RAIRO. INFORMATIQUE THÉORIQUE

S. A. GREIBACH One counter languages and the chevron operation

RAIRO. Informatique théorique, tome 13, nº 2 (1979), p. 189-194 http://www.numdam.org/item?id=ITA_1979_13_2_189_0

© AFCET, 1979, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ONE COUNTER LANGUAGES AND THE CHEVRON OPERATION (*) (1)

by S. A. GREIBACH (²)

Communiqué par J. BERSTEL

Abstract. – For a language L and new symbols a and b, define the chevron of L as $\langle L \rangle = \{a^n wb^n | n \ge 0, w \in L\}$. The family of one counter languages is strongly resistant to the chevron operation in the sense that $\langle L \rangle$ is a one counter language if and only if L is regular.

Résumé. – Soit L un langage défini sur un alphabet ne contenant pas les lettres a et b. Alors, $\langle L \rangle = \{a^n wb^n | n \ge 0, w \in L\}$ appartient à la famille des langages à un compteur si et seulement si L est un langage rationnel.

The family of linear context-free languages not only is not closed under concatenation but is strongly resistant to concatenation in the following sense. If L_1 and L_2 are languages over disjoint alphabets, then $L_1 L_2$ is linear contextfree only if either L_1 or L_2 is regular [9]. Goldstine showed that the least full semiAFL (family of languages containing at least one nonempty language and closed under union, homomorphism, inverse homomorphism, and intersection with regular sets) containing the 1-bounded languages has the same property [8], and recently Latteux demonstrated this property for the least full semiAFL containing the two-sided Dyck set on one letter [12]. A similar phenomenon has been observed for other operations. The family of ultralinear languages is strongly resistant to Kleene * in the sense that, for a language L and a new symbol c, $(Lc)^*$ is ultralinear if and only if L is regular [7]. The least full semiAFL containing the bounded languages is likewise strongly resistant to Kleene * [8].

We can make this concept more precise. For operations on at least two languages, the definition of "strongly resistant" is obvious.

DÉFINITION: Let Φ be a k-ary operation on languages, $k \ge 2$ and \mathscr{L} a family of languages. We say that \mathscr{L} is strongly resistant to Φ if, whenever $\Phi(L_1, \ldots, L_k)$ is in \mathscr{L} and the languages L_i are over pairwise disjoint alphabets, then there is some j such that L_i is regular.

^(*) Reçu août 1978 et dans sa version définitive décembre 1978.

^{(&}lt;sup>1</sup>) The research reported in this paper was supported in part by the National Science Foundation under Grant No. MCS 78-04725.

^{(&}lt;sup>2</sup>) Department of System Science, University of California, Los Angeles.

R.A.I.R.O. Informatique théorique/Theoretical Informatics, 0399-0540/1979/189/\$ 4.00 © Bordas-Dunod

S. A. GREIBACH

For unary operations, the direct version of this definition (for k=1) would be "too strong" since, e.g., L^* can be regular for L a nonregular language. Thus, the "resistance" is to a marked version of the operation.

DEFINITION: Let S_1 and S_2 be sets of unary operations on languages. They are adequately associated with each other if, for i, j in $\{1, 2\}, i \neq j$, the following holds. For each language L and operation Φ_i in S_i , there exists an operation Φ_j in S_j such that $\Phi_i(L)$ can be obtained from L using a finite number of applications of homomorphism, inverse homomorphism and intersection with regular sets and exactly one application of Φ_j .

Thus, if S_1 and S_2 are adequately associated with each other, and Φ_1 is in S_1 , $\Phi_1(L)$ can always be expressed as $M_1(\Phi_2(M_2(L)))$ for some Φ_2 in S_1 and finite state transductions (*a*-transducer mappings) M_1 and M_2 [5, 6, 13]. For example, if S_1 contains only Kleene *, then it is adequately associated with the set S_2 of operations Φ_c , *c* an individual symbol, where $\Phi_c(L) = \emptyset$ if *c* appears in *L*, and $\Phi_c(L) = (Lc)^*$ otherwise. If S_1 is the set of (1, *R*) homomorphic replications (1, *R*, h_1 , h_2) [where (1, *R*, h_1 , h_2)(*L*) = { $h_1(w)h_2(w^R)$ |*w* in *L*}], then we can take S_2 as the set of operations θ_c where $\theta_c(L) = \emptyset$ if *c* appears in *L*, and $\theta_c(L) = {wcw^R | w \text{ in } L}$ otherwise.

DEFINITION: A family of languages \mathscr{L} is strongly resistant to a set of unary operations S_1 if S_1 is adequately associated to a set S_2 of unary operations such that, for Φ in S_2 if $\Phi(L) \neq \emptyset$, then $\Phi(L)$ is in \mathscr{L} if and only if L is regular. If $S_1 = \{\Phi\}$, we say \mathscr{L} is strongly resistant to Φ .

One could use "only if" instead of "if and only if" in the the definition above. However, if \mathscr{L} does not contain $\Phi(L)$ for L regular, a better expression would be " Φ is irrelevant to \mathscr{L} "! Strong resistance theorems for unary operations go back to Bar-Hillel, Perles and Shamir, who proved that the family of context-free languages is strongly resistant to (1, R) homomorphic replications [1].

We now turn our attention to the "chevron" operation introduced and studied in [3, 4, 10]. For a language L and symbols a, b, we write

$$\langle L, a, b \rangle = \{ a^n w b^n | n \ge 0, w \in L \}.$$

If a and b are symbols not in the alphabet of L, then it does not matter which symbols fill the roles of a and b. In this case, we write $\langle L \rangle$ for $\langle L, a, b \rangle$ and call this "the" *chevron* operation in the notation of [12]. Strictly speaking, S_1 is the set of operations $\langle L, a, b \rangle$ and S_2 the set of operations $\Phi_{a, b}$ where $\Phi_{a, b}(L) = \phi$ if a or b appear in L, and $\Phi_{a, b}(L) = \langle L, a, b \rangle$ otherwise. We take the liberty of speaking of the chevron operation instead of S_1 and use $\langle L \rangle$ for $\langle L, a, b \rangle$ with a and b new symbols.

R.A.I.R.O. Informatique théorique/Theoretical Informatics

As a corollary of the result on concatenation cited above, Latteux showed that the least full semiAFL containing the two-sided Dyck set on one letter is strongly resistant to chevron. We now extend this result to the family of one-counter languages. That is, we show that $\langle L \rangle$ is a one counter language if and only if L is regular.

The idea behind the result is simple. In oder to match the a's and b's in L, a one counter machine M must increase the counter during the a's and decrease it during the b's and keep it "steady" while reading w in L. Hence, a finite state acceptor can simulate M on w, and so L is regular.

First, we give a formal definition of a one counter machine and the language it accepts.

DEFINITION: A one counter machine is a quintuple $M = (Q, \Sigma, H, q_0, F)$ where Q is a finite set of states, q_0 in Q is the designated initial state, $F \subseteq Q$ is the subset of accepting states, Σ is the finite input vocabulary and the transition set H is a finite subset of $Q \times (\Sigma \cup \{e\}) \times \{0, 1\} \times N \times Q$, where e denotes the empty word and N is the set of integers, positive, negative and zero. Machine M is normalized if H is a finite subset of $Q \times \Sigma \times \{0, 1\} \times \{-1, 0, 1\} \times Q$.

DEFINITION: An instaneous description (ID) of one counter machine $M = (Q, \Sigma, H, q_0, F)$ is a triple (q, w, z) where q is in Q, w is in Σ^* and z is a nonnegative integer, the size of the counter. If (q, aw, z) is an ID, a in $\Sigma \cup \{e\}$, and (q, a, i, j, p) is a transition in H such that i=0 if and only if z=0 and that $z+j \ge 0$, then we write $(q, aw, z) \vdash (p, w, z+j)$. If I_1, \ldots, I_n are ID's with $I_1 \vdash I_2 \vdash \ldots \vdash I_n$, we call this a computation and write $I_1 \stackrel{k}{\models} I_n$; we also write $I_1 \stackrel{k}{\models} I_1$. If $I_1 = (q_0, w, 0)$ and $I_n = (f, e, 0)$ for some f in F, then $I_1 \stackrel{k}{\models} I_n$ is an accepting computation for input w. The language accepted by M is

 $L(M) = \{ w \text{ in } E^* | \text{ there is an accepting computation for input } w \}$

and is called a one counter language.

Thus, a one counter machine M is a nondeterministic machine with a one-way input tape. It has one register which contains a nonnegative integer. The effect of a transition (q, a, i, j, p) is that, depending on the current state (q), input (if $a \neq e$), and whether or not the counter is zero (whether i=0), the machine can change state (to p), add j to the counter (for $j \ge 0$) or subtract |j| from the counter (for j < 0) and either advance the input tape ($a \neq e$) or leave it alone (a = e; this is an *e-move*). The machine accepts w if it can start in the initial state with the counter 0 and reach an accepting state with the input completely scanned and the counter 0.

A one counter machine is normalized if, at one step, it can add or subtract at most 1 and it must advance the input tape at every step. If L is a one counter

vol. 13, nº 2, 1979

language, then L = L(M) for some normalized one counter machine [11]. Hence, we can assume without loss of generality that our machines are normalized.

First, we use the familiar counting argument to show that, if $\langle L \rangle = L(M)$, and M has k states, then for each m > 0 there is an integer n, $1 \le n \le km + 1$ such that every accepting computation for input $a^n w b^n$ must have counter size at least m throughout the scan of w.

LEMMA 1: Let $\langle L \rangle = L(M)$ for a one counter machine M with k states. For each m > 0, there is an integer n, $0 < n \leq km + 1$, such that, for every w in L and every accepting computation of M for $a^n w b^n$, the counter size does not drop below m during the processing of w.

Proof: Suppose the lemma is false for m > 0. The argument is the familiar information theoretic one. There are at most km configurations with counter size below m. However, for each integer n, $1 \le n \le km + 1$, there is some w in L and some accepting computation for $a^n w b^n$ which enters a configuration with counter size below m while reading w. Thus, there must be integers n_1 and n_2 , $n_1 \ne n_2$, words $w_1 = x_1 y_1$ and $w_2 = x_2 y_2$ in L and accepting computations C_i for input $a^{n_i} w_i b^{n_i}$, i=1, 2 which enter the same configuration after reading $a^{n_i} x_i$. Thus, by splicing together the first part of computation C_1 and the last part of computation C_2 , we obtain an accepting computation for $a^{n_i} x_1 y_2 b^{n_2}$, a contradiction. Hence the lemma must hold. \Box

Now we use lemma 1 to show that, if M has k states and we take m = k + 1, then the counter cannot increase by more than k during the scan of w. The proof of lemma 2 uses an idea similar to the one underlying the iteration theorems of [2], which could not be used directly (because [2] uses strict iterative pairs).

LEMMA 2: Let $\langle L \rangle = L(M)$ for a normalized one counter machine with k states. There is an integer n, $k+1 \leq n \leq k(k+1)+1$ such that, for every w in L and every accepting computation for input $a^n wb^n$, the counter size does not fall below k+1 nor increase by more than k during the scan of w.

Proof: Lemma 1 tells us that there is an integer $n \le k(k+1)+1$ such that, for every w in L and every accepting computation for input $a^n wb^n$, the counter size does not fall below k+1 during the scan of w. We claim that the counter size also cannot increase by more than k during the scan of w, for otherwise we could pump up a subword of w and a subword of b^n and get an accepting computation for a word not in $\langle L \rangle$. Note that $n \ge k+1$, since M is normalized.

Consider an accepting computation C for input $a^n w b^n$, w in L. This computation can be divided into pieces C_1 , C_2 , C_3 with

$$C_{1}: (q_{0}, a^{n}wb^{n}, 0) \vdash^{*} (q_{1}, wb^{n}, z_{1}), C_{2}: (q_{1}, wb^{n}, z_{1}) \vdash^{*} (q_{2}, b^{n}, z_{2}), C_{3}: (q_{2}, b^{n}, z_{2}) \vdash^{*} (f, e, 0),$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

where q_0 is the initial state, f is some accepting state, the counter size is at least k+1 throught C_2 and so in particular never becomes 0, and $z_1, z_2 \ge k+1$.

Suppose the counter size increases by k+1 or more during C_2 ; that is, the counter size reaches $z_1 + k + 1$ at some point during C_2 . Since M is normalized, there are at least k+1 increasing steps and since M has k states, two must be in the same state. We can divide C_2 :

$$C_2: (q_1, wb^n, z_1) \mapsto (p, vxb^n, z) \mapsto (p, xb^n, z+r) \mapsto (q_2, b^n, z_2)$$

where w = uvx and r > 0. Similarly, since $z_2 \ge k+1$, the counter must drop by at least k+1 during C_3 , so there must be a segmentation

$$C_3: (q_2, b^n, z_2) \mapsto (q, b^i, z') \mapsto (q, b^{i-m}, z'-s) \mapsto (f, e, 0),$$

with s > 0. Furthermore, we can assume that during the first segment of C_3 the counter size is at least z' + 1 and during the second segment, at least z' - s + 1. Since M is normalized, $m \ge s > 0$.

Since the counter never becomes zero during C_2 , we can pump it up without affecting the legitimacy of the computation. So, repeating vs + 1 times, we have

$$C'_2$$
: $(q_1, uv^{s+1} x b^{n+mr}, z_1) \stackrel{*}{\vdash} (p, x b^{n+mr}, z+(s+1)r) \stackrel{*}{\vdash} (q_2, b^{n+mr}, z_2+rs).$

Similarly, the counter never becomes zero during the first two segments of C_3 , so the same steps can be performed with a larger counter size. Thus, we have

$$C'_3: (q_2, b^{n+mr}, z_2 + rs \stackrel{*}{\vdash} (q, b^{i+mr}, z' + rs) \stackrel{*}{\vdash} (q, b^{i-m}, z' - s) \stackrel{*}{\vdash} (f, e, 0).$$

Hence, putting together C_1 , C'_2 and C'_3 , we can obtain an accepting computation for $a^n uv^{s+1} x b^{n+mr}$, a contradiction, since $mr \ge 1$. \Box

THEOREM 1: The family of one counter languages is strongly resistant to chevron.

Proof: Let $\langle L \rangle = L(M)$ for a one counter machine M with k states. Without loss of generality, we can assume that M is normalized. Let n be the integer given by lemma $2, k+1 \leq n \leq k(k+1)$. For any accepting computation for input $a^n wb^n$, w in L, the counter size does not exceed $2n+k \leq (2k+1)(k+1)+1$. One can construct fron M a one counter machine M' which simulates all and only computations of M with counter size not exceeding (2k+1)(k+1)+1. Obviously, L(M') is regular. Let T be the finite alphabet of L and $L' = \{w \text{ in}$ $T^* | a^n wb^n$ is in $L(M') \}$. By definition of $\langle L \rangle$, $L' \subseteq L$. For any $w \in L$, M'simulates an accepting computation for some word $a^n wb^n$, so L = L'. Hence, L

S. A. GREIBACH

can be obtained from L(M') by the homomorphism which erases a's and b's and is the identity elsewhere. Thus, L is regular. On the other hand, if L is regular, $\langle L \rangle$ is obviously a one counter language. \Box

REFERENCES

- 1. Y. BAR-HILLEL, M. PERLES and E. SHAMIR, On formal Properties of Simple Phrase Structure Grammars, Z. Phonetik, Sprachwiss. Kommunkationsforsch., Vol. 14, 1961, pp. 143-172.
- 2. L. BOASSON, Two Iteration Theorems for Some Families of Languages, J. Comp. System Sc., Vol. 7, 1973, pp. 583-596.
- 3. L. BOASSON and M. NIVAT, Sur diverses familles de langages fermées par traduction rationnelle, Acta Informatica, Vol. 2, 1973, pp. 180-188.
- 4. L. BOASSON, J. P. CRESTIN and M. NIVAT, Familles de langages translatables et fermées par crochet, Acta Informatica, Vol. 2, 1973, pp. 383-393.
- 5. C. C. ELGOT and J. E. MEZEI, On Relations Defined by Generalized Finite Automata, I.B.M. J. Res. Dev., Vol. 9, 1965, pp. 47-68.
- 6. S. GINSBURG and S. GREIBACH, Abstract Families of Languages, Memoirs Amer. Math. Soc., Vol. 87, 1969, pp. 1-32.
- 7. S. GINSBURG and E. SPANIER, Finite-Turn Pushdown Automata, S.I.A.M. J. Control, Vol. 4, 1966, pp. 429-453.
- 8. J. GOLDSTINE, Substitution and Bounded Languages, J. Comp. System Sc., Vol. 6, 1972, pp. 9-29.
- 9. S. GREIBACH, The Unsolvability of the Recognition of Linear Context-Free Languages, J. Assoc. Comput. Mach., Vol. 13, 1966, pp. 582-587.
- 10. S. GREIBACH, Erasing in Context-Free AFLs, Information and Control, Vol. 21, 1972, pp. 436-465.
- 11. S. GREIBACH, Erasable Context-Free Languages, Information and Control, Vol. 29, 1975, pp. 301-326.
- M. LATTEUX, Produit dans le cône rationnel engendré par D^{*}₁, Theoretical Computer Sc. Vol. 5, 1977, pp. 129-134.