RAIRO. InFORMATIQUE THÉORIQUE

S. A. Greibach
 One counter languages and the chevron operation

RAIRO. Informatique théorique, tome 13 , no 2 (1979), p. 189-194
http://www.numdam.org/item?id=ITA_1979__13_2_189_0
© AFCET, 1979, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ONE COUNTER LANGUAGES AND THE CHEVRON OPERATION (*) (1)

by S. A. Greibach (${ }^{2}$)
Communiqué par J. Berstel

Abstract

For a language L and new symbols a and b, define the chevron of L as $\langle L\rangle=\left\{a^{n} w b^{n} \mid n \geqq 0, w \in L\right\}$. The family of one counter languages is strongly resistant to the chevron operation in the sense that $\langle L\rangle$ is a one counter language if and only if L is regular.

Résumé. - Soit L un langage défini sur un alphabet ne contenant pas les lettres a et b. Alors, $\langle L\rangle=\left\{a^{n} w b^{n} \mid n \geqq 0, w \in L\right\}$ appartient à la famille des langages à un compteur si et seulement si L est un langage rationnel.

The family of linear context-free languages not only is not closed under concatenation but is strongly resistant to concatenation in the following sense. If L_{1} and L_{2} are languages over disjoint alphabets, then $L_{1} L_{2}$ is linear contextfree only if either L_{1} or L_{2} is regular [9]. Goldstine showed that the least full semiAFL (family of languages containing at least one nonempty language and closed under union, homomorphism, inverse homomorphism, and intersection with regular sets) containing the 1-bounded languages has the same property [8], and recently Latteux demonstrated this property for the least full semiAFL containing the two-sided Dyck set on one letter [12]. A similar phenomenon has been observed for other operations. The family of ultralinear languages is strongly resistant to Kleene * in the sense that, for a language L and a new symbol $c,(L c)^{*}$ is ultralinear if and only if L is regular [7]. The least full semiAFL containing the bounded languages is likewise strongly resistant to Kleene * [8].

We can make this concept more precise. For operations on at least two languages, the definition of "strongly resistant" is obvious.

Définition: Let Φ be a k-ary operation on languages, $k \geqq 2$ and \mathscr{L} a family of languages. We say that \mathscr{L} is strongly resistant to Φ if, whenever $\Phi\left(L_{1}, \ldots, L_{k}\right)$ is in \mathscr{L} and the languages L_{i} are over pairwise disjoint alphabets, then there is some j such that L_{j} is regular.

[^0]For unary operations, the direct version of this definition (for $k=1$) would be "too strong" since, e.g., L^{*} can be regular for L a nonregular language. Thus. the "resistance" is to a marked version of the operation.

Definition: Let S_{1} and S_{2} be sets of unary operations on languages. They are adequately associated with each other if, for i, j in $\{1,2\}, i \neq j$, the following holds. For each language L and operation Φ_{i} in S_{i}, there exists an operation Φ_{j} in S_{j} such that $\Phi_{i}(L)$ can be obtained from L using a finite number of applications of homomorphism, inverse homomorphism and intersection with regular sets and exactly one application of Φ_{j}.

Thus, if S_{1} and S_{2} are adequately associated with each other, and Φ_{1} is in S_{1}, $\Phi_{1}(L)$ can always be expressed as $M_{1}\left(\Phi_{2}\left(\mathrm{M}_{2}(L)\right)\right)$ for some Φ_{2} in S_{1} and finite state transductions (a-transducer mappings) M_{1} and $M_{2}[5,6,13]$. For example, if S_{1} contains only Kleene ${ }^{*}$, then it is adequately associated with the set S_{2} of operations Φ_{c}, c an individual symbol, where $\Phi_{c}(\mathrm{~L})=\phi$ if c appears in L, and $\Phi_{c}(\mathrm{~L})=(L c)^{*}$ otherwise. If S_{1} is the set of $(1, R)$ homomorphic replications $\left(1, R, h_{1}, h_{2}\right)$ [where $\left(1, R, h_{1}, h_{2}\right)(L)=\left\{h_{1}(w) h_{2}\left(w^{R}\right) \mid w\right.$ in $\left.L\right\}$], then we can take S_{2} as the set of operations θ_{c} where $\theta_{c}(L)=\phi$ if c appears in L, and $\theta_{c}(L)=\left\{w c w^{R} \mid w\right.$ in $\left.L\right\}$ otherwise.

Definition: A family of languages \mathscr{L} is strongly resistant to a set of unary operations S_{1} if S_{1} is adequately associated to a set S_{2} of unary operations such that, for Φ in S_{2} if $\Phi(L) \neq \varnothing$, then $\Phi(L)$ is in \mathscr{L} if and only if L is regular. If $S_{1}=\{\Phi\}$, we say \mathscr{L} is strongly resistant to Φ.

One could use "only if" instead of "if and only if" in the the definition above. However, if \mathscr{L} does not contain $\Phi(L)$ for L regular, a better expression would be " Φ is irrelevant to $\mathscr{L} "$! Strong resistance theorems for unary operations go back to Bar-Hillel, Perles and Shamir, who preved that the family of context-free languages is strongly resistant to $(1, R)$ homomorphic replications [1].

We now turn our attention to the "chevron" operation introduced and studied in $[3,4,10]$. For a language L and symbols a, b, we write

$$
\langle L, a, b\rangle=\left\{a^{n} w b^{n} \mid n \geqq 0, w \in L\right\} .
$$

If a and b are symbols not in the alphabet of L, then it does not matter which symbols fill the roles of a and b. In this case, we write $\langle L\rangle$ for $\langle L, a, b\rangle$ and call this "the" chevron operation in the notation of [12]. Strictly speaking, S_{1} is the set of operations $\langle L, a, b\rangle$ and S_{2} the set of operations $\Phi_{a, b}$ where $\Phi_{a, b}(L)=\phi$ if a or b appear in L, and $\Phi_{a, b}(L)=\langle L, a, b\rangle$ otherwise. We take the liberty of speaking of the chevron operation instead of S_{1} and use $\langle L\rangle$ for $\langle\mathrm{L}, a, b\rangle$ with a and b new symbols.

As a corollary of the result on concatenation cited above, Latteux showed that the least full semiAFL containing the two-sided Dyck set on one letter is strongly resistant to chevron. We now extend this result to the family of onecounter languages. That is, we show that $\langle L\rangle$ is a one counter language if and only if L is regular.

The idea behind the result is simple. In oder to match the a^{\prime} s and b^{\prime} s in L, a one counter machine M must increase the counter during the a^{\prime} s and decrease it during the b 's and keep it "steady" while reading w in L. Hence, a finite state acceptor can simulate M on w, and so L is regular.

First, we give a formal definition of a one counter machine and the language it accepts.

Definition: A one counter machine is a quintuple $M=\left(Q, \Sigma, H, q_{0}, F\right)$ where Q is a finite set of states, q_{0} in Q is the designated initial state, $F \subseteq Q$ is the subset of accepting states, Σ is the finite input vocabulary and the transition set H is a finite subset of $Q \times(\Sigma \cup\{e\}) \times\{0,1\} \times N \times Q$, where e denotes the empty word and N is the set of integers, positive, negative and zero. Machine M is normalized if H is a finite subset of $Q \times \Sigma \times\{0,1\} \times\{-1,0,1\} \times Q$.

Definition: An instaneous description (ID) of one counter machine $M=\left(Q, \Sigma, H, q_{0}, F\right)$ is a triple (q, w, z) where q is in Q, w is in Σ^{*} and z is a nonnegative integer, the size of the counter. If $(q, a w, z)$ is an ID, a in $\Sigma \cup\{e\}$, and (q, a, i, j, p) is a transition in H such that $i=0$ if and only if $z=0$ and that $z+j \geqq 0$, then we write $(q, a w, z) \vdash(p, w, z+j)$. If I_{1}, \ldots, I_{n} are ID's with $I_{1} \vdash I_{2} \vdash \ldots \vdash I_{n}$, we call this a computation and write $I_{1} \stackrel{ }{*}^{*} I_{n}$; we also write $I_{1} \vdash^{*} I_{1}$. If $I_{1}=\left(q_{0}, w, 0\right)$ and $I_{n}=(f, e, 0)$ for some f in F, then $I_{1} \vdash^{*} I_{n}$ is an accepting computation for input w. The language accepted by M is

$$
L(M)=\left\{w \text { in } \mathrm{E}^{*} \mid \text { there is an accepting computation for input } w\right\}
$$

and is called a one counter language.
Thus, a one counter machine M is a nondeterministic machine with a one-way input tape. It has one register which contains a nonnegative integer. The effect of a transition (q, a, i, j, p) is that, depending on the current state (q), input (if $a \neq e$), and whether or not the counter is zero (whether $i=0$), the machine can change state (to p), add j to the counter (for $j \geqq 0$) or subtract $|j|$ from the counter (for $j<0$) and either advance the input tape ($a \neq e$) or leave it alone ($a=e$; this is an e-move). The machine accepts w if it can start in the initial state with the counter 0 and reach an accepting state with the input completely scanned and the counter 0 .

A one counter machine is normalized if, at one step, it can add or subtract at most 1 and it must advance the input tape at every step. If L is a one counter
language, then $L=L(M)$ for some normalized one counter machine [11]. Hence, we can assume without loss of generality that our machines are normalized.

First, we use the familiar counting argument to show that, if $\langle L\rangle=L(M)$, and M has k states, then for each $m>0$ there is an integer $n, 1 \leqq n \leqq k m+1$ such that every accepting computation for input $a^{n} w b^{n}$ must have counter size at least m throughout the scan of w.

Lemma 1: Let $\langle L\rangle=L(M)$ for a one counter machine M with k states. For each $m>0$, there is an integer $n, 0<n \leqq k m+1$, such that, for every w in L and every accepting computation of M for $a^{n} w b^{n}$, the counter size does not drop below m during the processing of w.

Proof: Suppose the lemma is false for $m>0$. The argument is the familiar information theoretic one. There are at most km configurations with counter size below m. However, for each integer $n, 1 \leqq n \leqq k m+1$, there is some w in L and some accepting computation for $a^{n} w b^{n}$ which enters a configuration with counter size below m while reading w. Thus, there must be integers n_{1} and n_{2}, $n_{1} \neq n_{2}$, words $w_{1}=x_{1} y_{1}$ and $w_{2}=x_{2} y_{2}$ in L and accepting computations C_{i} for input $a^{n_{i}} w_{i} b^{n_{i}}, i=1,2$ which enter the same configuration after reading $a^{n_{i}} x_{i}$. Thus, by splicing together the first part of computation C_{1} and the last part of computation C_{2}, we obtain an accepting computation for $a^{n_{1}} x_{1} y_{2} b^{n_{2}}$, a contradiction. Hence the lemma must hold.

Now we use lemma 1 to show that, if M has k states and we take $m=k+1$, then the counter cannot increase by more than k during the scan of w. The proof of lemma 2 uses an idea similar to the one underlying the iteration theorems of [2], which could not be used directly (because [2] uses strict iterative pairs).

Lemma 2: Let $\langle L\rangle=L(M)$ for a normalized one counter machine with k states. There is an integer $n, k+1 \leqq n \leqq k(k+1)+1$ such that, for every w in L and every accepting computation for input $a^{n} w b^{n}$, the counter size does not fall below $k+1$ nor increase by more than k during the scan of w.

Proof: Lemma 1 tells us that there is an integer $n \leqq k(k+1)+1$ such that, for every w in L and every accepting computation for input $a^{n} w b^{n}$, the counter size does not fall below $k+1$ during the scan of w. We claim that the counter size also cannot increase by more than k during the scan of w, for otherwise we could pump up a subword of w and a subword of b^{n} and get an accepting computation for a word not in $\langle L\rangle$. Note that $n \geqq k+1$, since M is normalized.

Consider an accepting computation C for input $a^{n} w b^{n}, w$ in L. This computation can be divided into pieces C_{1}, C_{2}, C_{3} with

$$
\begin{gathered}
C_{1}:\left(q_{0}, a^{n} w b^{n}, 0\right) \vdash^{*}\left(q_{1}, w b^{n}, z_{1}\right), \\
C_{2}: \quad\left(q_{1}, w b^{n}, z_{1}\right) \vdash^{*}\left(q_{2}, b^{n}, z_{2}\right), \\
C_{3}:\left(q_{2}, b^{n}, z_{2}\right) \vdash^{*}(f, e, 0),
\end{gathered}
$$

where q_{0} is the initial state, f is some accepting state, the counter size is at least $k+1$ throught C_{2} and so in particular never becomes 0 , and $z_{1}, z_{2} \geqq k+1$.
Suppose the counter size increases by $k+1$ or more during C_{2}; that is, the counter size reaches $z_{1}+k+1$ at some point during C_{2}. Since M is normalized, there are at least $k+1$ increasing steps and since M has k states, two must be in the same state. We can divide C_{2} :

$$
C_{2}:\left(q_{1}, w b^{n}, z_{1}\right) \vdash^{*}\left(p, v x b^{n}, z\right) \vdash^{*}\left(p, x b^{n}, z+r\right) \vdash^{*}\left(q_{2}, b^{n}, z_{2}\right)
$$

where $w=u v x$ and $r>0$. Similarly, since $z_{2} \geqq k+1$, the counter must drop by at least $k+1$ during C_{3}, so there must be a segmentation

$$
C_{3}:\left(q_{2}, b^{n}, z_{2}\right) \vdash^{*}\left(q, b^{i}, z^{\prime}\right) \vdash^{*}\left(q, b^{i-m}, z^{\prime}-s\right) \vdash^{*}(f, e, 0),
$$

with $s>0$. Furthermore, we can assume that during the first segment of C_{3} the counter size is at least $z^{\prime}+1$ and during the second segment, at least $z^{\prime}-s+1$. Since M is normalized, $m \geqq s>0$.

Since the counter never becomes zero during C_{2}, we can pump it up without affecting the legitimacy of the computation. So, repeating $v s+1$ times, we have

$$
C_{2}^{\prime}:\left(q_{1}, u v^{s+1} x b^{n+m r}, z_{1}\right) \vdash^{*}\left(p, x b^{n+m r}, z+(s+1) r\right) \vdash^{*}\left(q_{2}, b^{n+m r}, z_{2}+r s\right) .
$$

Similarly, the counter never becomes zero during the first two segments of C_{3}, so the same steps can be performed with a larger counter size. Thus, we have

$$
C_{3}^{\prime}:\left(q_{2}, b^{n+m r}, z_{2}+r s \vdash^{*}\left(q, b^{i+m r}, z^{\prime}+r s\right) \quad \vdash^{*}\left(q, b^{i-m}, z^{\prime}-s\right) \vdash^{*}(f, e, 0) .\right.
$$

Hence, putting together C_{1}, C_{2}^{\prime} and C_{3}^{\prime}, we can obtain an accepting computation for $a^{n} u v^{s+1} x b^{n+m r}$, a contradiction, since $m r \geqq 1$.

Theorem 1: The family of one counter languages is strongly resistant to chevron.
Proof: Let $\langle L\rangle=L(M)$ for a one counter machine M with k states. Without loss of generality, we can assume that M is normalized. Let n be the integer given by lemma $2, k+1 \leqq n \leqq k(k+1)$. For any accepting computation for input $a^{n} w b^{n}$, w in L, the counter size does not exceed $2 n+k \leqq(2 k+1)(k+1)+1$. One can construct fron M a one counter machine M^{\prime} which simulates all and only computations of M with counter size not exceeding $(2 k+1)(k+1)+1$. Obviously, $L\left(M^{\prime}\right)$ is regular. Let T be the finite alphabet of L and $L^{\prime}=\{w$ in $T^{*} \mid a^{n} w b^{n}$ is in $\left.L\left(M^{\prime}\right)\right\}$. By definition of $\langle L\rangle, L^{\prime} \cong L$. For any $w \in L, M^{\prime}$ simulates an accepting computation for some word $a^{n} w b^{n}$, so $L=L^{\prime}$. Hence, L
can be obtained from $L\left(M^{\prime}\right)$ by the homomorphism which erases a 's and b 's and is the identity elsewhere. Thus, L is regular. On the other hand, if L is regular, $\langle L\rangle$ is obviously a one counter language.

REFERENCES

1. Y. Bar-Hillel, M. Perles and E. Shamir, On formal Properties of Simple Phrase Structure Grammars, Z. Phonetik, Sprachwiss. Kommunkationsforsch., Vol. 14, 1961, pp. 143-172.
2. L. Boasson, Two Iteration Theorems for Some Families of Languages, J. Comp. System Sc., Vol. 7, 1973, pp. 583-596.
3. L. Boasson and M. Nivat, Sur diverses familles de langages fermées par traduction rationnelle, Acta Informatica, Vol. 2, 1973, pp. 180-188.
4. L. Boasson, J. P. Crestin and M. Nivat, Familles de langages translatables et fermées par crochet, Acta Informatica, Vol. 2, 1973, pp. 383-393.
5. C. C. Elgot and J. E. Mezei, On Relations Defined by Generalized Finite Automata, I.B.M. J. Res. Dev., Vol. 9, 1965, pp. 47-68.
6. S. Ginsburg and S. Greibach, Abstract Families of Languages, Memoirs Amer. Math. Soc., Vol. 87, 1969, pp. 1-32.
7. S. Ginsburg and E. Spanier, Finite-Turn Pushdown Automata, S.I.A.M. J. Control, Vol. 4, 1966, pp. 429-453.
8. J. Goldstine, Substitution and Bounded Languages, J. Comp. System Sc., Vol. 6, 1972, pp. 9-29.
9. S. Greibach, The Unsolvability of the Recognition of Linear Context-Free. Languages, J. Assoc. Comput. Mach., Vol. 13, 1966, pp. 582-587.
10. S. Greibach, Erasing in Context-Free AFLs, Information and Control, Vol. 21, 1972, pp. 436-465.
11. S. Greibach, Erasable Context-Free Languages, Information and Control, Vol. 29, 1975, pp. 301-326.
12. M. Latteux, Produit dans le cône rationnel engendré par D_{1}^{*}, Theoretical Computer Sc. Vol. 5, 1977, pp. 129-134.

[^0]: (*) Reçu août 1978 et dans sa version définitive décembre 1978.
 ${ }^{(1)}$ The research reported in this paper was supported in part by the National Science Foundation under Grant No. MCS 78-04725.
 $\left({ }^{2}\right)$ Department of System Science, University of California, Los Angeles.

