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ON SOME PROPERTIES OF THE SYNTACTIC
SEMIGROUP OF A VERY PURE SUBSEMIGROUP (%)

by Aldo D Luca (1)

Communicated by J. F. PERROT

Abstract. — Some synchronizing properties of “‘very pure” subsemigroups of a free semigroup are
shown by means of an analysis of the properties of their syntactic semigroups.

Résumé. — On démontre certaines propriétés de synchronisation pour les sous-semigroupes « trés
purs » d’un semigroupe libre, en analysant les propriétés de leurs semigroupes syntactiques.

0. INTRODUCTION

In this paper we consider a family of subsemigroups of a given semigroup S
which, following A. Restivo [10], we call ““very pure”. For the case when S=X *
is the free semigroup generated by an alphabet X, the bases of very pure
subsemigroups, which are called “‘very pure codes”, have been introduced by
M. P. Schiitzenberger in the factorizations of free monoids [16] and in the
construction of the bases of free Lie algebras [14]. A remarkable result of
Restivo [10] shows that the class of finitely generated free subsemigroups of X *
coincides with the class of finitely generated free subsemigroups having a
“bounded synchronization delay”. Moreover, very pure subsemigroups,
considered as languages, are “strictly locally testable” in the sense of
McNaughton and Papert [7].

(*) Received July 1978, revised March 1979.
(}) Laboratorio di Cibernetica del C.N.R., Arco Felice, Napoli, Italie.

This paper is a slightly revised version of the report LC/348 (May 1978) of the Laboratorio di
Cibernetica del C.N.R., Arco Felice, Napoli, Italy
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40 A. DE LUCA

A recent theorem of Restivo [11] shows that in the more general case in which
the subsemigroups are “‘recognizable’ the equivalence between ““very pure” and
“bounded synchronization delay” holds only if one makes the auxiliary
hypothesis, called condition F ( p), that any word of the base does not contain, as
a factor, a product of a number of code-words greater than a suitable integer
p=2.

In this paper we start by considering “very pure” subsemigroups A of an
arbitrary semigroup S. The property of ‘“very pure” characterizes the
homomorphic image Ao of any very pure subsemigroup in its syntactic
semigroup S (A4). Some general propositions on the structure of the syntactic
semigroup of a very pure semigroup A are shown under the further hypothesis
that A4 is “synchronizing”. By means of these propositions we obtain when Sis a
free semigroup, the following two main results:

1. A recognizable very pure subsemigroup of S is synchronizing (cf.
proposition 4.3).2. Let A be afree subsemigroup of S such that all the elements of
Ao but a finite number, are idempotents. Then the following propositions are
equivalent: (1) A has a bounded synchronization delay. (ii) A is very pure and
satisfies the condition F(p) for a suitable natural number p. (iii) For all the
idempotents ec Ac, eS(A)e< {e, 0} (¢f. proposition 4.5).

This last result and another equivalent proposition concerning the structure of
the O-minimal ideal of the syntactic semigroups S(4), give a characterization of
free subsemigroups, of a free semigroup, having a bounded synchronization
delay which is more general than that of the theorem of Restivo [11], and also
that of a recent result obtained by the author, D. Perrin, A. Restivo and
S. Termini [3] under the hypothesis that A is finitely generated.

1. PRELIMINARIES

For the notations and definitions which are not reported in the paper the
reader is referred to [2 and 5].

Let S be a semigroup. We call product the associative binary operation defined
in S and for all a, be S we denote by ab their product. For all A, BSS we set
AB={abeS|acA, beB}. Any stable subset 4 of S, i.e. 4’4, is a
subsemigroup of S. For any A< S, A" will denote the smallest subsemigroup
containing A4 (i. e. the subsemigroup generated by A). We recall that a
semigroup S is free if there exists a subset X =S such that X * =S and any
map ¢: X — T, T being any semigroup, can be extended to a unique morphism
of Sin T. X is called the base of S.

R.A.LLR.O. Informatique théorique/ Theoretical Informatics



SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 41

A relative notion of freedom is given by the following definition due to
Schiitzenberger [13].

DEeFiniTION 1. 1: A subsemigroup 4 of S is free in S if for all a, be A and s€ S,
as, shbe A imply se 4.

A classical theorem of Schiitzenberger [12] shows that a subsemigroup A of a
free semigroup S is itself free if and only if A is free in S.

For any AcS the syntactic congruence o,o,;' of A is the maximal
congruence @@ ~ ' (where ¢ denotes any morphism of S in any semigroup) such
that @ is compatible with A,i.e. Ao~ ' =A4;S(4)=S/c, o, ' is usually called
the syntactic semigroup of A and o, , that we shall also denote simply by o, is the
canonical epimorphism o: S — S(A4). One can easily see that for all 5, s,€8:

s;00 1s, forall s, teS! (ss; te A>ss,t€ A).

A subset A of S is called recognizable if the syntactic semigroup S (A) is finite. If
A is a subsemigroup of S one has that A4 is free in S if and only if A4 is free in the
syntactic semigroup S(A4).

Let S be a semigroup. We say that S has a zero element 0 if the cardinality | S|

of S is greater than 1 and for all se S, s0=0s5=0. A zero element is obviously
unique.

A subsemigroup A of a given semigroup S is called dense if for all se8§,
S'sS'NnA#Q,i. e. A meets all the two-sided ideals of .

Let 4 be a nondense subsemigroup of S and set Q={seS|S'sS'nA=0}.
One has that Q6=0eS(4)\ Ao. Moreover by using the Schiitzenberger
theorem one can easily derive that if 4 is a subsemigroup of S free in S then 4 is
dense if and only if S(A4) does not contain a zero element. Thus if 4 is a
subsemigroup of S free in S, 4 o never contains a zero of S (4).

Let us denote, for any A< S, by \/Z the subset of S defined as:
\/Z={seS|s+mA;é(Z)}.

Clearly A=./A; a subsemigroup A of S is called “pure” if A= \/Z . This
definition entails that when A4 is pure for all s€ S and p=1, sPed - se A.
For each semigroup S we denote by E (S) the set of all its idempotent elements,
i. e.ifec E(S)then e? =e¢. When S is finite one has that S = \/E(S). A semigroup
Siscalled a bandif S = E (S). A semilatticeisa commutative band. A semigroup §
is said quasi-idempotent-commutative if for all e € E (S) the subsemigroup e Seisa
semilattice. A finite semigroup S is called aperiodic (cf. Eilenberg [5])if it has only
trivial subgroups or, equivalently, a positive integer p exists such that forallse §
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42 A. DE LUCA

sP=sP*1 Tt is easy to verify that if S is a finite semigroup such that for all
ecE(S), eSe is a band then S is aperiodic.

2. VERY PURE SUBSEMIGROUPS

Let us now introduce a class of subsemigroups of a given semigroup S that,
following A. Restivo [10] we call “very pure”.

DerINITION 2.1: A subsemigroup A4 of § is called very pure if for all s, teS,
st, tse A imply s, te A.

Any very pure subsemigroup 4 of S is also pure whereas the converse is not
generally true.

ProposiTION 2.1: If A is a very pure subsemigroup of S then A is free in S.

Proof: Let a, be A and s e S be such that as, shbe A. One has then bas, shac A.
Since A is very pure it follows thatse A. [

We state, without proof, the following proposition which is a straightforward
consequence of definition 2.1.

ProrosiTioN 2.2: If B is a very pure subsemigroup of S and A a very pure
subsemigroup of B then A is a very pure subsemigroup of S.

ProrosiTiON 2.3: Let @: S — T be a morphism of the semigroup S in the
semigroup T. One has that:

() If Bis a very pure subsemigroup of T then B ¢ ~ ! is a very pure subsemigroup
of S.

(i) If A is a very pure subsemigroup of S and @ is compatible with A, then A @ is
very pure in S @. Moreover if S ¢ is very pure in T then A ¢ is very pure in T.

Proof: Let s, te S such that st, tse B ~'. One has then (st) g=s¢ t o € Band
(ts) o=t @s@eB. Since B is very pure in T then s, t € B that implies s,
teBo@ '; Be !is therefore a very pure subsemigroup of S that concludes the
proof of proposition (i).

Suppose now that s',t'eS¢ and s't’, t's’eA@. Let s,teS be
such that so=s', te=t. One has then (st)o=soto=s't'edeo,
(ts)o=tosp=t's'’eAq and st, tse App '=A. Since 4 is very pure s,
teAandso=s'€e A@,t@=t'€A¢@. Thus A @ is a very pure subsemigroup of S.
Finally if S ¢ is very pure in T from proposition 2.2 it follows that S ¢ is very
purein 7. [

Let A be a subsemigroup of a given semigroup S. We give the following
definition of “synchronizing pair™ for 4 (cf. Schiitzenberger [15]).

R.A.LR.O. Informatique théorique/Theoretical Informatics



SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 43

DeFINITION 2.2 A pair (s, t)eS xS is a synchronizing pair for A if
S'stS*nA#Q andforallu, veS*, ustve A — us, tve A. The subsemigroup A
is called synchronizing if it has at least a synchronizing pair.

It follows from definition 2. 2 that A is synchronizing if and only if there exists a
synchronizing pair for 4 in 4 x A.

DerinITION 2. 3: A subsemigroup A4 of S has a bounded synchronization delay if
a positive integer k exists such that all the pairsin A* x A* are synchronizing. The
least integer k for which the previous condition is verified is called the
synchronization delay of A.

We note that from the previous definition delays of synchronization greater
than 1 can be achieved only if 4% = 4. This last condition is verified, for instance,
when A is a locally finite semigroup (cf. Eilenberg [5]).

One can easily verify that A4 is synchronizing if and only if 4 ¢ is so. Moreover
A has a synchronization delay equal to s if and only if A ¢ has a synchronisation
delay equal to s.

ProrosiTioN 2.4: If A is a subsemigroup of S free in S having a bounded
synchronization delay then A is very pure.

Proof: Let s, t€ S be such that st, tse A and s, t ¢ A. Let us show that for all
positive integers n the pairs ((ts)", (ts)") € A" x A" are not synchronizing. In fact if
we suppose that a positive integer k exists such that ((¢s)¥, (£s)¥) is a synchronizing
pair for A4 one would have (st)2** ! =5 (ts)* (ts)* t€ A4, so that s (ts)¥, (ts)* te A.
Since A4 is free in S, from the equalities:

s(ts)e=(st)k s e A4, (ts)k t=t (st)*=A4,

it would follow s, te A which is a contradiction. []

3. THE SYNTACTIC SEMIGROUP OF A VERY PURE SUBSEMIGROUP

During all this section 4 will denote a subsemigroup of a given semigroup S,
A’ the homomorphic image A o of A in the syntactic semigroup S (4) and S* (4)
the semigroup [S (4)]*.

PROPOSITION 3.1: A is a very pure subsemigroup of S if and only if A' is a very
pure subsemigroup of S(A).

Proof: Let A be a very pure subsemigroup of S. Since 4cc ~'=A4, where
o: S — S(A)is the canonical epimorphism of S in the syntactic semigroup S(A),
from property (i) of proposition 2.3 it follows that A" is a very pure
subsemigroup of Sc=S(A4). Vice versa if A’ is very pure in S(A) from
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44 A. DE LUCA

property (i) of proposition 2.3 one has that Acoc~!=A4 is a very pure
subsemigroup of S. [

PrOPOSITION 3.2: Let A be a subsemigroup of S free in S such that A g\/E(S).

If for all ee AN E(S), eSe is a semilattice then A is a very pure subsemigroup
of S.

Proof: Let s, te S be such that st, tse A. From the hypothesis A C=Z\/E (S) it
follows that a positive integer p exists for which (st)?, (ts)? € A N E (S).Since for all
ee AN E(S), eSeis a semilattice the following relations will hold:

(st)?s(st)P t(st)P =(st)P t(st)? s(st)?,
(st)P t(st)P t(st)?=(st)? t(st)®,
(ts)P s(ts)P t(ts)? =(ts)? t(ts)P s(ts)?,
(ts)P t(ts)? t(ts)? =(ts)? t(ts)®.

(3.1)

From equations (3.1), and (3.1); one gets:

s(ts)P (st)P (ts)? t=(st)P (ts)P T 1 (st)Pe A, (3.2)
t(st)P (ts)? (st)P s=(ts)P (st)P+ 1 (ts)Pe A )

and from equations (3.1), and (3.1),:

(st)? (ts)? tt(st)P=(st)P(ts)P ¢, }

(ts)P tt(st)P (ts)? =t (st)P (ts)®. (3-3)

Multiplying both the sides of equations (3. 3); and (3. 3), respectively on the right
by s and on the left by s one has:

(st)? (ts)P t(ts)P 1 =(st)P (ts)?* 1€ A, }

(st)P* L £ ()P (1s)P = (st)?* 1 (ts)P € A. 3.4

Similarly multiplying both the sides of equations (3.2); and (3.2), respectively
on the right by (ts)?*! and on the left by (st)?*! one obtains:

s(ts)P (st)P(ts)P t(ts)P* e A,

(st)P* L t(st)P(ts)P (st)Ps€ A,
with

(ts)P (st)? (ts)Pt(ts)PT e A,

0P (s0)2 (15)? (s1)? € 4,

because of equations (3.4); and (3.4), and the fact that (s)?, (st)? € 4.
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SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 45
Since A is free in S it follows that s€ 4 and, by the hypothesis that st, tse A4,
that te A. Hence A is a very pure subsemigroup of S. [J
A consequence of propositions 3. 1 and 3.2 is the following corollary the proof
of which is straightforward.

CoroLLARY 3.1: Let A be a recognizable subsemigroup of S free in S. If for all
ec A'NE(S(A)),eS(A)e is a semilattice then A is a very pure subsemigroup of S.
Let us now introduce the two subsets F, (S) and G, (S) of S defined as:

F,(S)={seS|t,t'eS*, tst’eA—>Is,, 5,€8,
S1S,=S;tsy, 5,1’ €A},
G,(S)={seS|t, t'eS", tst'eA—3s,, 5,€S, 3.5
S1S2=8;151, 5,1, 5,5,€A}.
Obviously G, (S)= F, (S). Moreover, from the definition F,, (S), if nonempty, is

a two-sided ideal of S. We observe that if (s, 1)eS xS (resp. AxA) is a
synchronizing pair for 4 then ste F, (S) [resp. G, (S)]. Let us set

D,(S)=F,(S)NE(S),  E,(S)=G,(S)nE(S). (3.6)
In the following when S is the syntactic semigroup S(A4) of 4 we shall denote

F,;(S(A4)),G,, (S(A)), E,, (S(A)and D, (S(A))simplyby F,,G,,E,and D,,.
One can easily derive that:

F,(S)o cF,, G,(8)ocG,,
and moreover
F,(S)onE(S(A)=/F ,(S)o nE(S(4), } 3.7
G,(S) o NE(S(A)=/G,(S)onE(S(A).
It holds the following proposition the proof of which is reported in the
Appendix.

ProrosiTION 3.3: If A is a recognizable subsemigroup of S then E [ (S)=D , (S)
and E,=D,.

Lemma 3.1: If ee E, \ O then there exists an idempotent e’ €(E,\ 0)n A’
which is in the same D-class as e.

Proof: Since e#0 one has S* (4) e S! (4A)n A’ # D (in fact, otherwise, e will be
equal to 0)so that there exist s, ,s, € S' (4)for which s, es, € A’. Moreover since
ecE , there will existe;, e, €S(A4)such thate, e,=eands,;e;,e,s5,,e,e,€4".
Letussets=e,e,e;,s'=e,e,e,.Onehasthens=ss’'sands’'=s"ss’, thatiss
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46 A. DE LUCA

and s’ are mutually inverse. From a classical result of Miller and Clifford (cf.
Clifford and Preston [2]) s, s, ss’=e and s's=(e, e;)* € A’ belong to the same
D-class. This implies e’ #0. Let us now prove that the idempotent e’ =(e, e;)*?
belongs to E,. Let t, t’eS'(A) be such that ret'e A’. We can write
te't'=te,ee t' e A’ so that since e€ E, there will exist e, e €S (4) such that

tesey, ese t’, eye €A’ and ejey,=e=e;e,.

One then has
e,elere,=ej e e e, =e’
and
ese e, ei=ehrereyei=(eye)’ed’. O
LemMA 3.2: Let A be a very pure subsemigroup of S. If e€e A'nE, then
eA’e={e} and eS(A)ec {e,0}.

Proof: Let us first prove that if ee 4'nE, then e4’e={e}. Let h be an
element of A’ and suppose that sehes’ € A’ for some suitable s, s’ S' (A). Since
ecE, thereexiste,,e,, e}, e,eS(A)suchthate=e; e,=ejesandse;, e, hey,
eys’,e e, ere;eA’. As eeA’ and from proposition 3.1 A’ is a very
pure subsemigroup of S(A), it follows that e, e,, e}, e5€A’. Moreover
ses'=se’s'=se e,ejeys’eA’. Thus one has that sehes'e A" —ses'eA’.
Let us now suppose, on the contrary, that ses’e A’ for suitable s, s’ S (4).
Since e€ E, there exist e;, e,€S(A) such that e;e,=ecA’ and se,, e, 5,
e,e €A’. We then have e,,e,eA’ and sehes'=se;e,he,e,s'eAd’.
This shows that ses’e A’ — sehes’€ A’. Hence, as the syntactic congruence
of A’ is the identity, ehe=e and e 4’ e= {e}.

Let us now prove that if eeE, A’ then eS(4)e<{e, 0}. Let g be an
arbitrary element of S (A4). One has that either ege =0 (this can occur only if 4 is
not dense) or there exist s, s’ € S* (4) for which seges'€ A’. Sinceee E, n A’ there
will exist elements ey, e,, e}, e5€S(A) such that:

ee,=eje,=ecA’, e,e,,erey,se,,e,gey,eys' €A’

Since A’ is very pure in S(A) it follows that e, e,, e}, e;ed’ and
ege=e, (e, gey)e,e A'. This proves that in any case eS(4d)ec {e,0}. O

ProposiTion 3.4: Let A be a very pure subsemigroup of S. If eeE, then
eS(A)ec {e,0}.

Proof: The result is trivially true if S(A) has a zero element 0 and e=0. Let us
then suppose E, \ 0#Q and take e E, \ 0. From lemma 3.1 an idempotent
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SOME PROPERTIES OF THE SYNTACTIC SEMIGROUP 47

e'eE, n A’ exists such that e’ D e. As ¢’ and e are in the same D-class, elements ¢,
se S(A) exist for which e=te’s. Thus one has eS(A4) e=te'sS(A) te’s. From
lemma 3.2 it follows e's S (4) te's {e’, 0} so thateS (4) e {e,0}. [T

Let us observe that under the hypothesis of proposition 3.4 for all ec E,,
e S (A)eis a trivial group with a zero element if S(A4) contains a 0. This implies
that all subgroups of S (4) whose identity elements are in E , are trivial or, that is
the same, all regular D-classes of S(A) having at least an idempotent in E, are
H-trivial.

ProposiTion 3.5: Let A be a very pure subsemigroup of S. A is synchronizing if
and only if E,\ 0#Q.

Proof: Let E,\0#Q and ecE,\ 0. From lemma 3.1 there exists an
element e'e E, n A’ in the same D-class as e. Let g o=e’ with ge A. We prove
that the pair (g, \g) € A x Ais a synchronizing pair for 4.Lets,s’eS! be such that
sggs’'€ A. Thisimplieste't'€ A" witht=scand t'=s"c.Sincee’ € E, n A’ there
exist e;, e,eS(A) such that e'=e e, and e, e, te;, e,t'€ A'; A' being very
pure in S(A4), e, e,€ A’ so that te’, e't'e A’ and sg, gs'€ A. Vice versa let us
suppose that A is synchronizing, i.e. there exists a synchronizing pair
(u, vy)e A x A for A. One has that uve G, (S)n A and (uv)oe G, N A’. Moreover
(uww)oeE(S(A)).Infactforalls, s’ eS!, suvs’ € 4 if and only if suvuvs’ € A so that
(uv) o =(uv)* o =((uv)5)*. Thus (uv) ceE,n A4’ and E,\0#Q. []

By means of an argument similar to that of the proof of the previous
proposition one can derive that if 4 is a very pure subsemigroup of S, A has a
bounded synchronization delay if and only if there exists a positive integer k for
which A¥c S E,.

Let S be a semigroup having a 0-minimal ideal J which is completely 0-simple.

We recall that J\ 0 is a D-class and that the H-classes in J "\ 0 containing an
idempotent are isomorphic to a same abstract group that is called the (structure)
group of J.

PROPOSITION 3.6: Let A be a very pure subsemigroup of S such that E,\ 0% Q.
The syntactic semigroup S(A) contains a unique O-minimal ideal J which is
completely 0-simple and has a trivial group. Moreover E, =J N E(S(A4)).

Proof: Since E , \ 0# @ from lemma 3.1 one has that E, n A’ #® so that by
using proposition 3.4forallee E, n A',eS(A)e<{e, 0}. Let us now define fora
fixed ee E, n A’ the two-sided ideal J=S(A)eS (A4). Since 0¢ A’ one has J #0
and J2#0; J is a 0-minimal ideal of S (4). In fact let I be any two-sided ideal of
S(A) such that I#0 and I=J. One has InA'#Q since, otherwise,
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48 A. DE LUCA

S1(A)IS'(A)NA'=@ and I=0 which is a contradiction. If seIn A’ one
obtains ese=e since eS(A)ec{e, 0} and

J=S(A)eS(A)=S'(A)eS!(4) =S'(A)eseS* (4)=S*(A)sSt(4)<cl.
Hence I=J.
J is the unique 0-minimal ideal of S (A4). In fact if I in any other 0-minimal ideal

onehasInA'#@, so thatif sel N A’ one would haveese InJ " A'=0Nn A’
which is a contradiction.

J is completely O-simple. In fact since J2#Q, J is simple and moreover the
idempotent e is primitive (cf. Clifford and Preston [2]). This is shown by the fact
that if f is any idempotent such that ef = fe= f one obtains efe= fe= fand, as
eS(A)ec{e, 0}, f=0orf=e.

The group of J is trivial. Since J is completely 0-simple, J\ 0 is a D-class
containing the H-class eS(A)e\ 0={e} which is a trivial group. Thus all the
H-classes of J ~\‘0 contain a unique element.

Let us now prove that E, =J n E(S(A)). We first show that E, =J n E (S (A)).
If e=0 the result is trivially true. Let us then suppose e€ E, \ 0. From lemma
3.1there exists an idempotent f € E, n A" such thate Df. Since A’ is very purein
S (A) it folows from lemma 3.2 that fA'f ={ f }. Taking se A’ n J one obtains
Ssf = feJ and, as eDf, also e J.

Let us now show that E, 2J n E(S(A)). Let e be an idempotent of J. If e=0
the result is obvious. Let us then suppose ee J \ 0. If se J n A’ one has that s is
an idempotent too. In fact J is completely O-simple and s?#0 so that s>e H,.
Being H, = { s } itfollows s> =s.Since e, se J \ Oone has eDs. Now s€ E ;. In fact
if tst'=tsst’e A’ then ts=tst’seA’ and st'=stst’eA’. Since eDs it
follows ec E,. [

4. VERY PURE SUBSEMIGROUPS OF A FREE SEMIGROUP.

In this section we suppose that the semigroup S is a free semigroup generated
by a finite base X (S=X *). As usual X is called alphabet, the elements of X are
called letters and the elements of X * words. For any wordfe X *,| f | will denote
the length of f, 1. e. the number of letters in the unique factorization of fin terms of
the elements of X.

As we said in the first section a subsemigroup A of X * is itself free if and only if
Aisfreein X *. Since a very pure subsemigroup 4 of X * is free in X * it is then
free.
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For any subsemigroup 4 of X * the set B= 4\ A2 is the (unique) minimal set
of generators of 4; Bis the base of A if A is free. The base of a free subsemigroup A4
of X * is usually called code and the base of a very pure subsemigroup 4 of X *
very pure code (cf. [9, 10]).

For a subsemigroup 4 of X * we simply denote by F , (X) and G, (X) the sets
F,(X*)and G,(X*) defined in general by equation (3.5).
Let us now introduce the following set:

H,(X)={feX*|X*fX*nB=0},

where B=A\ A% and X*=X"* u{1}; H,(X) if is nonempty is a two-sided
ideal of X *.

ProposITION 4.1: For any subsemigroup A of X *, H, (X)=F , (X).

Proof: Let us first show that F, (X)c H, (X).

Letfe F, (X). The word fhas also to belong to H , (X). In fact, otherwise, there
would exist u, ve X * such that ufv e B. This would imply the existence of f;,
f2€X*suchthatf,f,=fand uf,,f,veA. Thus BN A2# which is absurd.

We prove now that H,(X)=F,(X). Let feH, (X). If X*fX*nA=0Q
obviously fe F, (X). Let us then suppose that there exist u, ve X * such that
w=ufve A; a factorization of w in terms of the elements ot B having a parsing-

line inside f has then to exist. In fact, otherwise, there would exist words u,
vieX* |uy|=£|ul,|v,|<|v|such thatu, fo, € B which is a contradiction. Thus
there exist f, f,€ X * such that f=f, f, and uf,, f,veA, ie. feF,(X). O

LeMMa 4.1: For any subsemigroup A of X, F ,(X)o nE(S(A))€E,.

Proof: Let ee F (X)o nE(S(A). If S'(4) eS! (A)nA'=Q, i.e. e=0 the
result is obvious. Let us then suppose that exist s, t€ S* (4) for which set € A" Let
u,ve X*andfeF,(X)besuch that uc=s,vo=t, fo=e. One then has that for
all positive integers k, uf*ve A. Let us take k> \ f|.Since f € F, (X)asequence
of pairs X © x X T exists:

(f1.f2) oo (fau-1, 20
SUCh thatle_1f2,=f(i=1, e e ey k) and fOI‘ all l,j(i§i<j§k):
uf " ooy, faufTT U oo, fof*TTveA,

where wheni=1or k=j,f°=1. Since k>| f | two integers i, jexist 1 i <j<| f],
for which f5;_; = f,;—, and, therefore, f5,= f,;. Setting f5,_y = f{ and f;= f}
we can write

uf Uy fAfTTL faff T ve A
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Let e, =f] o and e, = f} 6. One then has
sei"le,, (e,e)i™i, e,efiteA’. 4.1

Moreover e~ ‘e, e,e* =c and e, e el Tl e =(e,e,) 7" Since k>| f| it
follows that k—(j—i)=2 and (e,e;)* /*'=(e,e,)?. From equation (4.1)
(e,e,)’ i€ A" with j—i>1, so that (e, e,)2€ A’. This proves that ee E,. [

RemarRk 1: If 4 is a pure subsemigroup of X * the stronger relation
F, (X)g\/éA (X), which obviously implies F,(X)c nE(S(4)<E,, can be
easily derived by using an argument similar to that of the previous proof.

ProposITION 4.2: If A is a recognizable and free subsemigroup of X * then
H,(X)nA#Q and E,\0#0.

Proof: Since A is recognizable so will be B=A\_4?. Lét us then denote by t
the syntactic epimorphism t: X * — S(B), where S(B)=X "/tt ™' is the
syntactic semigroup of B which is finite. We show now, by contradiction, that
H,(X)n A#Q. Let us, in fact, suppose that H, (X)n A=, i.e. for all fe 4,
X*fX*~ B#Q. This implies that for all se A1, S*(B)sS'(B)n Bt#(Q. As a
consequence if S (B) contains a zero element 0 then 0¢ A4 t. In fact, otherwise,
from the previous equation 0 e Bt and for all se S(B), s0=0s=0€Bt. If ft=s,
b1t=0, with fe X ¥, be B, one would obtain (fb)t=(bf)t=b1, i.e. /b, bf e B.
Since A is free fe A and B n A% # ( that is a contradiction.

S (B) has a unique 0-minimal ideal. In fact if J is a O-minimal ideal of S (B) then
JABt#Q, otherwise, S'(B)JS!(B)nBt=Q that implies J=0 which is
absurd. If I is any other O-minimal ideal of S(B) and I #J one would have for
selnBt and teJnBrt that stelnJnAt=0nAt=Q which is a
contradiction.

Let J be the unique 0-minimal ideal of S (B). Since J N Bt # @ one has J 2 #0.
InfactifseJ n Btthens?eJ n A tsothats?#0. Being S (B) finite and J2 #0, J
is a completely 0-simple semigroup so that from the general theory of semigroups
(cf. Clifford and Preston [2]) J\ O coincides with a D-class.

Since J nBt#Q there exists an H-class H such that HnBt#Q. If
se HNBr then s?#0 and s2e H and H is a group. Denoting by e the identity
element of H one has es=se=s. Letnow ft=eand bt=s, withfe X " and be B;
one gets: ( fb)t=(bf )t=>b1, and then fb, bf € B so that, since 4 is free, fe A and
B A%?# @ which is a contradiction.

Thus H,(X)nA#®. From proposition 4.1, H,(X)=F,(X) so that if
feF ,(X)n A then for all positive integers k, f*c e F, (X) o n A". If pis a suitable
positive integer such that fPo is an idempotent one has from lemma 4.1,
ffoeF,(X)cnE(S(A)<E,. Hence E,nA'#® and E,\0#£0Q. O
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ProrosiTION 4. 3: If A is a recognizable and very pure subsemigroup of X * then
A is synchronizing.

Proof: From proposition 4.2, E, \ 0# @, so that, by using proposition 3.5
one has that A has a synchronizing pair in 4 x 4. Thus A is a synchronizing
subsemigroup of X *. [J

Some examples of (nonrecognizable) very pure subsemigroup of X * which are
not synchronizing are given in [4]. We say that a subsemigroup 4 of X * satisfies
the condition F(p) (cf. Restivo [11]) if

X*B?X*NB=0, 4.2)
where B=A\_A? and p is a suitable natural number (p=2).

PrOPOSITION 4.4: Let A be a subsemigroup of X *. If A satisfies the condition
F(p) then A'nE(S(A)<E,. Moreover if A is finitely generated then
E,=E(S(A)).

Proof: If A satisfies the condition F ( p) for a suitable natural number p, then

A<./H ,(X). From proposition 4.1, /H, (X)=+/F , (X) so that by making use
of equation (3.7) and lemma 4.1.

A" NESMA)E/F,(X)o nES(A)=F,(X)o nE(S(4)<E,.

If A is finitely generated then X * g\/ﬁ (X )=\/—I~: 4 (X), so that
X*onES(A)=E(S(A)<E,.

Since E, S E(S(A)) one derives E,=E(S(4)). O
ReEMARk 2: The above proposition is true under the only hypotheses that

Ag\/ﬁA (X)and X * g\/ﬁA (X) which are weaker than the conditions F(p)
and to be finitely generated respectively.

ProOPOSITION 4. 5: Let A be afree subsemigroup of X * such that A"\ E (S (4))is
a finite subset of S(A). The following propositions are equivalent:
P,. A has a bounded synchronization delay.

P,. A is very pure and satisfies the condition F(p) for a suitable natural
number p.

P,. The syntactic semigroup S(A) has a unique O-minimal ideal J which is
completely 0-simple. Moreover A' n E(S(A))=J and the group of J is trivial.
P,. For allee A’ nE(S(A)), eS(A)ec{e, 0}.

Proof: We shall prove the equivalence of previous propositions by showing
that P, - P,->P;->P, > P,.
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(P, - P,). Let A4 be a free subsemigroup of X* having a bounded
synchronization delay. By proposition 2.4 it follows that A is very pure.
Moreover the condition F (p) has to be satisfied for a suitable integer p=2. In
fact, otherwise, X * B* X * n B#@ , where sis the synchronization delay of 4.
Thus there would exist ¢, t’e X*, b, b,eB* such that tb; b,t’ € B. Since
(by, b,)e B* x B is a synchronizing pair for 4 it would follow tb,,b,t" € A and
B A?# @ which is a contradiction.

(P, —» P3). Let us now suppose 4 very pure and such that the condition F ( p)
is satisfied for a suitable integer p=2. From proposition 4.4 one has
A'nE(S(A)<E, and from proposition 3.6 it follows that the syntactic
semigroup S (A4) has a unique 0-minimal ideal J which is completely 0-simple and
has a trivial group. Moreover E, =J n E(S(A)) so that A'n E(S(A))<J.

(P53 — P,). Since J is completely 0-simple and the group of J is trivial one has
that for all the idempotents eeJ, eS(4)e<{e, 0}. Being A’ N E(S(A)cJ
proposition P, follows.

(P4 — P,). Let us first show that
B**1G6cE(S(A))nA’

where k=|A'\ E(S(A))|. In fact if fe B**! we can express it uniquely as
f=f1...fis1 with f;eB (1Zi<k+1). We construct then the sequence of
words: fi,fi1f2, ..., f1...fx+1 and that of their respective images in S(A)
my,mym,, ..., my...mgyq, having set m;= f;c(i=1, ..., k+1). Necessa-
rily one element of the previous sequence has to belong to E(S(A)). This is
obvious if all previous k+ 1 elements are distinct because k= | A"\ E(S (A))|.
Let us then suppose that there exist integers i, j, 1 <i<j<k+1, such that:

my...mp=my...miMyq...mp))=my...my(mq...mj°~,

for all positive integers p. Weset u=m;,, ... m;e A" and consider the sequence
u, u?, ..., u**!'. One of these elements has to be an idempotent. Let r,
1Zr=£k+1, besuch that u"=ecE(S(A)). Onehasm, ... m;=m, ... m;e and

from the hypothesis eS(A)eg{e, 0} and the fact that 0¢ A"
my...m)>=m,...myem, ... mye=my ... m;e E(S(A)).

Let m; ... m;e E(S(A)) for a suitable integer j, 1=<j<k+1. One derives
that fG=m1 ...mjmj+1...mk+1 and (f0)2=fGEE(S(A)). Hel’lce
B¥"1GcE(S(A))N A"

Let us now prove that all the pairs ( f, g)e B**! x B**! are synchronizing. Let
h, h' € X* be such that hfgh’'e A. Setting ho=s, h'oc=s', fo=f', go=g' one
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gets sf'g’'s’'eA’. Since f', g'eA'nE(S(A) and O¢A’, one has
sf'g's'f'=sf'=(hf )oe A’ and, similarly, g’'sf'g’s'=g's'=(gh’)c € A’. Thus
hf,gh'e A. O

ReMARK 3: The hypothesis that A’ \_E (S (A4)) is a finite set is certainly verified
if A’ is finite or when A is a recognizable subset of X *. In this last case the
equivalence between propositions P, and P, has been proved by A. Restivo[11]
by means of combinatorial arguments.

An example of a non recognizable code on the alphabet X ={ x, y } for which
we can use proposition 4.5 is given by the set B={ x"y"|n=1}. In this case one
can verify that B* o is a finite subsemigroup of S(B™).

In the proof of proposition 4.5 we have also shown that if 4 has a bounded
synchronization delay s then s=< | A"\ E(S (A))\ +1. We note that
|A"™\\E(S(A))| =|A"\J|. In fact in this case E(S(A)) nA’'SJ. Moreover
(cf. proposition 3.6) JNA'2E(S(A)n A’ sothat JnA'=E(S(A)n A"

Let us note, at last, that for the equivalence of P 5 to propositions P, , P,, P, it
is essential, besides the condition that J has a trivial group, that all the
idempotents of 4" arein J. In fact, for instance, if 4 is a free subsemigroup of X *
which is a noncounting regular set (or a star-free event) then S(A) is aperiodic
(cf. Eilenberg [S]) so that the group of J is trivial. From this one can only derive
that 4 is synchronizing. An example is given, over the alphabet X ={ x, y, z }, by
the free subsemigroup A={x, yx*z}* of X *. 4 is a noncounting regular set.
However 4 does not verify the condition F ( p) for any natural number p so that it
has not a bounded synchronization delay. From a syntactic point of view S (A)
has only trivial subgroups but the idempotent xo € 4" does not belong to the
O-minimal ideal J of S(4).

A subset 4 of X * is called strictly locally testable if there exist three finite sets
U, V, W such that:

AnX'X*=(UX* A X*V)\ X*WX* 4.3

where [ is the greatest of the lengths of the words of UL VU W.

A subset 4 of X * is called locally testable if it belongs to the Boolean closure of
strictly locally testable sets (¢f. McNaughton and Papert [7]).

Clearly a locally testable set of X * is recognizable (via Kleene’s theorem). The
following characterization of locally testable sets has been given by
McNaughton [8], Zalcstein [17], Brzozowski and Simon [1].

PROPOSITION 4.6: Let A be a recognizable subset of X . A is locally testable if
and only if for all ee E(S(A)), eS(A)e is a semilattice.
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A subsemigroup A< X * is called locally testable (resp. strictly locally testable)
if A is a locally testable (resp. strictly locally testable) subset of X *.

PrOPOSITION 4. 7: If A is a free and locally testable subsemigroup of X * then A is
very pure.

Proof: If Ais locally testable then from previous proposition for all e€ E (S (4))
eS (A) eis a semilattice so that, since A is free, by making use of proposition 3.2 it
follows that A is very pure. []

From the definition (4.3) one easily derives that a strictly locally testable
subsemigroup of X * has a bounded synchronization delay.

Let us now suppose that A is a finitely generated subsemigroup of X *. It holds
the following:

ProPOSITION 4.8: Let A be a free and finitely generated subsemigroup of X *.
The following propositions are equivalent:

P,. A is strictly locally testable.

P,. A is locally testable.

Ps. A is very pure.

P,. The O-minimal ideal J of S(A) has a trivial group and E(S(A)cJ.

Ps. Forall eeE(S(A)), eS(A)ec {e, 0}.

Py. A has a bounded synchronization delay.

The equivalence of propositions P, P, P has been shown by Restivo [10].
The equivalence of P, and P, has been proved by Hashiguchi and Honda [6]. An
algebraic proof of the equivalence of P, P4, P5 and Py is in De Luca, Perrin,
Restivo and Termini [3].

Let us remark that the equivalence of propositions P ; — Py is a corollary of
proposition 4.5. One has only to observe that if A is finitely generated then the
condition F (p) is certainly verified for a suitable integer p, and that if 4 is very
pure by propositions 4.4 and 3.6 it follows E,=E(S(A4)) nJ. One can also
prove the equivalence of P, and the previous propositions (P ; — P4) by using

proposition 4.7 and the characterization of locally testable languages given by
proposition 4.6.
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APPENDIX

PROOF OF PROPOSITION 3.3

From definitions (3.5) and (3.6) one has always that E, (S)= D, (S). Let us
now suppose that A4 is a recognizable subsemigroup of S; we have to show that
D,(S)SE,(S). Let eeD,(S) and s, teS* be such that sete A. Since e is an
idempotent for any integer n=1, e"=¢ and se"te 4. From definition (3.5) of
D, (S) a sequence of pairs of elements of S:

(e1,€2), (e3,€4) ... (e2n-1, €20)
exists such that e,,_;e,,=e (h=1, ..., n)and for all h, k,1<h<k=Zn:

se" le, 1, eme P ey, ey e Fted, (A1)

B

where e® = 1. Since 4 is recognizable the syntactic congruence = of A is of finite
index. Hence if n>|S(4)| a pair (i, j) of positive integers exists such that
lgi<j=nand e, _;=e,;_;. By equation (Al) one has

j—i—1 - j—i—1 _ j-i
eye’ €yj-1=eye’ eri_1=(ezez-1)" "

Thus since e,/ ' 'e,j_;€A then (eyey_;)' 'eA. This implies
(eZiezl'_l)zeA. Settingfl=e'_1eZi_l,f2=eZie"—'=eZie one haSZ

fifa=e,

fafi=esee’ te, 1 =eyee,_ 1 =(eye-1)2 €A,

and sfy, f, te A. This shows thatee E, (S) and then E, (S)= D, (S). The equality
E,=D, is a trivial consequence of this result in the case S=S(A4)
and A=A4Ac. O
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