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ONE COUNTER LANGUAGES
AND THE CHEVRON OPERATION (*)(i)

by S. A. GREIBACH (2)

Communiqué par J. BERSTEL

Abstract. — For a language L and new symbols a and b, define the chevron of L as
< L > = { a" wbn | n ̂  0, weL}. Thefamily ofone counter languages is strongly résistant to the chevron
opération in the sensé that ( L } is a one counter language if and only if L is regular.

Résumé. — Soit L un langage défini sur un alphabet ne contenant pas les lettres a et b. Alors,
< L > = { an wbtt | n ̂  0, weL) appartient à la famille des langages à un compteur si et seulement si L
est un langage rationnel.

The family of linear context-free languages not only is not closed under
concaténation but is strongly résistant to concaténation in the following sensé.
If Lx and L2 are languages over disjoint alphabets, then Lt L2 is linear context-
free only if either Li or L2 is regular [9], Goldstine showed that the least full
semiAFL (family of languages containing at least one nonempty language and
closed under union, homomorphism, inverse homomorphism, and intersection
with regular sets) containing the 1-bounded languages has the same property [8],
and recently Latteux demonstrated this property for the least full semiAFL
containing the two-sided Dyck set on one letter [12], A similar phenomenon has
been observed for other opérations. The family of ultralinear languages is
strongly résistant to Kleene * in the sensé that, for a language L and a new
symbol c, (Le)* is ultralinear if and only if L is regular [7]. The least full
semiAFL containing the bounded languages is likewise strongly résistant to
Kleene * [8].

We can make this concept more précise. For opérations on at least two
languages, the définition of "strongly résistant" is obvious.

DÉFINITION: Let O be a fe-ary opération on languages, k^ 2 and if a family of
languages. We say that J5f is strongly résistant to 0> if, whenever <ï>(Llf . . . , Lk)
is in J5f and the languages Lf are over pairwise disjoint alphabets, then there is
somej such that L} is regular.

(*) Reçu août 1978 et dans sa version définitive décembre 1978.
(') The research reported in this paper was supported in part by the National Science Foundation

under Grant No. MCS 78-04725.
(2) Department of System Science, University of California, Los Angeles.
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190 S. A. GREIBACH

For unary opérations, the direct version of this définition (for fc— 1) would be
"too strong" since, e.g., L* can be regular for L a nonregular language. Thus.
the "résistance" is to a marked version of the opération.

DÉFINITION: Let Si and S2 be sets of unary opérations on languages. They are
adequately associated with each other if, for i,j in {1, 2}, i^j, the following
holds. For each language L and opération O, in St, there exists an opération <£,
in Sj such that O; (L) can be obtained from L using a finite number of
applications of homomorphism, inverse homomorphism and intersection with
regular sets and exactly one application of Oj.

Thus, if Si and S2 are adequately associated with each other, and <&! is in S1}

Oi (L) can always be expressed as M1 (O2 (M2 (L))) for some <D2 in Sx and finite
state transductions (a-transducer mappings) M1 and M2[5, 6, 13]. For example,
if Sx contains only Kleene *, then it is adequately associated with the set S2 of
opérations Oc, c an individual symbol, where 3>c(L) = </£ if c appears in L, and
Oc(L) = (Lc)* otherwise. If Si is the set of (1, R) homomorphic replications
(1, R, hlf h2) [where (1, R, hlf h2){L) = {hl(w)h2(w

R)\w in L}], then we can
take S2 as the set of opérations 9C where Qc(L)=(fi if c appears in L, and
0C (L) — { wcwR | w in L } otherwise.

DÉFINITION: A family of languages 5£ is strongly résistant to a set of unary
opérations S± if Sx is adequately associated to a set S2 of unary opérations such
that, for O in S2 if O(L)^$, then (I>(L) is in if if and only if L is regular. If
Si = {<D }, we say if is strongly résistant to O.

One could use "only if' instead of "if and only if' in the the définition above.
However, if S£ does not contam $ (L) for L regular, a better expression would be
"O is irrelevant to i£ " ! Strong résistance theorems for unary opérations go back
to Bar-Hillel, Perles and Shamir, who pr^ved that the family of context-free
languages is strongly résistant to (1, R) homomorphic replications [1].

We now turn our attention to the "chevron" opération introduced and
studied in [3, 4, 10]. For a language L and symbols a, b, we write

<L, a, by = {anwb"\n^0, weL},

If a and b are symbols not in the alphabet of L, then it does not matter which
symbols fill the rôles of a and b. In this case, we write < L > for < L, a, b > and call
this "the" chevron opération in the notation of [12]. Strictly speaking, Sx is the
set of opérations <L, a, b>and S2 the set of opérations <t>ab where <&a b{L) — Çf)
if a or b appear in L, and <ba b (L ) = < L, a, b} otherwise. We take the liberty of
speaking of the chevron opération instead of St and use < L > for < L, a, b >
with a and b new symbols.
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ONE COUNTER LANGU AGES AND THE CHEVRON OPERATION 191

As a corollary of the resuit on concaténation cited above, Latteux showed
that the least full semiAFL containing the two-sided Dyck set on one letter is
strongly résistant to chevron. We now extend this result to the family of one-
counter languages. That is, we show that < L > is a one counter language if and
only if L is regular.

The idea behind the result is simple. In oder to match the a's and b's in L, a one
counter machine M must increase the counter during the a's and decrease it
during the b's and keep it "steady" while reading w in L. Hence, a finite state
acceptor can simulate M on w, and so L is regular.

First, we give a formai définition of a one counter machine and the language it
accept s.

DÉFINITION: A one counter machine is a quintuple M = (Q, E, H, q0, F)
where g is a finite set of states, q0 in Q is the designated initial state, F^Qïs the
subset of accepting states, S is the finite input vocabulary and the transition set H
is a finite subset o f g x ( S u { e } ) x { 0 , 1} xN xQ, where e dénotes the empty
word and N is the set of integers, positive, négative and zero. Machine M is
normalized if H is a finite subset of Q x E x { 0, 1} x { —1,0, 1} x g .

DÉFINITION : An ins taneous descrip tion (ID) of one counter machine
M = (Q, E, H, q0, F) is a triple (q, w, z) where q is in g, w is in X* and z is a
nonnegative integer, the size of the counter. If (q, aw, z) is an ID, a in I u { e} ,
and (q, a, i, j , p) is a transition in H such that z = 0 if and only if z = 0 and
that z+j^O, then we write {q, aw, z)h(p, w, z+j). If Jlf . . ., In are ID's
with Ix h I2 \~ . . . I- ln> we call this a computation and write J i ^ I „ ; we
also write Ix ^ i \ . If Ii=(q0, w, 0) and /„ = (ƒ, e, 0) for some ƒ in F, then
Ix f̂  /„ is an accepting computation for input w. The language accepted by M is

L (M) = {w in E* | there is an accepting computation for input w}

andiscalled a one counter language.
Thus, a one counter machine M is a nondeterministic machine with a one-way

input tape. It has one register which contains a nonnegative integer. The effect of
a transition {q, a, i,j, p) is that, depending on the current state (4), input (if
ÜTÊe), and whether or not the counter is zero (whether Ï = 0), the machine can
change state (to p), add; to the counter (forj^O) or subtract \j | from the
counter (for; < 0) and either advance the input tape (a # e) or leave it alone (a = e;
this is an e-move). The machine accepts w if it can start in the initial state with the
counter 0 and reach an accepting state with the input completely scanned and
the counter 0.

A one counter machine is normalized if, at one step, it can add or subtract at
most 1 and it must advance the input tape at every step. If L is a one counter
vol. 13, n° 2, 1979



192 S. A. GREIBACH

language, then L =L(M) for some normalized one counter machine [11]. Hence,
we can assume without loss of generality that our machines are normalized.

First, we use the familiar counting argument to show that, if <L>=L(M),
and M has k states, then for each m > 0 there is an integer n, 1S n ̂  km +1 such
that every accepting computation for input anwbn must have counter size at
least m throughout the scan of w.

LEMMA 1 : Let < L ) = L (M)for a one counter machine M with k states. For each
m>0, there is an integer n,0<n^km+l, such that, for every w in L and every
accepting computation of M for anwbn, the counter size does not drop below m
during the processing ofw.

Proof: Suppose the lemma is false for m>0. The argument is the familiar
information theoretic one. There are at most km configurations with counter size
below m. However, for each integer n, 1 ̂ n^/cm-h 1, there is some w in L and
some accepting computation for anwbn which enters a configuration with
counter size below m while reading w. Thus, there must be integers nt and n2,
nl^n2) wordsu>! =x 1 y 1 SLndw2=x2y2 in L and accepting computations Qfor
input aniWibni, i=l, 2 which enter the same configuration after reading anixt.
Thus, by splicing together the first part of computation C1 and the last part of
computation C2> we obtain an accepting computation for anix1y2b"2, a
contradiction. Hence the lemma must hold. D

Now we use lemma 1 to show that, if M has k states and we take m = k +1 , then
the counter cannot increase by more than k during the scan of w. The proof of
lemma 2 uses an idea similar to the one underlying the itération theorems of [2],
which could not be used directly (because [2] uses strict itérative pairs).

LEMMA 2: Let < L > =L(M) for a normalized one counter machine with k
states. There is an integer n, /c+l^w^/c(fc + l )+ l such that, for every w in L and
every accepting computation for input an wbn, the counter size does notfall below
fc+1 nor increase by more than k during the scan ofw.

Proof: Lemma 1 tells us that there is an integer n^k(k+1)+1 such that, for
every w in L and every accepting computation for input anwbn, the counter
size does not fall below k +1 during the scan of w. We claim that the counter
size also cannot increase by more than k during the scan of w, for otherwise we
could pump up a subword of w and a subword of bn and get an accepting
computation for a word not in < L >. Note that n ̂  k +1 , since M is normalized.

Consider an accepting computation C for input an wbn, w in L. This
computation can be divided into pièces Clf C2t C3 with

C2 : (qlfwbn, zj^iq^b", z2),
C3: ( q 2 . t ±
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where q0 is the initial state, ƒ is some accepting state, the counter size is at least
fc+1 throught C2 and so in particular never becomes 0, and zlt z 2 ^ k + 1 .

Suppose the counter size increases by /c+1 or more during C2; that is, the
counter size reaches zt + k +1 at some point during C2. Since M is normalized,
there are at least k+1 increasing steps and since M has k states, two must be in
the same state. We can divide C2:

C2 : (qu wV, zOl— (p, uxfcn, z)^-(p, xb", z + r) |^(ç2 , &», z2)

where w = uvx and r>0. Similarly, since z2 ̂ / c+1, the counter must drop by at
least fc+1 during C3, so there must be a segmentation

C3 : («2. b\ z2)\*-(q, bl. z')|-(<7, fc4"", z'-s)£-(f, e, 0),

with s>0. Furthermore, we can assume that during the first segment of C3 the
counter size is at least z' -f1 and during the second segment, at least z' — s + 1 .
Since M is normalized, m^s>0.

Since the counter never becomes zero during C2, we can pump it up without
affecting the legitimacy of the computation. So, repeating vs+ 1 times, we have

C2 : (qit uvs + 1xbn+mr, zt))r{p, xbn + mr, z + ( s + l ) r ) P-(q2, bn+mr, z2 + rs).

Similarly, the counter never becomes zero during the first two segments of C3, so
the same steps can be performed with a larger counter size. Thus, we have

C 3 : {q2ib
n + mr,z2 + rs^{q, bi + mr,zf + rs) ït(q,bi-m,z'-s)£(f, e,0).

Hence, putting together Clf C2 and C3, we can obtain an accepting computation
for anuvs+1 xbn+mr, a contradiction, since mr^\. •

THEOREM 1: Thefamily ofone counter languages is strongly résistant to chevron.

Proof: Let < L > =L(M) for a one counter machine M with k states. Without
loss of generality, we can assume that M is normalized. Let n be the integer given
by lemma 2, k + 1 ̂  n ̂  /c (/c +1). For any accepting computation for input an wbn,
w in L, the counter size does not exceed 2n + /cg(2/c+l)(/c+ 1) + 1. One can
construct fron M a one counter machine M' which simulâtes all and only
computations of M with counter size not exceeding (2 k +1) (k +1) + 1 .
Obviously, L(M') is regular. Let T be the fmite alphabet of L and L' = { w in
T*|anu;b" is in L{M1)}. By définition of <L>, L'<=L. For any weL, Af'
simulâtes an accepting computation for some word anwbn, so L = L'. Hence, L
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194 S. A. GREIBACH

can be obtained from L (M') by the homomorphism which erases a's and 2?'s and
is the identity elsewhere. Thus, L is regular. On the other hand, if L is regular,
< L > is obviously a one counter language. d
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