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TOWARDS A GENERAL PRINCIPLE
OF EVALUATION FOR APPROXIMATE ALGORITHMS (*)

by A. AIELLO, E. BURATTINI, A. MASSAROTTI and F . VENTRIGLIA (X)

Communiqué par J. F. PERROT

Abstract. — The concept of reducibility, the choosing ofmeasures of approximate solutions and the
evaluating fonctions for approximate algorithms are investigated in the present paper. The anaiysis
carried out there shows that an evaluating function, which refers to the worst solution too, can be
introduced. The adoption of such function is more advisable under many respects.

Résumé. — Le but de cet article est Vétude de la conception de la réductibilité, le choix des mesures
de solutions approchées et les fonctions pour évaluer les algorithmes d'approximation. L'analyse
montre qu'une fonction d'évaluation, qui considère aussi la solution pire, peut être introduite. Cette
fonction élimine les contradictions qui étaient engendrées par les autres fonctions.

1. INTRODUCTION

There is a large class of combinatorial problems involving the détermination
of properties of graphs, integer s, finite families of finite sets, boolean
expressions, etc. By now it is widely accepted, as a reasonable working
hypothesis, that such problems can be ail considered intractable since there exist
no polynomial-bounded algorithms to solve them. Karp [5] has shown that
some of them are strongly related so that if there exists a polynomial-bounded
algorithm for one problem the same occurs for every other problem in the class,
which is called iVP-Complete.

The previous resuit of Karp has been obtained by formulating the problems as
language-recognition ones. The concept of reducibility among languages plays,
then, a fundamental rôle in this kind of approach.

(*) Reçu juin 1978, révisé mars 1979.
O Laboratório di Cibernetica C.N.R., Arco Felice(NA), Italia.
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228 A. AiELLO et al

Many JVP-Complete problems can be considered such as optimization
pröblems. According to Johnson [4], an optimization problem & consists of:

(1) a set INPUT^ of possible inputs;
(2) a map SOL^ mapping each u e INPUT^ to a finite set of approximate

solutions;
(3) ameasurem^: (J SOL^ (u)-»Q + defined for ail possible approxi-

mate solutions;
(4) the assignement of the value MAX or MIN to the function BEST

depending on whether SP is a maximization or minimization problem.
From the firm belief in the intractability of JVP-Complete problems cornes the

attempt of searching fast heuristic algorithms for obtaining "good" approximate
solutions.

Evaluating the performance of approximation algorithms, that is defining
quantitatively how much "good" their solutions are, is the first task of an
approach of this kind.

D. S. Johnson [4] and S. K. Sahni et al. [6] have proposed to evaluate the
approximation algorithms by analysing their worst case behaviors and have
both introduced evaluating functions substantially equivalent each other.

The main resuit of those studies, besides setting up several fast approximate
algorithms able to yield almost optimal solutions, has been the indication of a
tentative classification of the JVT-Complete problems üsing just the
approximation algorithms as classification tools. In particular, problems can be
quoted for which almost optimal solutions have been found by means of linear
algorithms and, on the contrary, it has been prooved that the ascertainment of
the existence of e-approximate algorithms for some problems is itself a NP-
Complete problem.

Remaining in the setting of the heuristic approach to the study of
combinatorial problems we have tried to investigate the concept of reducibility,
the choosing of measures of approximate solutions given for optimization
problems and the evaluating function of approximate algorithms as well as the
corrélations which may exist among such éléments.

The results show that:
(1) The existence of reducibility between two combinatorial problems when

they are represented in form of language récognition does not necessarily imply
that one of them is reducible to the other also when both are represented in the
form of optimization problems. Nevertheless, the f act that two combinatorial
problems can be. represented as optimization problems, together with the
existence of one, but not necessarily only one, polynomial-bounded réduction
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EVALUATION FOR APPROXIMATE ALGORITHMS 229

fonction, are indispensable conditions in order we could just consider
approximate algorithms and reducibility between approximation problems;

(2) the évaluation function of approximation algorithms, which also is
arbitrary, is bound by invariance conditions induced by available réductions;

(3) certain results concerning the behavior of approximation algorithms
pertaining to some optimization problems must be revised, as well as it is
necessary to revise certain conclusions relating to the classification of NP-
Complete problems. The work reported hère was first presented at an I.R.I.A.
Seminar in December 1976. Further papers on the same subject include[l, 2, 3].

2. REDUCIBILITY AND APPROXIMATION ALGORITHMS

In the paper of Karp quoted before, among other things, it is reported under
the title « Main Theorem » a list of iVP-Complete problems from which it
foliows that:

(a) K-GRAPH-COLORING oc EXACT-COVER;

(b) EXACT-COVER oc KNAPSACK,

where the symbol oc stands for "is reducible to".

Each of the three problems above can be formulated as an optimization
problem [4] :
KNAPSACK:

I N P U T x - { < r , s, b}: Tis a fini te set, s: T->Q+ is a map
which assigns to each xeTa. "size" s (x),

and b>0 is a single rational number},

{r'£r: £ s(x)Sb}t
xeT'

')= X s(x);
xeT'

EXACT-COVER:

= {F: F is a finite family {Slt S2> . . . , Sp} of finite sets},

(F) = {Ff^F:[jS= [j S},
SeF' SeF

SeF'

vol. 13, n° 3, 1979



230 A. AiELLO et al

GRAPH-COLORING:

INPUTW = { G{N, A): G is a finite undirected graph
with nodes N and arcs A},

, 2, . . . , \N\}: if there is an arc
between nodes x and y, h (x)/fc (y)},

, for some xe JV} |.

At first sight it could seem that it is possible to transfer the results given by
some approximation algorithm of KNAPSACK to the solution of the gênerai
problem of EXACT-COVER and then, through the transitive property of
reducibility among JVP-Complete problems, from KNAPSACK to GRAPH-
COLORING. But this is not the case since the reducibility among combinatorial
problems in the form of language récognition does not change immediately into
reducibility among optimization problems.

In fact, considering the réduction function between EXACT-COVER and
KNAPSACK, let us remark that some optimal solution of the former

: ( J S = ( J S and Z | S | = | U 5 | ) d o e s a l w a Y s correspond to
SeF' SeF SeF SeF

every given optimal solution of the latter (Tf<^T: ]T s{x) = b), but the
XET'

same réduction function does not put any solution of the EXACT-COVER

: (J S= (J S) into correspondence with the approximate solutions of
SeF' SEF

KNAPSACK (Tfg T: £ s(x)<b).
xeT'

Analogous considérations can be done for the réduction between X-GRAPH-
COLORING and EXACT-COVER.

Now we want to show how some properties coming from the reducibility, in
particular the équivalence among JVP-Complete problems formulated in terms
of optimization problems, limit the*choice of the evaluating function of the
approximate algorithms. For these reasons, we shall then refer to a spécifie
problem and its possible schematizations.

3. CONCRETE PROBLEMS AS LANDMARKS OF THE THEORY

Consider a multiprogramming operating System and suppose that, at a certain
moment, there are n programs allocated in a HSM (high speed memory) starting
at the addresses xlt . . ., x„ with lengths llf ..., ln. For a correct operating, at
each instant, one has to fulfill the conditions

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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(1)

and the hypothesis

fi S available space in HSM. (1 ')

If during the opérations it happens that some programs change their memory-
space requirements, one has to take care to move certain programs in order that
condition (1) be always satisfied.

Since relocating one or more programs costs in terms of time and space,
assuming the cost of every relocation equal to a costant, the problem arises of
determining either which is the smallest number of programs to be reallocated
for evoiding overlappings or, equivalentely, which is the larges t number of
programs to be not reallocated.

Given the n initial addresses, to each assignaient of lengths corresponds a set
of solutions of the problem, a subset of which constitutes the set of the optimal
solutions. Consider now the set T of the non-ordered pairs {i, j } of programs
tiansgressing condition (1) and let F be the family of the nnite sets { S x, . . . , Sn }
where

Sj = {peT\jep},

that is, the set of the pairs containingj and some program located too close to j .

Every subset Iü{1, ..., n) such that

hei

détermines a possible correct reallocation: that concerning only the programs

belonging to L So, being T= (J Sjf the considered problem is reduced to the
SjeF

well-known SET-COVERING and its optimal solution is given by the
MINIMUM SET-COVERING of the family F.

Another way to formulate the same problem is obtainable generating the
undirected graph G{N,A) in which the ï-th node represents the i-th program and
there is an arc bet ween nodes i and; if and only if the corresponding programs do
satisfy to the condition (1). According to this formulation every completely
connected subgraph G*(AT*, A*) of G(N, A) singles out a set of mutually

vol. 13, n° 3, 1979



232 A. AïELLO et al.

consistent programs, those corresponding to N*. In other words every
MAXIMUM CLIQUE of the graph G(N, A) yields one of the largest available
sets of programs which do not need to be reallocated.

Moreover, eonsider the graph R(N, B) in which the f-th node represents the
ï-th program and there is an arc between the nodes i and j if and only if the
relative programs do not satisfy to the condition (1). In this case a subset N * £ N
such that every arc of B has, at least, one node belonging to N * represents a
subset of programs whose reallocation can restore consistence among all the
programs. So that the smallest set of programs which need to be reallocated is
given by the MINIMUM NODE-COVER of the graphR(N, B).

Now given n programs to be stored in HSM, let their addresses be xx , . . . , xn

and llf . . ., ln their memory-space requirements (lengths), that is an assigned
input IPR of the PROGRAMS REALLOCATING problem, let:

& be a generic corresponding solution, that is a reallocation opération in
HSM;

^ * be an optimal solution, that is the less "expensive" among all the
solutions §P\

SPy^ and &%<g be respectively a generic solution and an optimal solution of the
SET-COVERING problem related to the given PROGRAMS REALLOCA-
TING problem and to the input Isc corresponding to IPR ;

0*^ and ^ % the analogous for the related NODE-COVER problem, and
&<g and 9% the analogous for the related CLIQUE problem.

It can be easely seen that:

and that for every approximate §P there exist corresponding # ^ , ^*jf<e and §?<#
such that

I dp \ — \8p \ — n — \3p I n\

So for each input IPR of PROGRAMS REALLOCATING problem we can
point out the following relation among the approximate and optimal solutions of
related problems relative to inputs ail corresponding to the same input IPR :

Jf<€ (4)

Let us suppose there exists a heuristic algorithm A which approximates the
optimal solutions of the NODE-COVER problem in a rather "good" way. If the
NODE-COVER problem is related to a PROGRAM REALLOCATING
problem, to each solution # ^ of se corresponds a solution # of the reallo-
cating problem.

RA.l.R.O. Informatique théorique/Theoretical Informaties
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Consider now the algorithm sé obtained adding to sé the following conclusive
step:

— compute the complémentation {1, . . . , n} — §?#<$ (5)

since the graph G(N, A) is the complement of the graph R(N, B), each
complémentation to {1, . . . , n} of a NODE-COVER of the graph R (JV, B) is a
CLIQUE of the graph G(N, A). So, the algorithme really gives the
solution ^ , of the CLIQUE related to the PROGRAMS REALLOCATING
problem. Since both ^ and 0*^ imply the same concrete solution §? of the
considerèd concrete problem (the former gives the programs which do not need
reallocation, the latter those which do need reallocation), all the solution-
measures should agree with the fact that '&,&« and §?#? must be considerèd
equally "good" as well as every évaluation function of approximate algorithms
should consider both sé and sé equally "good" approximate algorithms. From
this considération it foliows that, according to equality (4), the absolute
différence between the cardinality of an approximate solution and the cardinality
of the optimal solution relative to the same input, represents an absolute
measure for approximate solutions of CLIQUE and NODE-CÖVER which is
quite satisfactory as regards invariance of « goodness" of solutions of the
PROGRAMS REALLOCATING problem under changes of the solving
process which they come out from.

4. INVARIANCE OF THE EVALUATING FUNCTIONS AND DUALITY

Besides any références to concrete problems, we can more generally say that
NODE-COVER and CLIQUE are really dual aspects of the same combinatorial
problem. This duality arises just from the fact that the same information
contained in an undirected unweighted graph can be likewise contained in the
complemented graph, apart from a simple inversion into the code which assigns
a given meaning to the existence of an arc between two nodes and the opposite
meaning to its non-existence. Therefore, we can assert that if there is a "good"
approximate algorithm for NODE-COVER there must be a "good" one for
CLIQUE and vice versa.

Moreover an evaluating function cannot be quite arbitrary but it must be
invariant under complémentation of graphs.

Consider now two problems whose statements share the following beginning
part:

<< Given the undirected graph G(N,A) and the weighting function
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W:A^>Z+, fmd k disjoint subsets Slt. . . . , Sk of N such that:

i==l

a n d . . . »
One of them, that cailed X-MINIMUM-CLUSTER, concludes adding the

following request:
<<.. . such to minimize

w ({u> u

The other, cailed 1£-MAX-CUT, concludes as following:
<<. .. such to maximize

WKMC^ £ w({u, v})}}.
{U,V}EA

ueSi
veSj
'"<ƒ

In other words it is possible to divide the set N in k parts either minimizing the
summation of the weights inside k subsets (K-MINIMUM-CLUSTER), or
maximizing the summation of the weights outside k subsets (X-MAXIMUM-
CUT).

But, since
m KC + mKMc = Const. (6)

where

C o n s t . = £ ' w({u,v})
{u,v}eA

is the summation of all the weights, it is beyond doubt that the X-MINIMUM-
CLUSTER and X-MAXIMUM-CUT are dual formalizations of just the same
problem. So it is quite contradictory to think that there could exist à "good"
approximate algorithm for the former which is "not good" for the lat ter.

Since duality can more generally corne out whenever two optimization
problems concern respectively minimization and maximization of bound
quantities, an evaluating fonction of approximate algorithms must be at least
invariant under alternation of two optimizing quantities which linearly depend
each other. Formally, given two dual optimization problems (représentation of
the same real problem) Qi and Q2, let q± (u) and q2 (M) be the parameters to be

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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optimized relative to the same input u and let qf (u) and q% (u) be the
corresponding optimal values.

Let a linear dependence be stated between qx and q2 :

where C is a constant.
An evaluating function SF must satisfy the following condition of invariance

under linear transformation:

while both J^ (qf (u)) and 3F (q* (w), referring to optimal solutions, must assume
the minimum value of#" (marginally, this implies that correctly defined
evaluating functions should always be lowerly bounded functions of the input u).

6. RELATIVITY AND INVARIANCE OF THE EVALUATING FUNCTION

In the optimization problems, an absolute measure of "goodness" of
approximate solutions can be given just by the absolute différence between the
value q obtained for the parameter which had to be optimized and the optimal
value q* obtainable for the same input. We already hinted at this possibility at
the end of section (3). Since absolute measures allow only to compare
"goodness" of solutions relating to the same problems and to the same input, it is
necessary to introducé "relative" measures for achieving more gênerai
comparison. But, to save invariance, référence values must be chosen with
caution.

To illustrate certain contradictions into which one can fall when invariance is
neglected, we have to analyze some results given in the liter at ure. For ex ample,
Sahni [6] has proposed the foliowing relative measure of approximate solutions:

(7)

trying to evaluate approximate algorithms by looking for absolute upper bounds
of the function (7). In this way he found a fast approximate algorithm (the
Computing time is proportional to the "size" input) for the K-M AX-CUT and he
demonstrated that it was an lj//c-approximate algorithm, that is, according to the
formalism introduced in section (4), the relation

mKMC

is always satisiïed, for all inputs.

vol. 13, n° 3, 1979
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But, from (6), putting C in the place of "constant", we have

and, from (8), by simple substitutions and manipulations, we get for the
K-MINIMUM-CLUSTER the following évaluation:

Kc k mïc

So the same partition of the set N of nodes has two different worst case
évaluation according to whether it is considered as a solution of X-MAX-CUT
or as a solution of K-MINIMUM-CLUSTER in spite of the fact that, as it was
shown in section (4), 7C-MAX-CUT and K-MINIMUM-CLUSTER are really
dual aspects of the same problem. It is easy to deduce that this contradiction
cornes out just from the non-invariance of the relative measure (7) under linear
transformations depending on the inadequacy of the choice of the référence value
(for which has been taken the optimal value q*).

From a merely formai point of view it is evident that the invariance of (7) under
gênerai linear transformation can be saved only by introducing into the
denominator a second term T transforming just like the other involved
parameters. In practice it neèds to look for a suitable second référence value. We
propose to assume T as given by the value that the parameter to optimize
assumes in correspondence of the trivial solution of the optimization problem for
the given input. Hère for "trivial" solutions we mean that approximate solutions
which are obtainable just without any computation. For example, the trivial
solution of SET-COVERING is given by all the sets of the assigned family, that
of NODE-COVER is the set of nodes N', that of iC-MINIMUM-CLUSTER and
K-MAX-CUT is the partition of iV in which ône set is equal to AT and all the other
are empty sets, that of GRAPH-COLORING is the number of the nodes, that of
the KNAPSACK is the empty set, etc.

Moreover, besides the necessity of saving invariance we think that a good
relative measure must refer the absolute measure \q — q*\ of an.approximate
solution to that | T—q*\ of the trivial solutions. In other words we formally
propose to adopt the following relative measure of approximate solutions

r =
q-q*
T-q

(10)

which assumes all the values into the interval [0, 1]. 0 and 1 corresponding,
respectiveiy, to the optimal solution and to the trivial solution.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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As an example \of application we want briefly to show what happens for
K-MAX-CUT and K-MINIMUM-CLUSTER when the measure (10) is used in
place of (7). We have in correspondence of the trivial solutions, respectively, the
following^ values of the optimizing parameters:

(11)

(12)

In fact, both for a trivial solution of K-MAX-CUT and for one of
K-MINÏM UM-CLUSTER (which are bijectively mapped one into the other by
the identity) all the nodes are put in only one set, so that (11) and (12) corne out
respectively from the two perfectly equivalent implied conséquences:

— there is not any arc between two different sets in a trivial solution of
K-MAX-CUT;

— all the arcs do connect nodes belonging to the same set in a trivial solution
of K-MINIMUM-CLUSTER.

It follows that for K-MAX-CUT:

'j<r\4/^ —

mKMC ~ mKMC

m KMC

which for (11) reduces itself to that given by (7) and consequentely (8) holds again.
For what concerns K-MINIMUM-CLUSTER we obtain from (10) and (12) the
following relative measure of solutions

But, from (6), being

by substitution we obtain the equality

YLKMC >

mKC-m KC

C-m*c

nKMC

rn\'KMC

That is, for a given partition of nodes there is actually one and only one relative
measure both when it is considered as a solution of K-MAX-CUT and when it is
considered as a solution of K-MINIMUM-CLUSTER. So it follows that every
l//c-approximate algorithm solving the former must came out to be a
1/fc-approximate algorithm for the latter and vice versa.

vol. 13, n° 3, 1979



238 A. AIELLO et al.

7. RELATED RESULTS

In this final section we want to conclude the present paper by giving a brief
account of some other results which can be obtained adopting the relative
measure (10).

SET-COVERING. For every input size there exists an input in which the
set is Uk = { ulf . . . , u2k) and the given family of sets F={Sif . . . ,
Sk, Sk+i, . . . , S$kf2} is such that:

Si = {uk + 2i-i>uk + 2i} for i = l , . . . , f c / 2 ,

Si = {ui-kj2,ui+k/2} for ï = fc/2+l, 3fc/2.

For this kind of input the optimal solution is evidentely given by the family
F'= {Sfc/2 + i, • . . , S3k/2} and the optimizating parameter (the cardinality of
the solution) assumes its optimal value

An algorithm like that proposed in [4], founded on the principle of "priority
of the largest set", admits as approximate solution the trivial solution
F = { Slr . . . , S3fc/2 }. So in the worst case

From this we can deduce that the worst case relative measure given by (10) is
always well-deûned and equal to 1. It means that the "priority of the largest set"
principle does not guarantee better solutions than those obtainable by trivial
algorithms, from a worst case analysis point of view.

CLIQUE. No satisfactory approximate algorithm for CLIQUE is presently
known. Since CLIQUE is dual of NODE-COVER and NODE-COVER is
reducible to SET-COVERING also when they are considered optimization
problems, the previous f act seemed in contrast with the alleged existence of a
"good" algorithm for SET-COVERING. The contradiction disappears in the
light of the critical analysis that has been done in the previous sections.

GRAPH-COLORING. The existence of e-approximate algorithms for
K-MINIMUM-CLUSTER does not imply at all the existence of polynomial-
bounded optimal algorithms for GRAPH-COLORING, when the function (10)
is used.

HAMILTONIAN CYCLE. The existence of e-approximate algorithms for
TRAVELLING-SALESMAN does not imply at all the existence of polynomial-
bounded optimal algorithms for HAMILTONIAN CYCLE when the function
(10) is used.
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For this two last problems, the adoption of the relative measure (7) has
induced Sahni [6] to achieve just the opposite results.
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