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ON SOME PROPERTIES OF THE SYNTACTIC
SEMIGROUP OF A VERY PURE SUBSEMIGROUP (*)

by Aldo DE LUCA (*)

Communicated by J. F. PERROT

Abstract. — Some synchronizing properties of"very pure" subsemigroups ofafree semigroup are
shown by means of an analysis of the properties of their syntactic semigroups.

Résumé. — On démontre certaines propriétés de synchronisation pour les sous-semigroupes « très
purs » d'un semigroupe libre, en analysant les propriétés de leurs semigroupes syntactiques.

0. INTRODUCTION

In this paper we consider a family of subsemigroups of a given semigroup S
which, following A. Restivo [10], we call "very pure". For the case when S = X +

is the free semigroup generated by an alphabet X, the bases of very pure
subsemigroups, which are called "very pure codes", have been introduced by
M. P. Schützenberger in the factorizations of free monoids [16] and in the
construction of the bases of free Lie algebras [14]. A remarkable resuit of
Restivo [10] shows that the class of fmitely generated free subsemigroups of X +

coincides with the class of fmitely generated free subsemigroups having a
"bounded synchronization delay". Moreover, very pure subsemigroups,
considered as languages, are "strictly locally testable" in the sensé of
McNaughton and Papert [7].

(*) Received July 1978, revised March 1979.
0) Laboratório di Cibernetica del C.N.R., Arco Felice, Napoli, Italie.
This paper is a slightly revised version of the report LC/348 (May 197S» of the Laboratório di

Cibernetica del C.N.R., Arco Felice, Napoli, Italy.
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40 A. DE LUCA

A recent theorem of Restivo [11] shows that in the more gênerai case in which
the subsemigroups are "recognizable" the équivalence between "very pure" and
"bounded synchronization delay" holds only if one makes the auxiliary
hypothesis, called condition F ( p), that any word of the base does not contain, as
a factor, a product of a number of code-words greater than a suitable integer

In this paper we start by considering "very pure" subsemigroups A of an
arbitrary semigroup S. The property of "very pure" characterizes the
homomorphic image A a of any very pure subsemigroup in its syntactic
semigroup S (A). Some gênerai propositions on the structure of the syntactic
semigroup of a very pure semigroup A are shown under the further hypothesis
that A is "synchronizing". By means of these propositions we obtain when S is a
free semigroup, the following two main results:

1. A recognizable very pure subsemigroup of S is synchronizing (cf.
proposition 4.3). 2. Let Abe a free subsemigroup ofS such that all the éléments of
A a but a fini te number, are idempotents. Then the following propositions are
equivalent: (i) A has a bounded synchronization delay. (ii) A is very pure and
satisfies the condition F(p)for a suitable natural number p. (iii) For all the
idempotents eeAo, eS(A)e^ {e, 0} (cf. proposition 4.5).

This last resuit and another equivalent proposition concerning the structure of
the 0-minimal idéal of the syntactic semigroups S (A), give a characterization of
free subsemigroups, of a free semigroup, having a bounded synchronization
delay which is more gênerai than that of the theorem of Restivo [11], and also
that of a recent resuit obtained by the author, D. Perrin, A. Restivo and
S. Termini [3] under the hypothesis that A is finitely gênerated.

1. PRELIMINARIES

For the notations and définitions which are not reported in the paper the
reader is referred to [2 and 5].

Let S be a semigroup. We call product the associative binary opération defined
in S and for all a, beS we dénote by ab their product. For all A, B^S we set
AB= {abeS\aeA, beB}. Any stable subset A of S, i.e. A2^A, is a
subsemigroup of S. For any A^S, A+ will dénote the smallest subsemigroup
containing A (i. e. the subsemigroup generated by A). We recall that a
semigroup S is free if there exists a subset X <= S such that X + = S and any
map cp: X -• T, T being any semigroup, can be extended to a unique morphism
of S in T. X is called the base of S.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 41

A relative notion of freedom is given by the following définition due to
Schützenberger [13].

DÉFINITION 1.1 : A subsemigroup A of S is free in S if for all a, b e A and s e S,
as, sbeA imply s e A.

A classical theorem of Schützenberger [12] shows that a subsemigroup A ofa
free semigroup S is it self free if and only if A is free in S.

For any A^S the syntactic congruence GA<JA
1 of A is the maximal

congruence (pcp ~* (where cp dénotes any morphism of S in any semigroup) such
that cp is compatible with A, i.e. ^cpcp"1 =A; S(A) = S/oA o^1 is usually called
the syntactic semigroup of A and oA , that we shall also dénote simply by a, is the
canonical epimorphism a : S -• S (A). O n e c a n eas i ly see t h a t for a i l s l f s2^S:

Sx c r a " 1 s2<^> for a i l 5, t e S 1 (ss ! teA<r^ss2 te A ) .

A subset A of S is called recognizable if the syntactic semigroup S (A) isfinite. If
A is a subsemigroup of S one has that A is free in S if and only if A is free in the
syntactic semigroup S {A).

Let S be a semigroup. We say that S has a zero element 0 if the cardinality | S |
of S is greater than 1 and for ail s e S, s 0 = 0 s = 0. A zero element is obviously
unique.

A subsemigroup A of a given semigroup S is called dense if for ail se S,
S1 s S1 nA^Ç), i. e. A meets all the two-sided ideals of S.

Let A be a nondense subsemigroup of 5 and setQ = {seS ' |S 1 sS 1 nv4 = Ç)}.
One has that Qo = 0eS(A)\Ao. Moreover by using the Schützenberger
theorem one can easily dérive that if A is a subsemigroup of S free in S then A is
dense if and only if S (A) does not contain a zero element. Thus if A is a
subsemigroup of S free in S, A o ne ver contains a zero of S(/4).

Let us dénote, for any A g S, by yM the subset of S defined as:

A = {seS\s~

Clearly A^^/Â; a subsemigroup A of S is called "pure" if A = -SJA. This
définition entails that when A is pure for all se S and p ^ l , speA-*seA.

For each semigroup S we dénote by E (S) the set of all its idempotent éléments,
i. e. if e e E (5) then e 2 = e. When S is finite one has that S = y/Ë (S). A semigroup
S is called a frand if 5 = E (S). A semilattice is a commutative band. A semigroup S
is said quasi-idempotent-commutative if for all e e £ (5) the subsemigroup e S e is a
semilattice. A finite semigroup S is called aperiodic (cf. Eilenberg [5]) if it has only
trivial subgroups or, equivalently, a positive integer p exists such that for all s e S
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42 A. DE LUCA

SP = SP+I ii j s e a Sy ^O verify that if S is a finite semigroup such that for ail
eeE(S), e Se is a band then S is aperiodic.

2. VERY PURE SUBSEMIGROUPS

Let us now introducé a class of subsemigroups of a given semigroup S that,
following A. Restivo [10] we call "very pure".

DÉFINITION 2 .1: A subsemigroup A of 5 is called very pure if for ail s, t e S,
st, tse.4 imply s, t e A

Any very pure subsemigroup A of S is also pure whereas the converse is not
generally true.

PROPOSITION 2 .1: If A is a very pure subsemigroup of S then A is free in S.

Proof: Let a, beA and s e S be such that as, sb e A. One has then bas, sba e A.
Since A is very pure it follows that s 6 A. •

We state, without proof, the following proposition which is a straightforward
conséquence of définition 2 .1 .

PROPOSITION 2.2: If B is a very pure subsemigroup of S and A a very pure
subsemigroup of B then A is a very pure subsemigroup of S.

PROPOSITION 2.3: Let cp: S -> T be a morphism of the semigroup S in the

semigroup T. One has that:
(i) IfB is a very pure subsemigroup ofT then B (p ~* is a very pure subsemigroup

ofS.
(ii) If A is a very pure subsemigroup ofS and cp is compatible with A, then A (p is

very pure in S (p. Moreover if S (p is very pure in T then A (p is very pure in T.

Proof: Let s,teS such that st^seBip'1. One has then (st)cp = scp tcpGÖ and

(ts) (p = t c p s ( p e 5 . Since B is very pure in T then sep, tqeB that implies s,

te Bip'1; B <p - 1 is therefore a very pure subsemigroup of S that concludes the

proof of proposition (i).

S u p p o s e n o w t h a t s f , t ' e S q > a n d s ' t ' , t ' s ' e A ( p . L e t s , t e S b e
such that scp = s', tcp = t'. One has then (s£)(p = scp t(p = sf t'eAip,
(ts)(p = t<ps(p = tfs'eA(p and st, tseAtpip'1 =A. Since A is very pure s,
t e A and scp = s'eA(p,t(p = t'eA(p. Thus A (p is a very pure subsemigroup of 5.
Finally if 5 cp is very pure in T from proposition 2.2 it follows that 5 cp is very
pure in T. •

Let A be a subsemigroup of a given semigroup S. We give the following
définition of "synchronizing pair" for A (cf. Schützenberger [15]).

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 43

DÉFINITION 2 .2 : A pair (s,t)eSxS is a synchronizing pair for A if

S1 stS1 nA^Ç) and for all u, veS1, ustveA-+us,tveA. The subsemigroup A
is called synchronizing if it has at least a synchronizing pair.

It follows from définition 2.2 that A is synchronizing if and only if there exists a
synchronizing pair for A in A xA.

DÉFINITION 2.3: A subsemigroup A of S has a bounded synchronization delay if
a positive integer /c exists such that all the pairs in Ak x Ak are synchronizing. The
least integer k for which the previous condition is verified is called the
synchronization delay of A.

We note that from the previous définition delays of synchronization greater
than 1 can be achieved only if A 2 c A. This last condition is verified, for instance,
when A is a locally finite semigroup (cf. Eilenberg [5]).

One can easily verify that A is synchronizing if and only if A a is so. Moreover
A has a synchronization delay equal to 5 if and only if A a has a synchronisation
delay equal to s.

PROPOSITION 2.4: If A is a subsemigroup of S free in S having a bounded
synchronization delay then A is ver y pure.

Proof: Let 5, te S be such that st, tseA and 5, t $A. Let us show that for ail
positive integers n the pairs ((ts)n, (ts)n) e An x An are not synchronizing. In fact if
we suppose that a positive integer k exists such that {{ts)k, (ts)k) is a synchronizing
pair for A one would have (st)2k+l=s {ts)k {ts)kteA, so that s (ts)k, (ts)kteA.
Since A is free in S, from the equalities:

s (ts)k = (st)k s e A, (ts)k t = t(st)k = A,

it would follow s, te A which is a contradiction. •

3. THE SYNTACTIC SEMIGROUP OF A VERY PURE SUBSEMIGROUP

During all this section A will dénote a subsemigroup of a given semigroup S,
A ' the homomorphic image A a of A in the syntactic semigroup S (A) and S * (A)
the semigroup [5 (A)]1.

PROPOSITION 3.1 : A is a ver y pure subsemigroup ofS if and only if A ' is a ver y
pure subsemigroup ofS(A).

Proof: Let A be a very pure subsemigroup of S. Since A<JG~1=Â, where
a : 5 -> S (A) is the canonical epimorphism of S in the syntactic semigroup S (A),
from property (ii) of proposition 2.3 it follows that A ' is a very pure
subsemigroup of S<J = S(A). Vice versa if A' is very pure in S (A) from
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44 A. DE LUCA

property (i) of proposition 2.3 one has that AGG l=A is a very pure
subsemigroup of S. •

PROPOSITION 3.2: Let A be a subsemigroup ofSfree in S such that A c= y/E (S).
If for ail es A nE(S), eSe is a semilattice then A is a very pure subsemigroup
ofS.

Proof: Let s, teS be such that st, tseA. From the hypothesis A^y/Ë(S) it
follows that a positive integer p exists for which (st)p, (ts)p e A n E (S)-Since for ail
eeA nE(S), e Se is a semilattice the following relations will hold:

(st)ps (st)p t (st)p = (st)p t (st)p s (st)p,

(st)p t(st)p t(st)p = (st)p t(st)p,

(ts)p s(ts)p t(ts)p = (ts)p t(ts)p s(ts)p,

(ts)p t(ts)p t(ts)p = (ts)p t(ts)p.

From équations (3 . l ) x and (3 .1) 3 one gets:

s(ts)p(st)p(ts)pt = (st)p(ts)p+1(st)peA, )
t(st)p(ts)p(st)ps = (ts)p(st)p+1(ts)peA j l ' }

and from équations (3.1)2 and (3.1)4:

(st)p(ts)ptt(st)p = (st)p(tsyt, )

(ts)ptt{st)p{ts)p = t(st)p(ts)p. j l ' }

Multiplying both the sides of équations (3.3)x and (3.3)2 respectively on the right
by s and on the left by 5 one has:

(st)p(ts)pt(ts)p+1=(st)p(ts)p+1eA, |
(st)p+1t(st)p(ts)p = (st)p+1(ts)peA. j l * }

Similarly multiplying both the sides of équations (3.2)! and (3.2)2 respectively
on the right by (ts)p+1 and on the left by (st)p+1 one obtains:

s(ts)p(st)p(ts)pt(ts)p+1eAf

(st)p+1 t(st)p{ts)p(st)pseA,

with

(ts)p(st)p(ts)pt(ts)p+1eAf

^t)p+1t(st)p(ts)p(st)peA,

because óf équations (3.4^ and (3.4)2 and the fact that {ts)p, {st)p e A,

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 45

Since A is free in S it follows that se A and, by the hypothesis that st, tseA,
that t e A. Hence A is a very pure subsemigroup of 5. •

A conséquence of propositions 3.1 and 3.2 is the following corollary the proof
of which is straightforward.

COROLLARY 3.1: Let Abe a recognizable subsemigroup of S free in S. Iffor all
e e A' n E(S (A)),e S (A) e is a semilattice then A is a very pure subsemigroup ofS.

Let us now introducé the two subsets FA (S) and GA (S) of S defined as:

F i 4 ( 5 ) = { s e S | t , t'eS1, tst'eA-*3slt s2eS,

s 1 s 2 = s ; t s l f s 2 t'eA},

GA(S) = {seS\t, t'eS1, tst'eA-+3slt s2eS,

s l s 2 = s; tSi, s2t', s 2 s 1 e A ) .

(3.5)

Obviously GA (S)^FA (S). Moreover, from the définition FA (S), if nonempty, is
a two-sided ideal of S. We observe that if (s,t)eSxS (resp. AxA) is a
synchronizing pair for A then steFA (S) [resp. GA (S)]. Let us set

DA (S) = FA {S)nE(S), EA (S) = GA (S)nE(S). (3.6)

In the following when S is the syntactic semigroup S (A) of A we shall dénote
FAG (S(A)), GAO (S (A)), EAO (S(A)) and DAa (S(A)) simply by FA , GA , EA and DA.
One can easily dérive that:

FA(S)oczFA, GA(S)

and moreover

F (Ç\rr^F(S( AW= I~F (S!\rer\F.(S:(AX\ 1
(3.7)

FA (S)or\E(S(A)) = JFA (S)anE(S(A)),

A (S) a n E (S (A)) = ̂ /GA(S)onE(S (A)).

It holds the following proposition the proof of which is reported in the
Appendix.

PROPOSITION 3.3: If A is a recognizable subsemigroup of S then EA (S) = DA (S)
and EA=DA.

LEMMA 3.1: If eeEA\0 then there exists an idempotent e'e(EA\0)nA'
which is in the same D_-class as e.

Proof: Since e # 0 one has Sx (A) e S1 {A) n A ' # 0 (in fact, otherwise, e will be
equal to 0) so that there exist s x, 5 2 e S1 (A) for which s1es2eA'. Moreover since
e e EA t h e r e w i l l e x i s t elfe2eS(A) s u c h t h a t e1e2 = e a n d s1e1,e2s2,e2e1eAf.

L e t ussets = e1e2e1,s' = e2e1e2. O n e h a s t h e n s = ss ' s a n d s ' = s'ss', t h a t i s 5
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46 A- D E L U C A

and s' are mutually inverse. From a classical result of Miller and Clifford (cf.
Clifford and Preston [2]) 5, s', ss' = e and s's = (e2el)

2eA' belong to the same
D-class. This implies e'^0. Let us now prove that the idempotent e' = (e2e1)

2

belongs to EA. Let t, t'eS1{A) be such that tet'eA'. We can write
te' t' = te2eel t'eA' so that since eeEA there will exist e i, e '2 e S (A) such that

te2e\, e^e^t', e'2e\eA' and e'1e2 = e = e1 e2.

One then has

e2e'ie2el=e2e1e2e1=e'

and
e2eie2e'i=e2e'1e'2e'1=(e2e'1)

2eA'. •

LEMMA 3.2: Let A be a very pure subsemigroup of S. If eeA'nEA then
eA'e = {e} and eS(A)e<^ {e, 0} .

Proof: Let us first prove that if e e A ' n EA then e A ' e = {e}. Let h be an
element of A ' and suppose that sehes ' e A ' for some suitable 5, 5 ' G Sx (A). Since
eeEA there exist e l,e2,e'1, e'2eS(A) such that e = e± e2 = e\e'2 and se 1 ,e2he'ly
e'2s', e2e1, e'2e\eA'. As eeA' and from proposition 3.1 A' is a very

pure subsemigroup of S(A), it follows that elf e2, e\, e2eA'. Moreover

ses'= se2sf = se1e2e[e2s
feAf. Thus one has that sehes'eA'-* ses'eA'.

Let us now suppose, on the contrary, that ses'eA' for suitable s, s'eS1^).
S i n c e e e E A t h e r e e x i s t e l r e 2 e S { A ) s u c h t h a t e1e2 = e e A ' a n d s e 1 > e 2 s ' ,

e 2 e 1 e A ' . W e t h e n h a v e elt e 2 e A ' a n d s e h e s ' = s e 1 e2 h e 1 e 2 s ' e A ' .

This shows that ses'eA' -> sehes'e A'. Hence, as the syntactic congruence
of A ' is the identity, ehe = e and eA'e= { e } .

Let us now prove that if eeEAnA' then eS(A)e^{e,0}. Let # be an
arbitrary element of S {A). One has that either eg e = 0 (this can occur only if A is
not dense) or there exist s,s' eS1 (A) for which seges ' eA'. Since e e EA n A ' there
will exist éléments eit e2> e[, e'2eS(A) such that:

e1e2 = e'le'2 = e e A ' , e2elt e'2e\, s e l f e2ge[, e ' 2 s ' e A ' .

S i n c e A ' i s v e r y p u r e i n S { A ) i t f o l l o w s t h a t elf e2, e\, e 2 e A ' a n d

ege = e1(e2ge'1)e2eA'. This proves that in any case eS(A)e^ {e, 0 } . •

PROPOSITION 3.4: Le^ 1̂ be a very pure subsemigroup of S. IfeeEA then

Proof: The result is trivially true if S (A) has a zero element 0 and e = 0. Let us
then suppose EA\0^Q) and take e e EA \ 0 . From lemma 3.1 an idempotent

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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e'eEA n A' exists such that e'D^e. As e' and e are in the same D-class, éléments t,
seS(A) exist for which e=te's. Thus one has eS(A) e=te'sS(A) te's. From
lemma 3.2 it follows e'sS (A) te'g {e', 0} so that eS (A) e g {e, 0 } . •

Let us observe that under the hypothesis of proposition 3.4 for all eeEA,

e S {A) e is a trivial group with a zero element iï S(A) contains a 0. This implies
that all subgroups of S (A) whose identity éléments are in EA are trivial or, that is
the same, all regular D-classes of S(A) having at least an idempotent in EA are
H_ -trivial.

PROPOSITION 3.5: Let A be a ver y pure subsemigroup of S. A is synchronizing if
and only ij'EA\0^Ç).

Proof: Let EA\0^Ç) and eeEA\0. From lemma 3.1 there exists an
element e ' e EA n A ' in the same D-class as e. Let g a = e ' with geA. We prove
that the pair (g, g) e A x A is a synchronizing pair for A. Let s, 5 ' E S* be such that
sggs' e A. This implies te' t ' e A' with t = s o and t' = s' o. Since e 'e £^ nA' there
e x i s t e x , e 2 e S { A ) s u c h t h a t e ' ^ ^ e 2

 a n d e 2 <?i » ^ 1 > ^ 2 £ ' e A ' ; / T b e i n g v e r y
pure in S(A), elt e2eA' so that te'y e' t'eA' and sg, gs'eA. Vice versa let us
suppose that A is synchronizing, i. e. there exists a synchronizing pair
(u, v)eAxA for A. One has that uveGA (S)nA and (UV)GEGA nA'. Moreover
(uv) GEE(S (A)). In fact for all 5, 5 ' e S1, suvs ' E A if and only if suvuvs ' E A so that
(UV)G = (UV)2 O = ((UV)O)2. Thus (uv) oEEAnA' and £ / \ 0 ^ Ç ) . D

By means of an argument similar to that of the proof of the previous
proposition one can dérive that if A is a very pure subsemigroup of S, A has a
bounded synchronization delay if and only if there exists a positive integer kfor
which Ak<5<^zEA.

Let S be a semigroup having a O-minimal ideal J which is completely 0-simple.
We recall that J \ 0 is a D-class and that the H_-classes in J \ 0 containing an
idempotent are isomorphic to a same abstract group that is called the (structure)
group of J.

PROPOSITION 3.6: Let A be a very pure subsemigroup of S such that EA\O^0.
The syntactic semigroup S (A) contains a unique ^-minimal ideal J which is
completely 0-simple and has a trivial group. Moreover EA =JnE(S(A)).

Proof: Since EA \ 0 ̂  Ç) from lemma 3.1 one has that EA n A ' ̂  Ç) so that by
using proposition 3.4 for all e E EA n A ', eS (A) e g {e, 0} . Let us now define for a
fixed eeEAn A'the two-sided ideal J = S(A)eS(A). Since 0$A' one has J ^ O
and J2 ^ 0; J is a 0-minimal ideal of S (A). In fact let / be any two-sided ideal of
S (A) such that / ^ 0 and 7 g J . One has InA'^Ç) since, otherwise,
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48 A. DE LUCA

S1(A)IS1(A)nA' = Ç) and / = 0 which is a contradiction. If selnA' one
obtains ese = e since eS(A)e^{e, 0} and

J = S(A)eS(A) = S1{A)eS1(A) =Sl(A)eseS1(A)^Sl(A)sS1(A)^L

Hence I = J.

J is the unique 0-minimal idéal of S (A). In fact if / in any other 0-minimal idéal
one has / n A ' ̂  Ç), so that iî sel nA' one would have esel nJ nA' = 0nA'
which is a contradiction.

J is completely 0-simple. In fact since J2^Ç), J is simple and moreover the
idempotent e is primitive (cf. Clifford and Preston [2]). This is shown by the fact
that if/is any idempotent such that ef = fe = f one obtains efe = fe = / and , as
eS(A)e^{e, 0}, ƒ = 0 orf = e.

The group of J is trivial. Since J is completely 0-simple, J \ 0 is a D-class

containing the H-class eS(A)e\0 = {e} which is a trivial group. Thus all the

//-classes of J \ 0 contain a unique element.

Let us now prove that EA=J nE{S (A)). We first show that EA^J nE{S (A)).

If e = 0 the resuit is trivially true. Let us then suppose eeEA \ 0 . From lemma
3.1 there exists an idempotent ƒ e EA nA' such that e Df. Since A ' is very pure in
S (A) it folio ws from lemma 3.2 that f A 'ƒ = {ƒ} . Taking seA'nJ one obtains
fsf = feJ and, as eDf, also e e J .

Let us now show that EA^J nE(S (A)). Let e be an idempotent oî J.lî e = 0
the resuit is obvious. Let us then suppose eeJ\0. If seJnA' one has that s is
an idempotent too. In fact J is completely 0-simple and s 2 ^ 0 so that s2eHs.
Being if s = { 5} it follows s2 = s. Since e, s e J\0 one has eus. Now s G £A. In fact
if tst' = tsst'eA' then ts = fst/5Gy4/ and st' = 5 t s t ' e ^ / . Since eus it
follows

4. VERY PURE SUBSEMIGROUPS OF A FREE SEMIGROUP.

In this section we suppose that the semigroup S is a free semigroup generated
by a fmite base X (S = X +). As usual X is called alphabet, the éléments of X are
called letters and the éléments of X + words. For any word/e X + , | ƒ | will dénote
the length of/, i. e. the number of letters in the unique factorization of/in terms of
the éléments of X.

As we said in the first section a subsemigroup A of X + is itself free if and only if
A is free in X + . Since a very pure subsemigroup A of X + is free in X + it is then
free.
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For any subsemigroup A of X + the set B = A \ A 2 is the (unique) minimal set
of generators of A ; B is the base of A if A is free. The base of a free subsemigroup A
of X + is usually called code and the base of a very pure subsemigroup Aoi X +

very pure code (cf. [9, 10]).

For a subsemigroup AoîX+ we simply dénote by FA (X) and G^ (X) the sets
FA (X

 +) and GA (X
 +) defined in gênerai by équation (3.5).

Let us now introducé the following set:

HA(X) = {feX+\X*fX*nB=0},

where B = A\A2 and X*=X+ v {l}; HA (X) if is nonempty is a two-sided
ideal of X +.

PROPOSITION 4 .1 : For any subsemigroup A of X +, HA (X) = FA (X).

Proof: Let us first show that FA (X)^HA (X).

Let/e FA (X). The word/has also to belong to HA (X). In fact, otherwise, there
would exist u, veX* such that ufueB. This would imply the existence offlt

f2eX + such that f1 f2 = ƒ and ufx ,f2veA. Thus B nA2^=0 which is absurd.

We prove now that HA(X)^FA(X). Let ƒ e HA(X). If X*fX*nA = Q)
obviously fsFA (X). Let us then suppose that there exist u, veX* such that
w = ufveA;a. factorization of w in terms of the éléments ol B having a parsing-
line inside/has then to exist. In fact, otherwise, there would exist words ult

v1eX*,\u1 ^ u ,\v1 ^ v | such that ulfv1 eB which is a contradiction. Thus
there exist flff2eX+ such that f = fif2 and uf1,j2veA, i.e. ƒ eFA(X). •

LEMMA 4 .1 : For any subsemigroup A of X +, F^ (X ) a n £ (S (.4 )) g ü^ .

Proo/? Let eeFA(X)o nE(S(A)). lï S'iA) eS1 (A)nA' = <D, i.e. e = 0 the
result is obvious. Let us then suppose that exist sjeS1 (A) for which set e A '. Let
u, veX* and /eF^ (X) be such that wa = s, va = t,fa = e. One then has that for
all positive integers k,ufkveA. Let us take/c> | ƒ |. Since ƒ e F^ (X) a séquence
of pairs X+ xX+ exists:

such t h a t / 2 ; _ i / 2 l = ƒ(Ï = 1, . . . , /c) and for all i,j (i^i<j^k):

tf-'fn-i. fnf^-'fij-i, f2jf
k-jveA,

where when i = 1 or k =j,f° = 1. Since k > | ƒ | two integers ij exist 1 ̂  i <j ̂  | ƒ |,
for which/2 i_! = f2j_x and, therefore, f2l = f2j. Se t t ing / 2 l _ 1 =/ i and/ 2 i = f2

we can write
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Let e1 = f'1<j and e2 = fr
2o. One then has

sei~1e1, (e2e1)
j~i, e2e

k~jteA'; (4.1)

Moreover e1'1 e1 e2e
k~j = e and e2e

k~jei~1 e1={e2e1)
k~j+i. Since fc>| ƒ | it

follows that k-(j-i)^2 and {e2e1)
k~j+i = {e2el)

2. From équation (4.1)
(e2el)

j~ieA' w i t h ; - i ^ l , so that (e2e1)
2eAf. This proves that eeEA. D

REMARK 1: If A is a pure subsemigroup of I + the stronger relation
FA{X)^y/GA(X), which obviously implies ^ ( I ) a n £ ( S ( i ) ) c ^ ( can be
easily derived by using an argument similar to that of the previous proof.

PROPOSITION 4.2: If A is a recognizable and free subsemigroup of X + then
HA(X)nA^Ç) andEA\0ïÇ).

Proof: Since A is recognizable so will be B = A\A2. Lët us then dénote by x
the syntactic epimorphism x : X+ -* S(B), where S(B) = X + /xx~l is the
syntactic semigroup of B which is finite. We show now, by contradiction, that
HA(X)nA^Ç). Let us, in fact, suppose that HA(X)nA = Ç), i.e. for ail ƒ e A,
X*fX*nB^Ç). This implies that for ail seAx, S1 (B)sS1 (B) n Bx^Ç). As a
conséquence if S (B) contains a zero element 0 then 0$Ax. In fact, otherwise,
from the previous équation 0 E B x and for ail s e S (B), s0 = 0s = 0eBx. If fx = s,
bx = 0, with feX +, beB, one would obtain (fb)x = (bf)x = bx, i.e./b, bfeB.
Since A is free f e A and 5 n A2 ^Ç) that is a contradiction.

S {B) has a unique 0-minimal idéal. In fact if J is a 0-minimal idéal of S {B) then
JnBx^Ç), otherwise, S1 {B)JS1 (B) n Bx = Ç) that implies J = 0 which is
absurd. If / is any other 0-minimal idéal of S(B) and I^J one would have for
selnBx and teJnBx that s t e / n J n i x = O n i x = 0 which is a
contradiction.

Let J be the unique 0-minimal idéal of 5(B). Since J r\Bx^Ç) one has J2^0.
In fact iîseJ nBx then s2 e J nAxso that s2 # 0. Being S (5) finite and J2 ^0 , J
is a completely 0-simple semigroup so that from the gênerai theory of semigroups
(cf. Clifford and Preston [2]) J \ 0 coincides with a D-class.

Since JnBx^Ç) there exists an H-class H such that HnBx^Ç). If
se H nBx then s 2^0 and s2 e H and if is a group. Denoting by e the identity
element of H one has es = se = s. Let now ƒ x = e and b x = s, with ƒ e X + and beB;
one gets: (fb)x = (bf )x = bx, and then^b, bfeB so that, since A is free,/eA and
Briy4 2^0 which is a contradiction.

Thus ifi4(X)nX#Ç). From proposition 4.1, tf^ (X) = FA [X) so that if
f e FA (X) n A then for ail positive integers k, ƒk a e F, (X) a n 4̂ '. If p is a suitable
positive integer such that fpa is an idempotent one has from lemma 4.1,
fpoeFA(X)vnE(S(A))<^EA. Hence £xn>4V{) and EA\0^Ç). D
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PROPOSITION 4.3: If A is a recognizable and very pure subsemigroup ofX + then
A is synchronizing.

Proof: From proposition 4.2, EA\0^Ç), so that, by using proposition 3.5
one has that A has a synchronizing pair in AxA. Thus A is a synchronizing
subsemigroup of X +. •

Some examples of (nonrecognizable) very pure subsemigroup of X + which are
not synchronizing are given in [4]. We say that a subsemigroup A of X + satisfies
the condition F(p) (cf. Restivo [11]) if

X*BpX*nB = Q), (4.2)

where B = A\A2 and p is a suitable natural number (p^.2).

PROPOSITION 4.4: Let A be a subsemigroup of X +. If A satisfies the condition
F(p) then A' r\E(S(A))^EA. Moreover if A is finitely generated then
EA=E(S(A)).

Proof: If A satisfies the condition F(p) for a suitable natural number p, then
A g S/~HA (X). From proposition 4 .1 , > / H A (X) = > / F A (X) so that by making use
of équation (3.7) and lemma 4 .1 .

If A is finitely generated then X + c ^ (X) = JTA (X), so that

Since EA^E(S(A)) one dérives EA=E(S(A)). •

REMARK 2: The above proposition is true under the only hypotheses that
A g y/ïïA (X) and X + <=,^fHA (X) which are weaker than the conditions F(p)

and to be finitely generated respectively.

PROPOSITION 4.5: Let A be afree subsemigroup ofX + such thatA'\E(S (A)) is
afinite subset of S(A). The following propositions are equivalent:

Pi . A has a bounded synchronization delay.
P 2 . A is very pure and satisfies the condition F (p) for a suitable natural

number p.
P 3 . The syntactic semigroup S(A) has a unique O-minimal idéal J which is

completely 0-simple. Moreover A' n E(S(A))<= J and the group of J is trivial.

P 4 . For all eeA'nE(S{A)), eS(A)e^{e, 0} .

Proof: We shall prove the équivalence of previous propositions by showing
that P i - • P 2 -> P 3 - • P 4 - • P x .
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(P 1 - ^P 2 ) . Let i be a free subsemigroup of I + having a bounded
synchronization delay. By proposition 2.4 it follows that A is very pure.
Moreover the condition F(p) has to be satisfied for a suitable integer p^2. In
fact, otherwise ,X* B2s X* nB^0 , where s is the synchronization delay of A.
Thus there would exist t, t'eX*, b1>b2eBs such that tb1b2t'eB. Since
(b !, b 2) e Bs x Bs is a synchronizing pair for ,4 it would follow tblfb2t

feA and
B n ^ 2 # 0 which is a contradiction.

(P 2 -> P 3). Let us now suppose A very pure and such that the condition F ( p)
is satisfied for a suitable integer p^2. From proposition 4.4 one has
A ' n £ (S (A)) g £^ and from proposition 3.6 it follows that the syntactic
semigroup S (A) has a unique 0-minimal idéal J which is completely 0-simple and
has a trivial group. Moreover EA=J nE(S (A)) so that A ' n E (S (A)) g J.

(P3 -> P4). Since J is completely 0-simple and the group of J is trivial one has
that for all the idempotents eeJ, eS(A)e^{e, 0} . Being A' nE(S(A))^J
proposition P 4 follows.

(P4 -• Pi). Let us first show that

where /c = | , 4 ' \ £ (S( ,4 ) ) | . In fact if feBk+1 we can express it uniquely as
f = fi •••/k+i with fteB ( l ^ i^ fc + 1). We construct then the séquence of
words: fi,f1f2, • • - , / i • • -A+i and that of their respective images in S {A)
mlf m1m2, . . . , m 1 . . . m k + 1 , having set mf = / f a ( i = 1, . . ., k+ 1). Necessa-
rily one element of the previous séquence has to belong to E (S (A)). This is
obvious if ail previous fc + 1 éléments are distinct because fc = | A ' \ £ ( S ( A ) ) | .
Let us then suppose that there exist integers i,j, 1 ̂ i<jf^k+ 1, such that:

m1 . . . mi = ml . . . mi{mi + l . . . mj) = m1 . . . mi(mi+l . . . ntj)p
t

for ail positive integers p. We set u = m f + x . . . m j e A ' and consider the séquence
u, u2, ...,uk+l. One of these éléments has to be an idempotent. Let r,
l ^ r ^ / e + l , b e such that ur = eeE(S(A)). One has ml . . . mi = m1 . . . m^e and
from the hypothesis eS(A)e^{e, 0} and the fact that 0$Ar:

(m^ . . . mi)
2 = m1 . . . miem1 . . . mie = m1 . . . mieE(S(A)).

Let m1 . . . m,- e E (S 04)) for a suitable integer j , l ^ j ^ / c + l . One dérives
that fo = m1 . . . mjmj+1 .. . mk + 1 and ( / a ) 2 = / ae£(S( / l ) ) . Hence

Let us now prove that all the pairs (f,g)eBk+1 x Bk+1 are synchronizing. Let
, d ' e l * be such that hfgh'eA. Setting ho = s, h'<j = s',fo = ff, g<J = g' one
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gets sf'g's'eA'. Since ƒ', g'eA' nE(S(A)) and 0$A', one has
sffg'srff = sff = (hf)GeAf and, similarly, g'sf'g's'= g's'= (gh')<jeA'. Thus
hfgh'eA. D

REMARK 3: The hypothesis that A'\E(S(Aj) is a finite set is certainly verified
if A' is finite or when A is a recognizable subset of X +. In this last case the
équivalence bet ween propositions P x and P 2 has been proved by A. Restivo [11]
by means of combinatorial arguments.

An example of a non recognizable code on the alphabet X = {x, y } for which
we can use proposition 4.5 is given by the set B = {xn yn n ^ l j . I n this case one
can verify that B+ a is a fmite subsemigroup of S(B+).

In the proof of proposition 4.5 we have also shown that if A has a bounded
synchronization delay s then s ̂  | A ' \ E (S {A)) | + 1. We note that
| i 4 ' \ £ ( 5 ( ^ ) ) | = \A'\J\. In fact in this case E(S(A))nA'^J. Moreover
(cf. proposition 3.6) J n A'^E(S(A)) n A' so that J n A' = E(S(A)) n A'.

Let us note, at last, that for the équivalence of P 3 to propositions P1 , P 2 , P 4 it
is essential, besides the condition that J has a trivial group, that a// the
idempotents of A ' are in J. In fact, for instance, if A is a free subsemigroup of X +

which is a noncounting regular set (or a star-free event) then S(/l) is aperiodic
(e/. Eilenberg [5]) so that the group of J is trivial. From this one can only dérive
that A is synchronizing. An example is given, over the alphabet X — {x, y, z}, by
the free subsemigroup A = {x, yx*z}+ oîX +. A is SL noncounting regular set.
However A does not verify the condition F ( p) for any natural number p so that it
has not a bounded synchronization delay. From a syntactic point of view S (A)
has only trivial subgroups but the idempotent xoeA' does not belong to the
0-minimal idéal J of S (A).

A subset A of X + is called strictly locally testable if there exist three finite sets
U, V, W such that:

v 4 n X ' X * = ( L T X * n X * F ) \ X * H ^ * (4.3)

where l is the greatest of the lengths of the words of U u F u W.

A subset A of X + is called locally testable if it belongs to the Boolean closure of
strictly locally testable sets {cf. McNaughton and Papert [7]).

Clearly a locally testable set of X + is recognizable (via Kleene's theorem). The
following characterization of locally testable sets has been given by
McNaughton [8], Zalcstein [17], Brzozowski and Simon [1].

PROPOSITION 4.6: Let Abe a recognizable subset ofX + . A is locally testable if
and only if for ail eeE(S(A)), e S (A) e is a semilattice.
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A subsemigroup A g l + is called locally testable (resp. strictly locally testable)
if A is a locally testable (resp. strictly locally testable) subset of X +.

PROPOSITION 4.7: If A is afree and locally testable subsemigroup ofX + then A is
very pure.

Proof: lîA is locally testable then from previous proposition for all e e E (S (A))
eS (A) e is a semilattice so that, since A is free, by making use of proposition 3.2 it
foliows that A is very pure. •

From the définition (4.3) one easily dérives that a strictly locally testable
subsemigroup of X+ has a bounded synchronization delay.

Let us now suppose that A is afinitely generated subsemigroup of X +. It holds
the following:

PROPOSITION 4.8: Let A be afree andfinitely generated subsemigroup ofX + .
The following propositions are equivalent:

P x . A is strictly locally testable.
P 2 . A is locally testable.
P 3 . A is very pure.

P 4 . The 0-minimal idéal J of S(A) has a trivial group and E(S(A))^J.
P 5 . For alleeE(S(A)), eS(A)e<= {e,0}.

P 6 . A has a bounded synchronization delay.

The équivalence of propositions P x, P 3 , P 6 has been shown by Restivo [10].
The équivalence of P x and P 2 has been proved by Hashiguchi and Honda [6]. An
algebraic proof of the équivalence of P x , P 4 , P 5 and P 6 is in De Luca, Perrin,
Restivo and Termini [3].

Let us remark that the équivalence of propositions P 3 — P 6 is a corollary of
proposition 4.5. One has only to observe that if A is fmitely generated then the
condition F (p) is certainly verified for a suitable integer p, and that if A is very
pure by propositions 4.4 and 3.6 it follows EA =E(S(A)) n J. One can also
prove the équivalence of P 2 and the previous propositions (P3 — P6) by using
proposition 4.7 and the characterization of locally testable languages given by
proposition 4.6.
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APPENDIX

PROOF OF PROPOSITION 3.3

From définitions (3.5) and (3.6) one has always that EA (S)^DA (S). Let us
now suppose that A is a recognizable subsemigroup of S; we have to show that
DA(S)^EA(S). Let eeDA(S) and s, teS1 be such that seteA. Since e is an

idempotent for any integer nTtl, en = e and senteA. From définition (3.5) of
DA (S) a séquence of pairs of éléments of S:

exists such that e2h-1e2h = e (h=\, . . . , n) and for all h, k,l^

seh-le2h-1,e2he
k-h-1e2k-1, e2ke"-kteA, (Al)

where e° = 1. Since X is recognizable the syntactic congruence = of A is of finite
index. Hence if n > | S ( ^ ) | a pair (i,j) of positive integer s exists such that
1 ̂ i < 7 ^ n and e2i-1 = e2j_1. By équation (Al) one has

Thus since e2ie
j~l~l e2j-i £A then {e2ie2i^.^)^~xeA. This implies

2 ^ I ' - 1 e 2 i _ 1 , f2 = elie
n~i = e2ie one has:

and sflff2teA. This shows that e e EA (S) and then EA{S) = DA(S). The equality
£,4 ~DA ^S a trivial conséquence of this result in the case S = S (A)
and A — A a. D
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