6 9

numbers. Let R(k) [RN(k)] be the class of all languages I c { 0 } * such that
{n\OneL} is accepted by a deterministic [nondeterministic] /c-register machine
whose registers are always linear bounded by the length of the input.

Let us furthermore dénote by SPACEZ (L(n)) [NSPACEZ (L(n))] the class of
languages over the alphabet Z which are acceptable by deterministic
[nondeterministic] Turing machines within space bound L(n).

It is straightforward to see that for every k ^ 1,

R (k) c C{0} (fc - 1) c H{0] (k) c C{0} (k) c R (k + 2)

and that

(J R(k)= U C{0} (fc) = (J ff{0} (fc) = SPACE{0} (log n).
/ceiV fceN keN

The corresponding result holds in the nondeterministic case.

In the following we only consider languages L a { O2" ; n e N }. Let H (k) be the
class of all languages L such that L e H^ (k) and L c= { O2" ; n e N }. In the same
way we will interprète the superskript ~ for the other complexity classes occuring
in this paper.

We use the mapping Tk : { 2n \ ne N } -* { 2" | ne N } defined by Tk(2
n) = 2k-n

and whenever it is appropriate we will identify {0}* and N.

First we will prove the following lemmas:

LEMMA 1: H (fc) J SPACE (log n), NH(k) J NSPACE (log n)for all keN.

LEMMA 2: For all Le SPACE (log n) [NSPACE (log n)] there exists a number

keN such that Tk (L) e R (3) [NR(3)].

L E M M A 3 : For all L e S P A C E (l o g n) and for k,j ^ 1:

TAL)eH(j)[NH(j)] => LeH(k.j)[NH(k-j)).

LEMMA 4: For all L e SPACE (log n) and for k > j ^ 2:

Tk + l(L)eH(j)[NH(j)] => Tk(L) e H (j + l) [NH (j +1)].

From these lemmas our first theorem follows immediately.

THEOREM 1 : For all jeN:

H{0] (j)£H{0] (; +1) and NH{0} (j)£NH{0} (j+1).

vol. 14, n°l, 1980

70 B. MONIEN

Proof: We give the proof only for the deterministic case. The proof for the
nondeterministic case is exactly the same.

The result is true for 7 = 1 since {O2"; neN }eH{0] (2)-H{0] (1).

Now suppose there exists some j ' ^ 2 such that H^ (j) = H^ (7-hl). This
implies H (j) = H (7+1) and therefore the following is true

LeSPACE(logw)

=> 3fc, Tk{L)eR(3)^H(3) lemma 2

=> Tk{L)eH{j+\) = H{j)

=> Tk_1{L)eH(j+l) = H(j) lemma 4 =>...

=> Tj+1(L)eH(j+l) = H(j) lemma 4

=> LeH{(j+l).jY lemma 3.

Therefore H{0} (j) = H{0} (7 +1) implies NSPACE (log n) c H (7(7 +1)) which is
a contradiction to lemma 1. •

We will prove lemma 1, . . ., 4 in section 3. The proofs of lemma 1,2 and 3 and
(as it could be seen already) the proof of theorem 1 are not really difficult. The
central point in this paper is the proof of lemma 4.

In section 4 we will formulate and prove the hierarchy results for the classes
defined by counter automata and register machines.

3. PROOFS OF THE BASIC LEMMAS

In all the proofs there is no différence at all between the nondeterministic and
the deterministic case. Therefore we will always consider only the deterministic
case.

Proof of lemma 1

In this proof we use two results from [4] and we dénote by Spacez (L (n), m) the
class of all languages over E which are accepted by Turing machines which have
one input tape, one worktape, one read-only input head, one work tape head, m
work tape symbols and which operate on its worktape with the tape bound L (n).

In [4] it was proved that

Hj. (k) c Spaces (log2 n, 2k)

and that

Space{0} (n)^Space{0} (n, m)

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWOWAY MULTIHEAD AUTOMATA 71

for every m e N.

Now let bi : N -• { 0,1 }* be the bijective mapping defmed by: bi (n) = cp<=> 1 <p
is the binary notation of n. Let un : {0,1 }* -• N be the inverse mapping of bi.

Then

L e Space { 0 ^(n) => un (L) e Space ̂ (log 2 n)

and

LeSpace|0 | (log2 n, m) => bi (L— {e})ESpace{01} (n, 2 m + 1).

The first of these results is obvious. In order to prove the second resuit we
defîne a Turing machine whose working tape is divided into two tracks. The
lower one stores during the simulation the same inscription as the Turing
machine M which accepts L. The upper track stores the position of the input
head of M in binary notation. We need one additional symbol in order to encode
the position of the work tape head.

From the above results we get immediately the following:

L e Space|0| (n) => un (L) e Space (log n)

and

LeSpace|0 | (log2 n, m) => bi (L— {e})eSpace{Oj (n, 2 m + 1).

Now we are ready to prove the lemma. Suppose there exists some ke N such

that H (k) = Space (log n).

Then the following implication holds:

L e Space^oj (n) => un (L) e Space (log n) = H (k)

=> un (L) e Space (log2 n, 2fe),

=> L = bi (un (L))eSpace{0}(n, 2k+2).

Therefore Space (log n) = H (k) implies

Space{0) (n) = Space{0} (n, 2k+2)

which is a contradiction to the result mentioned at the beginning of thïs
proof. •

vol. 14, n°l, 1980

72 B. MONIEN

Proof of lemma 2

Let L e Space (log n) be an arbitrary chosen language and let M be a Turing
machine accepting L within space bound log n.

Let M' be the following modification of M:

1. M' writes bi (n), where n is the input number, on its working tape (bi is
defined as in the proof of lemma 1).

2. During the rest of the computation M' never uses its input tape again.
M' simulâtes M and during this simulation its working tape is divided into 3
tracks. On its first track M' stores bi (n), on its second track the position of the
input head of M in binary notation and on its third track the inscription of the
worktape of M.

Furthermore we can define M' in such a way that it has only two worktape
symbols. There exists a ke N such that M' uses for every computation at most
/c-log2 n cells on its worktape.

We will now define a 3-register machine A accepting Tk(L). We apply a
method which is used quite often in order to simulate Turing machines by
3-register machines. The working tape of M' is divided by the head position into
two parts

•

and A stores during the simulation on its first two counters the numbers un (u)
and un (vR). In order to simulate one step of M' the register machine A has to
divide or multiply these registers by two and to add + 1 or — 1. This can be done
by using the third register.

In order to initiate this simulation A tests whether the input number is of the
form 2k-m, me N and sets its second counter to un (bi (2m)R) = un (00. . .0) = 2m.

m

These computations can be performed by a 3-register machine.

Since M' uses at most k • log2 n = k • m cells the numbers stored by the registers
are bounded by 2k-m during the whole computation.

It is clear that A accept s some number 2k m if and only if M' accepts 2m. •

Proof of lemma 3

The result is true for fc = 1. Now suppose that k ^ 2.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 73

Let M be a j-head automaton accepting Tk (L). Our k • j-head automaton tests
first whether the input is of the form O2". It needs two heads to do this. Now
suppose M reads an input string O2". Then it starts to simulate M. During this
simulation it encodes each head position h,

0^h< 2kn, h = lx + / 2 . 2 " + . . . +/k .2 (/ c-1)n , 0 ̂ /v < 2",

of M by the positions l1, . . . , lk of k of its heads.

Note that fc = 0 iff Zv = 0 for all v= 1, . . . , k and that h = 2kn -f 1 iff M moves
starting from h = 2kn-l (lv = 2n-1, V v= 1, . . . , k) two cells to the right. It is
clear that M can simulate the moves of the heads of M since it can test easily
whether /v = 0 or lv = 2n-l. D

Proof of lemma 4

Let M be aj-head automaton accepting Tk+1(L).

We have to construct a (j+ l)-head automaton M accepting Tk(L).
It can be tested easily (using 2 heads) whether the input is of the form O2* " for

some ne N. If this is the case then M has to test whether O2* ' " is accepted by M.
In order to do so M encodes each head position /iv, 1 :g v ̂ j. of M:

by the position of its own v-th head hv:

0Sh,S2kn+l

and by an additional number av,

0 ^ a v < 2 "

in such a form that always /zv = /zv + av -2
kM.

Note that /zv = 2 (f c+1)"+1 if and only if /Tv = 2fcw-h 1 and a v = 2 n - l .

M uses its (j+ l)-st head to store the) numbers olf ..., a} in the form

This is possible since j < k.

First M has to encode the initial head positions of M. That means it has to set
Kj+1 <- 2 (k~1) n . This can be done easily (using 3 heads).

During the simulation M always stores in its fmite memory which of the av ,
encoded by hj+l, are equal to 2 " — 1. M has to simulate the moves r | v , r | v e{—1,
0, -p 1}, of the; heads of M. Furthermore it has to décide which of the new av are
equal to 2n - 1. This is simple if 0 ^ h v -I- r\ v ^ 2k n + 1. In this case M only has to
set hx+- /iv + r | v . a v remains unchanged.

vol. 14, n°l, 1980

74 B- MONIEN

Now suppose hv = 2kM + 1 and r|v = + 1 . (The case hv = 0 and r | v = — 1 leads to
analogous considérations.) Then M has to set Jiv <- 2, av <- av +1 . (Note that
£v = 2 k " + l and r | v = + l imply a v < 2 n - l , since £v + av-2*-" ^ 2(fc + 1)*"+l.)

Performing the opération on a v is the difficulty in this proof. The o lt . . . , Gj
will be stored always by the position of the (j + l)-st head but we shall rotate their
séquence and we shall be able to add + 1 when av is carried from the last position
to the first position.

In order to do this we need the (j+ l)-st head, the v-th head and one further
head (we can assume that v ̂ 1 and in this case we take the first head). Note that
the v-th head does not store anything and therefore it is free for intermediate
computations.

We will dénote the position of the first head by x and the position of the
0'+ l)-st head by X. In the casej < k — l it is favourable to introducé the new
numbers oj+1 = <jj+2= . . . = a f c _ 1 = 0 .

Furthermore we can assume that x < 2kM (M can test whether x < 2kn by
going two cells to the right. If x ^ 2kn then we set x = 2 k n - l and store the
différence in the finite memory.) We décompose x in the form

x = v|/1+\|/2-2n with 0 ^ \ | / 1 < 2 n , 0 ^ \ | / 2 <2 (k"1)-M.

Now we are ready to describe the rotation technique.

1. M changes the positions of head 1 and head (7 +1) into

where for any x <2n Rn (x) is defined in the following way:

Let 9 n (x) e {0,1} *, | (cp B (x)) \ = n, be the binary notation of x lengthened by an
appropriate number of leading zéros. Then Rn(x) < 2n is that number whose
binary notation of length n (again allowing leading zéros) is the reversai of (p „ (x).
Note that Rn (Rn(x)) = x for ail x < 2n.

M reaches the above head positions by the application of the following
algorithm:

While X < 2kn Do

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 15

Begin x <- p r and oc <- x — 2 —

End

X<r-X-2kn

It is clear that M can perform this computation using its v-th head during the
realization of the division. In order to see that this algorithm is correct set
<pn(y\,1) = a„-1 . . . a 0e{0, 1}*. If we further dénote by <p : N -• {0} u {1} o{0,
1 }* the binary décomposition, then after i loops, 0 ^ i: ^ n, the following holds:

cp(x)=l 0. . .0 (p(\|/2) a»-i • ..a,-,

Therefore |(<p{X))\ =(k-1).n + i and this implies X, < 2knfor z < n and ?i ^ 2k<n

for i = n. The loop is carried out exactly n times and this leads to the head
positions x and X which we wanted:

2. M changes the position of head 1 and head (j+1) into

x = ak_1+v|/22",

First M changes X into

X = RM

where
i f ^n(v | / i)^l

otherwise.

Note that only the lowest bit of X is changed in such a way that X becomes an odd
number. (It is stored in the finite memory whether i^n(v|/i) is odd or even.)

Afterwards M performs the following algorithm:

While x < 2k•" Do

Begin a <- 2fcn-th bit of X

If a = l t h e n ^ 2 X , - 2 k - n

If a = 0then ^ ^ - 2 ^

y,*- a + 2 x

vol. 14, n°l, 1980

76 B. MONIEN

End

In order to see what is done by this algorithm we consider the décomposition

k-n-1
f X < 2 k n ~ 1 .

Then oc=l iff 2 X ^ 2kM. Furthermore the second and third statement in the
block generate X <- 2 X. As in 1 it can be seen that the while loop is carried out
exactly n times. During this algorithm the number <jk_ t is carried over from X to
x bit by bit. Therefore x and X are changed by this algorithm into

We obtain the head positions which we wanted by:
(a) subtracting 2kM from x;
(b) a d d i n g 2 k n t o X;

(c) dividing X by 2 as long as the remainder is 0;

(d) changing ^ (i h) into #„(i|/i)-

(Note that 2kn is given by the position of the right endmarker.)

In the foliowing let us use a simple abbreviation.

Instead of

", X= X a ^ 2 (^ 1 ,

O ^ o c H < 2 " , V|i = 0, . . . , fc-1,

we write

(x ; ^) = (oc o ; a i > • • •» o t k - i) -

The application of the algorithm described in 1 and 2 induces the transition

(ao;alf . . . , a k _i) ->(ock_!; K„ (a0) , a x , . . . , a k _ 2) .

Therefore we get by /c — v applications

Now 1 is applied again. Since during this computation av is carried over from x
to X bit by bit M is able to add 4-1 (performing the binary addition of +1) and to

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 77

test whether the new a v is equal to 2" — 1 (this is true iff all bits which are carried
over are equal to one). Afterwards we apply 2 and get the head positions

(a v _ i ; J U a v + l) , Rn(cjv+1), . . . , *„(<**-1). RnWt), a l f . . . , a v_ 2) .

Since R„(R„(oc)) = a for all oc < 2n a further application of this rotation
technique leads to

(\|/i;a lf Cv-!, a v + l , a v + 1 , . . . , a ^) .

By this whole computation we get the old position of the first head again, we
have changed the position of the (j +1) st head in such a way that av is replaced
by a v + 1 and we have tested whether the new av is equal to 2" — 1. This shows
that M is able to simulate M step by step. •

4. HIERARCHY RESULTS FOR COUNTER AUTOMATA AND REGISTER MACHINES

Theorem 1 leads immediately to hierarchy results for the complexity classes
defined by counter automata and register machines. Since

R(k) c C{0} (k- 1) e H{0] (k) J H{0} (fc + 1) cz C{0} (fc + 1) c R(k + 3),

we get immediately

C{0}(/c)4C{0}(/c + 2), Vfc^O

and
R(k)£R(k + 3), V/c ̂ 1,

and the same results hold in the nondeterministic case.

In the following we will improve three of these four results. Let us consider first
register machines. We show that for languages containing only éléments of the
form 2m, me M, only fe +1 registers are necessary in order to simulate a /c-head
automaton.

LEMMA 5 :

H(fc)c=5(fc+l)f NHik)^^NR(k+l) for k ^ 2.

Proof: The proof is the same for deterministic and for nondeterministic
automata. We consider here the deterministic case. Let L cz {O2"; neN} be
some language such that there exists a /c-head automaton M accepting L. We will
define a (k+ l)-register machine M.

M tests first whether its input number is of the form 2" by dividing the input
number successively by two and storing the number of divisions by its third

vol. 14, n°l, 1980

78 B. MONŒN

register. If the input number is of the form 2n then afterwards n is stored by
register 3. M checks whether n is an even or an odd number (we will see later why
this is done) and computes 2n again afterwards.

Now suppose the input number is 2n. Then M simulâtes M. In order to do so it
stores the head positions h1, . . . , hk of M by its fïrst k registers in the form

rv = £v + 2", Vv = l, . . . , / c ,

where

~ _ ffcv, if 0 ^ / i v ^ 2 " ,
v~ { 2", if fcv = 2 " + l .

(If ftv = 2" -f 1 then additionally a corresponding bit is stored in the finite memory
of M.) Note that 0 ^ rv ^ 2-2" holds for all v= 1, . . . , k.

First M has toinitiate this encodingbysettingr1=2n + 1 a n d r 2 = . . . =rk = 2n.
In order to simulate one step of M the register machine M has to décide for all
v = 1, . . . , fc whether hv = 0 or £v = 2". Note that this is the case if and only if rv is
a power of two. Therefore M proceeds in the foliowing way:

(a) It checks whether there exists \i e {1, . . . , k} such that rM^ rv. (This can be
done by means of register fc + 1.)

(b) Let such a \x exist and suppose that r M < rv. Then M divides the v-th register
successively by two (using register fc+ 1) as long as the remainder is zero. The
number of divisions is not stored. In this way M décides whether rv is a power of
two. If this is the case then rv = 2" + 1, since 2" ^ rv, r^ ^ 2n + 1 and rM < rv.
Afterwards M multiplies the v-th register by two as long as the content of register
v is smaller then r^ (content of register u). It has computed rv again when register
v stores for the first time a number greater than rM. (It is clear that in the same way
M décides whether rv = 2n if r ^ > r v .)

(c) r i = r v v i i = 2f . . . , / c .

In this case M uses 3 of its register to divide r x successively by two (as long as
the remainder is zero) and to store the number of divisions in its register 3.
(Therefore it can recompute r1 again.) If r ! is a power of two, then r t — 2n or
r1 = 2n+1. M checks whether the number stored by register 3 (this is n or n + 1) is
an even or an odd number. Knowing whether n is an even or an odd number M
can décide whether r1=2novr1=2n+1. •

Fr om lemma 5 and theorem 1 we get immediately:

THEOREM 2: For all je N:

R{j) Î RU + 2) and NRU) 4 NRU + 2).

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 79

Let us consider now deterministic counter automata. We will prove an resuit
analogous to lemma 4.

LEMMA 6: For all LeSpace (log n) and for k >j' ^ 2:

Tk+1(L)eC(j-l) => Tk(L)eC(j).

Proof: The proof is very much the same as the proof of lemma 4. Let M be a
deterministic (j—l) counter automaton accepting Tk+1 (L) whose counters are
always bounded by the input number. We have to construct a deterministic
j-counter automaton M accepting Tk(L). There will exist a constantde N such
that its counters are bounded by dm if ra is the input number.

Suppose the input is of the form O1" with some n e N (this can be checked easly
by M). In this case M simulâtes M. It encodes the head position h and the
contents cv , l ^ v ̂ j — 1 , of the counters of M by its o wn head position h and the
contents cv, 1 ̂ v ̂ j , of its own counters in such a way that

0^c^d-2kn, Vv = l, . . . , j - l

with some constant d e N (which will be determined later) and

2kM,

2fc-n, Vv = l, . . . , j - l ,

with some av ,

0 ^ a v < 2 n , Vv = 0, . . . , j - l

and

hold.

This encoding already shows that this proof is slightly more difficult than the
proof of lemma 4. We allow the cv to grow up to d times the length of the input.
This is necessary because (in contrast to the situation of lemma 4) we can't test in
each step whether the number stored by a counter is equal to 2k n. This is possible
only if one of the counters is set to zero (or if the head reaches an endmarker).
Therefore we must allow the counters to grow until one of them (or the head) is
free. We show in the following that during such a computation the counters grow
at most up to d -2k n for some d.

vol. 14, n°l, 1980

80 B. MONIEN

During the simulation of one step of M the automaton M has to distinguish
two cases:

(a) The head of M does not scan one of the endmarkers and c v > 0 for ail
v = 1, . . . , j — 1. In this case also the head of M does not scan one of the
endmarkers and also cv > 0 for ail v= 1 . . . j — 1. M simply changes its head
position and its counters in the same way as M would change its head position
and its counters.

(b) h = 0 or h = 2kM+\ or cv = 0for some ve{ 1, . . . , j -1}. In this situation
M has one counter free for intermediate computations. It checks for ail
v = 1, . . . , j whether c v = 2kM and if this is the case it performs cv<^cv — 2kM and
av <- a v + 1 as long as cv _ 2kM holds. In order to change av it uses again the
rotation technique described in detail in the proofof lemma 4. Note that M has
one counter free and therefore it can compare the content of one of its counters
with 2kM whenever it wants it. It is clear that M can change the K, cv and av ,
0 _ v ^j— 1, according to the changes performed by M.

In this way M simulâtes each step of M and we can construct M in such a way
that it accepts Tk{L). It remains to show that there exists a constant d eN such
that cv = d -2kM holds during the whole simulation for ail v = 1, . . ., j — 1.

Suppose (b) holds, that means the head of M scans one of its endmarkers or
one of the counters is zero and suppose that cv ^ 2kM for all v= 1, . . ., j — 1.
(This is true when M starts its computation.) Let us estimate the number r of
moves which are performed by M before M reaches again a configuration of the
type (b). During this computation the moves of M are determined uniquely by its
states. Suppose M has p states and s is the state in the beginning of the
computation we investigate here. Then r ^ p or there exist numbers q0, qx ^ p
and a state t such M reaches the states

Let 8 °, 8 v, 0 ^ v ^ j — 1, be the distances by which the head position and the first
j—l counters of M are changed during the first q0 moves and during the
following qx moves, respectively. During this computation M moves its head
and its firstj — 1 counters in the same way as M does and therefore (since M halts)
8 j ^ 0 or there exists v o e { 1, . . ., j — 1} such that 8^ < 0.

Set (i = 0 or |i = v0 , respectively.

[When we want to accentuate the dependence of \i, 8?, 8^ on s we will write
VL{s),b°As),Sl(s).]

R.A.I.R.O. Informatique théorique/Theoretical Informaties

TWO-WAY MULTIHEAD AUTOMATA 81

Therefore M reaches again a configuration of the type (b) after at most

2fc" + ô°
r= — - ^ .qx moves.

The contents of the counters v e { l , ...,j— 1} — {u} are bounded by
2kfI + ô? + 5v

1r. And for sufficiently large n2k-ll + 5? + 8j .r^d.2kn for some

Whenever M reaches a configuration of the type (b) it changes the numbers
stored by its first ; — 1 counters into numbers

c v ^ 2 f e n for all v = l , . . . , j - l ,

and therefore because of the above considérations

c^d-2kn holdsforall v = l , . . . , . ƒ - 1
during the whole computation of M.

Furthermore the counters of M are always bounded by 2{k+l)n. This implies
that GV < 2" holds for all v = 1, . . . , j — 1 during the whole computation of
M. D

THEOREM 3: For all je N:

C{O}(;)4C{O}(7 + 1) and NC{0](j)^NC{0}(j + 2).

Proof: The nondeterministic case was already proved in the beginning of this
section. The deterministic case foliows from lemma 6 in the same way as
theorem 1 follows from lemma 4. •

It should be noted that the proof of lemma 6 really uses the determinism of the
automata. The argument holds also in the nondeterministic case if one is able to
show that for any input string there exists a computation where the number of
moves performed without reaching an endmarker is bounded in the same way as
in the proof of lemma 6.

REFERENCES

1. O. H. IBARRA, On Two-Way Multihead Automata, J. Comp. and System Sc, Vol. 7,
1973, pp. 28-37.

2. B. MONIEN , Transformational Methods and Their Application to Complexity Problems,
ActaInformatica, Vol. 6,1976, pp. 95-108; Corrigenda, Acta Informatica, Vol. 8,1977,
pp. 383-384.

3. J. I. SEIFERAS, Techniques for Separating Space Complexity Classes, J. Comp. and
System Sc, Vol. 14, 1977, pp. 73-99.

vol. 14, n°l, 1980

82 B. MONIEN

4. J. I. SEIFERAS, Relating Refined Space Complexity Classes, J. Comp. and System Sc,
Vol. 14, 1977, pp. 100-129.

5. I. H. SUDBOROUGH, Some Remarks on Multihead Automata, R.A.I.R.O. Informatique
théorique, Vol. 11, 1977, pp. 181-195.

6. A. C. YAO and R. L. RIVEST, fc+ 1 Heads are Better Than k, J. Ass. Comp. Machinery,
Vol. 25, 1978, pp. 337-340.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

