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COMPLEXITY ARGUMENTS
IN ALGEBRAIC LANGUAGE THEORY (*)

by Helmut ALT and Kurt MEHLHORN (*)

Communiqué par J. BERSTEL

Abstract. — Each algorithm recognizing any generator of the rational cqne ofeontext-free languages
requires space Ü(log n) and time x space Cl(n2).

Résumé. — Chaque algorithme reconnaissant un quelconque générateur du cône rationnel des
langages algébriques nécessite l'espace Q(Iog n) et un produit espace x temps en Q(n2).

0. INTRODUCTION

A frequently used method in complexity theory is réduction. The idea is the
following: Assume, that there are given two formai languages Lx c=A*
and Z,2c-2*(A, 2 finite alphabets) and a recursive (partial) function
g : A* -> £* with the property:

weLx <=> g(w)eL2.

We dénote this property by L1 ^ I 2 -
9

Assume further, that there is an algorithm A to recognize L2: Then the
following algorithm B recognizes Lx (input w):

1. compute g{w)
2. apply A
So the time (space) requirements of B axe those of A plus those to compute g.
Thus upper bounds for the complexity of L2 turn into upper bounds for Lr

and lower bounds for the complexity of L± turn into lower bounds for L2.
The most well-known application of réduction is to show that certain

languages are AfP-complete [1].
The importance of réductions between languages in complexity theory

delivers a connection to algebraic language theory. One resuit of the latter theory
is that for every generator G of the rational cône of context-free languages there
is a certain ûxed language Ex and a simple réduction g with E1 ^ G. For this

g-

language we will show (again by réduction) lower bounds for space-complexity
and the product of time and space complexity. So we have these lower bounds for
all generators of the class of context-free languages.

(*) Reçu août 1978, révisé octobre 1978.
O Universitàt des Saarlandes.
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218 H. ALT, K. MEHLHORN

By this we have a complexity criterion that certain languages are non-
generators by giving récognition algorithms whose complexités are below the
lower bounds mentioned above.

1. THE PRODUCT OF TIME- AND SPACE COMPLEXITY OF A MULTITAPE TURING
MACHINE

In the following we mean by "multitape turing machine" an ofïline turing
machine with one read-only input tape and several work tapes.

We say that it has time complexity T{n) if it performs at most T(n) steps for
each input of length n. Space complexity S (n) means that for each input of
length n at most S(n) cells of the work tapes are used. For two
fonctions ƒ g : N^>N, where N is the set of natural numbers, f=O (g) means
that there exists a constante, such that ƒ (n)^c^(n) for almost allneiV.
f = Q(g) means that there exists a constant c<0, such that f (n) ̂ c•g (n) for
infinitely many neN. For reasons of simplicity we assume that the Turing-
machines are deterministic but the proofs and results apply to nondeterministic
machines as well. There exists a close connection between the product of time
and space complexity of multitape turing machines and the time complexity of
one-tape-Turing-machines. In fact the following holds (cf. [3]):

THEOREM 1: To every multitape-Turing machine M with time complexity Tand
space complexity S one can construct an equivalent one-tape turing machine with
time complexity T-S.

Proof (for a more detailed version see [3]): If M has k -1 work tapes, M' has
k tracks on its tape.

We simulate an arbitrary configuration of M:

input tape \ x
10

(a) '23

'11 '12

X 24 25

work tapesl •

x k 1
xk21 xk3 X k4 i

finite contr.

state : s
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by the foliowing configuration of M':

219

(b)

1*1.-1
X22

x k 0

X10
X 2 3

• •

x k 1

X11

•

x k 2

•

#

X12
X25

x k 3

X13
X 26

•

x k 4

X U
X27

x k 5

X15,
X28

•

x k 6

finite contr.

state : s

The special symbol # marks in each track the heao! position on the
corresponding tape of M.

So M' reads exactly the tuple which is read by the k heads of M and can
simulate one step of M by overprinting the symbols on the tracks and moving
the #'s according to the movement of M's heads.

This opération obviously requires constantly many steps. After this M' has to
bring back all # 's in one cell again according to (b).

This is done by shifting each of the tracks 2 tp k. Since on these tracks there are
at most S (n) non blank cells, the time complexity for this is O (S (n)). So the time
complexity of Af' to simulate one step of M is O(S(n)) Le. the whole time
complexity is O (S (n) • T(n)). By a well known result in complexity theory (cf. [8])
the constant in the O-term can be reduced to L

Since one knows lower bounds on the time complexity of one-tape turing
machines ([8], [7]) we have herewith lower bounds on the time-space-product of
arbitrary turing machines:

Let be PALc{0, 1, 4: }* the language of palindromes over {0, 1}, i.e.:

where (xt ... xn)
R : =xn... xx for all x l f . . . ,

vol. 13, n° 3, 1979
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It is known (cf. thu 10.7 in [8]) that any one tape Tm. recognizing PAL has time
complexity Q(n2).

So we get:

COROLLARY 1 : Let M be a multitape turing machine with time complexity T(n)
and space complexity S(n) recognizing PAL, Then

T(n)'S(n) = Q(n2).

2. COMPLEXITY LOWER BOUNDS FOR THE RECOGNITION OF GENERATORS

In this chapter we will establish lower bounds on the complexity of algorithms
recognizing generators of the rational cône of context-free languages. (i.e.
languages G with the property that every context-free language can be obtained
by applying a rational transducer ( = nondeterministic imite automaton with
output) on them. For more details see [5].)

We get the lower bounds by the fact that every generator is "easüy" reducible
to some fixed language Elt which is itself "easily" reducible to PAL.

Let Ex cz {a, b, c, à }* be the language generated by the grammar

S-+aSbSc\d.

Then in [4] the foliowing is shown:

THEOREM: For any generator G of the cone of context-free languages there
exists a reguïar language K and a homomorphism <p such that

E1=<p~1(G)nK.

This resuit delivers us an "easily" computable réduction from any
generator G to Ex.

In fact let G be a generator and let q>, K be chosen as in the theorem above.
Then obviously

weEx o <p(w)eG and wéK,

Let i^i be a finite automaton with output Computing cp and R2 a finite
automaton recognizing K.

If now M is some (multitape-) turing-machine recognizing G then the
folio wing turing machine M' will recognize £ t :

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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M M I I I 1 I 17 input tape

contains <P (a )

finite
control of

M'

7
work tapes
of M (and of M')

I I

If R2 has determined that the input is in K the input head is reset to the
beginning of the input and M' works in the following way: A finite tape in the
finite control will contain cp (a) if a is the symbol just read by M'. If M"s input
head is going to leave this tape at its right (left) border R will produce (p(£>),
where b is the symbol right (left) from a in the input.

So the amount of time (space) of Af' in addition to the requirement of M is
linear (constant) in the length of the input. Since obviously linear time is
necessary to recognize any generator G, it holds:

COROLLARY 2: Ifsome generator G is recognizable by some Turing machine with
time complexity T and space complexity S then E1 is recognizable with time T
and space S too.

With this corollary it is possible to transfer lower bounds for the récognition
of E1 to the récognition of any generator.

vol. 13, n° 3, 1979
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In order to establist* these lower bounds, we consider the language PAL.

PAL is reducible to Eu Le. it holds:

LEMMA 1: There extfts afunction

g: \X), 1, $y^\a,'b, c, à)*
with:

(a) PAL g Ex;
g

(b) g is computable in Hnear time and constant space.

Proof: We define g by
(i) g(w) = siîwt{0, l}*-{*}-{0, 1}*;

(ii) g(w1 <t w2) = (pi(wi *) '92(^2) ;
where 9 ^ 9 2 ^ r e t n e faomomorphismus defined by

X

92 M

0

adb

c

1

a

bdc

d

z

and we claim: (arbitra^)

wePAL *> g(w)eEi for ail we{0, 1, * }*.

Proo/* =>: InductioP on fc = ( | u; | -1 ) /2 , where | w \ dénotes the length of w.

ïîk = 0 then w = *

/c —*- /c H-1 : we PAL with | w | > 1. Then obviously

w~&wföi with a e { 0 , l } , u /e PAL.

By induction hypothesis ^(lü'JeEi.

If a = 0 then
g (w) = ârfft ^ (M;7) C

and hence ^
S -• aSMc •->,' adbg{w')c = g(w).

An analogous statement holds, if a = l.

-<=: Let w be such that ^(züJeEi. We show by induction on \g(w)\ that
w e PAL. If I g (w) \ ̂  3 then g{w) = d and hence u? = cj:. Assume now | g {w) | > 3.
Then by définition of #:

for some u;x,

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Since g(w)eE1 g(w) cannot begin or end with a ü ' and hence wlf

Assume that

w = Owf
1<£w2 1 for some w[, w2e{0, 1 }*

Then

g(w) = adbg{wf)bdct where w'^w'x^w'i-

Since the first three letters of g (w) can only be generated by

S - • aSbSc -> adbSc,

It follows

i.e.

This is not possible since obviously no word in E1 with length ^ 2 ends
with a 'd'. In the same way the assumption that w=\ w^ <£w20 leads to a
contradiction, such that

for some ae{0, 1} w\, w2e{0, 1 }*.

Assume that a = 0.
So g (w) = adb g (wf) c.
Like above it follows that

i.e. giw^eEi. By induction hypothesis we get: w'ePAL and thus

Analogously one can show that we PAL if oc= 1.
The fact, that g is computable in linear time, is obvious. Using the same

construction as in corollary 2, we get:

LEMMA 2: IfE1 is recognizable with time Tand space S the same holdsfor PAL.
Moreover, if any generator G is recognizable with time Tand space S the same

holdsfor PAL.
Now the lower bounds on the récognition of PAL can be transferred to any

generator G. By corollary 1 we get:

vol. 13, n° 3, 1979



224 H. ALT, K. MEHLHORN

THEOREM 2: Let G be any generator recognizable by some Turing machine
with time complexity T and space complexity S, Then

The second lower bound on récognition of generators we get by a resuit in [2]:
If some non-regular deterministic language is recognizable with space

complexity S then

) = Q(logn).

Especially this resuit holds for PAL, such that we have:

THEOREM 3: If some generator G is recognizable with space complexity S, then

These lower bounds has been known before for some special generators e. g.
for the Dyck-language with two types of brackets D2 ([2] and [3]).

They provide us with complexity criterions in algebraic languages theory:
In order to show that a language is no generator, it suffices to give a

récognition algorithm using less than O (log n) space or less than Q(n2) time x
space.

For example the context-free language

{0, 1, # }V{bin( l )#bin(2)# . . . #bin(n)|neN},

where bin(ï) is the binary représentation of the number z, cannot be a generator
since it is recognizable with space ö(log log n) {cf. [9]).

Furthermore the languages {anbn;neN} and D[* (Dyck-language with one
bracket type) cannot be generator, since they are recognizable in space x
time 0 (n(log n)2). The ordinary counter automaton with its counter represented
in binary does the job. We leave it as an exercise to the reader that both languages
are recognizable in space x time 0(n log n). In the first case it is only necessary
to observe that one half of the carries propagate only one position, an additional
one quarter propagates only two positions, . . . In the second case this
observation has to be combined with a redundant number représentation.

None of the applications above is neW. Moreover, having space x time
complexity Q (n2) is only a necessary condition for being generator. The criterion
seems to fail for the language Lo in [6].

The relevance of this contribution certainly lies in giving a connection between
complexity theory and algebraic language theory.
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