S. A. Greibach

One counter languages and the chevron operation

RAIRO. Informatique théorique, tome 13, n° 2 (1979), p. 189-194

<http://www.numdam.org/item?id=ITA_1979__13_2_189_0>
ONE COUNTER LANGUAGES
AND THE CHEVRON OPERATION (*) (1)

by S. A. GREIBACH (2)
Communiqué par J. BERSTEL

Abstract. — For a language L and new symbols a and b, define the chevron of L as <L> = \{a^nw^b|n \geq 0, w \in L\}. The family of one counter languages is strongly resistant to the chevron operation in the sense that <L> is a one counter language if and only if L is regular.

Résumé. — Soit L un langage défini sur un alphabet ne contenant pas les lettres a et b. Alors, <L> = \{a^nw^b|n \geq 0, w \in L\} appartient à la famille des langages à un compteur ssi et seulement si L est un langage rationnel.

The family of linear context-free languages not only is not closed under concatenation but is strongly resistant to concatenation in the following sense. If L_1 and L_2 are languages over disjoint alphabets, then L_1 L_2 is linear context-free only if either L_1 or L_2 is regular [9]. Goldstine showed that the least full semiAFL (family of languages containing at least one nonempty language and closed under union, homomorphism, inverse homomorphism, and intersection with regular sets) containing the 1-bounded languages has the same property [8], and recently Latteux demonstrated this property for the least full semiAFL containing the two-sided Dyck set on one letter [12]. A similar phenomenon has been observed for other operations. The family of ultralinear languages is strongly resistant to Kleene * in the sense that, for a language L and a new symbol c, (Lc)* is ultralinear if and only if L is regular [7]. The least full semiAFL containing the bounded languages is likewise strongly resistant to Kleene * [8].

We can make this concept more precise. For operations on at least two languages, the definition of "strongly resistant" is obvious.

DÉFINITION: Let Φ be a k-ary operation on languages, k \geq 2 and \mathcal{L} a family of languages. We say that \mathcal{L} is strongly resistant to Φ if, whenever Φ(L_1, \ldots, L_k) is in \mathcal{L} and the languages L_i are over pairwise disjoint alphabets, then there is some j such that L_j is regular.

(1) The research reported in this paper was supported in part by the National Science Foundation under Grant No. MCS 78-04725.
(2) Department of System Science, University of California, Los Angeles.
For unary operations, the direct version of this definition (for $k=1$) would be “too strong” since, e.g., L^* can be regular for L a nonregular language. Thus, the “resistance” is to a marked version of the operation.

Definition: Let S_1 and S_2 be sets of unary operations on languages. They are *adequately associated* with each other if, for i, j in $\{1, 2\}$, $i \neq j$, the following holds. For each language L and operation Φ_i in S_i, there exists an operation Φ_j in S_j such that $\Phi_i(L)$ can be obtained from L using a finite number of applications of homomorphism, inverse homomorphism and intersection with regular sets and exactly one application of Φ_j.

Thus, if S_1 and S_2 are adequately associated with each other, and Φ_i is in S_1, $\Phi_i(L)$ can always be expressed as $M_1(\Phi_2(M_2(L)))$ for some Φ_2 in S_1 and finite state transductions (a-transducer mappings) M_1 and M_2 [5, 6, 13]. For example, if S_1 contains only Kleene *, then it is adequately associated with the set S_2 of operations ϕ_c, c an individual symbol, where $\phi_c(L) = \emptyset$ if c appears in L, and $\phi_c(L) = (L \cap c^*)$ otherwise. If S_1 is the set of $(1, R)$ homomorphic replications $(1, R, h_1, h_2)$ [where $(1, R, h_1, h_2)(L) = \{ h_1(w)h_2(w^R) \mid w \in L \}$], then we can take S_2 as the set of operations θ_e where $\theta_e(L) = \emptyset$ if c appears in L, and $\theta_e(L) = \{ wcw^R \mid w \in L \}$ otherwise.

Definition: A family of languages \mathcal{L} is *strongly resistant* to a set of unary operations S_1 if S_1 is adequately associated to a set S_2 of unary operations such that, for Φ in S_2 if $\Phi(L) \neq \emptyset$, then $\Phi(L)$ is in \mathcal{L} if and only if L is regular. If $S_1 = \{ \Phi \}$, we say \mathcal{L} is *strongly resistant* to Φ.

One could use “only if” instead of “if and only if” in the definition above. However, if \mathcal{L} does not contain $\Phi(L)$ for L regular, a better expression would be “Φ is irrelevant to \mathcal{L}”! Strong resistance theorems for unary operations go back to Bar-Hillel, Perles and Shamir, who proved that the family of context-free languages is strongly resistant to $(1, R)$ homomorphic replications [1].

We now turn our attention to the “chevron” operation introduced and studied in [3, 4, 10]. For a language L and symbols a, b, we write

$$\langle L, a, b \rangle = \{ a^n wb^n \mid n \geq 0, w \in L \}.$$

If a and b are symbols not in the alphabet of L, then it does not matter which symbols fill the roles of a and b. In this case, we write $\langle L \rangle$ for $\langle L, a, b \rangle$ and call this “the” chevron operation in the notation of [12]. Strictly speaking, S_1 is the set of operations $\langle L, a, b \rangle$ and S_2 the set of operations $\Phi_{a,b}$ where $\Phi_{a,b}(L) = \emptyset$ if a or b appear in L, and $\Phi_{a,b}(L) = \langle L, a, b \rangle$ otherwise. We take the liberty of speaking of the chevron operation instead of S_1 and use $\langle L \rangle$ for $\langle L, a, b \rangle$ with a and b new symbols.
As a corollary of the result on concatenation cited above, Latteux showed that the least full semi-AFL containing the two-sided Dyck set on one letter is strongly resistant to chevron. We now extend this result to the family of one-counter languages. That is, we show that \(\langle L \rangle \) is a one counter language if and only if \(L \) is regular.

The idea behind the result is simple. In order to match the a’s and b’s in \(L \), a one counter machine \(M \) must increase the counter during the a’s and decrease it during the b’s and keep it “steady” while reading \(w \) in \(L \). Hence, a finite state acceptor can simulate \(M \) on \(w \), and so \(L \) is regular.

First, we give a formal definition of a one counter machine and the language it accepts.

Definition: A **one counter machine** is a quintuple \(M = (Q, \Sigma, H, q_0, F) \) where \(Q \) is a finite set of states, \(q_0 \) in \(Q \) is the designated initial state, \(F \subseteq Q \) is the subset of accepting states, \(\Sigma \) is the finite input vocabulary and the transition set \(H \) is a finite subset of \(Q \times (\Sigma \cup \{ e \}) \times \{ 0, 1 \} \times N \times Q \), where \(e \) denotes the empty word and \(N \) is the set of integers, positive, negative and zero. Machine \(M \) is **normalized** if \(H \) is a finite subset of \(Q \times \Sigma \times \{ 0, 1 \} \times \{ -1, 0, 1 \} \times Q \).

Definition: An instantaneous description (ID) of one counter machine \(M = (Q, \Sigma, H, q_0, F) \) is a triple \((q, w, z) \) where \(q \) is in \(Q \), \(w \) is in \(\Sigma^* \) and \(z \) is a nonnegative integer, the size of the counter. If \((q, aw, z) \) is an ID, \(a \) in \(\Sigma \cup \{ e \} \), and \((q, a, i, j, p) \) is a transition in \(H \) such that \(i = 0 \) if and only if \(z = 0 \) and that \(z + j \geq 0 \), then we write \((q, aw, z) \vdash (p, w, z + j) \). If \(I_1, \ldots, I_n \) are ID’s with \(I_1 \vdash I_2 \vdash \ldots \vdash I_n \), we call this a computation and write \(I_1 \triangleright I_n \); we also write \(I_1 \triangleright^* I_1 \). If \(I_1 = (q_0, w, 0) \) and \(I_n = (f, e, 0) \) for some \(f \) in \(F \), then \(I_1 \triangleright I_n \) is an accepting computation for input \(w \). The language accepted by \(M \) is

\[
L(M) = \{ w \in \Sigma^* \mid \text{there is an accepting computation for input } w \}
\]

and is called a **one counter language**.

Thus, a one counter machine \(M \) is a nondeterministic machine with a one-way input tape. It has one register which contains a nonnegative integer. The effect of a transition \((q, a, i, j, p) \) is that, depending on the current state \((q) \), input (if \(a \neq e \)), and whether or not the counter is zero (whether \(i = 0 \)), the machine can change state (to \(p \)), add \(j \) to the counter (for \(j \geq 0 \)) or subtract \(|j| \) from the counter (for \(j < 0 \)) and either advance the input tape (\(a \neq e \)) or leave it alone (\(a = e \); this is an \(e \)-move). The machine accepts \(w \) if it can start in the initial state with the counter 0 and reach an accepting state with the input completely scanned and the counter 0.

A one counter machine is normalized if, at one step, it can add or subtract at most 1 and it must advance the input tape at every step. If \(L \) is a one counter
language, then \(L = L(M) \) for some normalized one counter machine [11]. Hence, we can assume without loss of generality that our machines are normalized.

First, we use the familiar counting argument to show that, if \(\langle L \rangle = L(M) \), and \(M \) has \(k \) states, then for each \(m > 0 \) there is an integer \(n, 1 \leq n \leq km + 1 \) such that every accepting computation for input \(a^n wb^n \) must have counter size at least \(m \) throughout the scan of \(w \).

Lemma 1: Let \(\langle L \rangle = L(M) \) for a one counter machine \(M \) with \(k \) states. For each \(m > 0 \), there is an integer \(n, 0 < n \leq km + 1 \), such that, for every \(w \) in \(L \) and every accepting computation of \(M \) for \(a^n wb^n \), the counter size does not drop below \(m \) during the processing of \(w \).

Proof: Suppose the lemma is false for \(m > 0 \). The argument is the familiar information theoretic one. There are at most \(km \) configurations with counter size below \(m \). However, for each integer \(n, 1 \leq n \leq km + 1 \), there is some \(w \) in \(L \) and some accepting computation for \(a^n wb^n \) which enters a configuration with counter size below \(m \) while reading \(w \). Thus, there must be integers \(n_1 \) and \(n_2 \), \(n_1 \neq n_2 \), words \(w_1 = x_1 y_1 \) and \(w_2 = x_2 y_2 \) in \(L \) and accepting computations \(C_i \) for input \(a^n w_i b^n \), \(i = 1, 2 \) which enter the same configuration after reading \(a^n x_i \). Thus, by splicing together the first part of computation \(C_1 \) and the last part of computation \(C_2 \), we obtain an accepting computation for \(a^n x_1 y_2 b^n \), a contradiction. Hence the lemma must hold. □

Now we use lemma 1 to show that, if \(M \) has \(k \) states and we take \(m = k + 1 \), then the counter cannot increase by more than \(k \) during the scan of \(w \). The proof of lemma 2 uses an idea similar to the one underlying the iteration theorems of [2], which could not be used directly (because [2] uses strict iterative pairs).

Lemma 2: Let \(\langle L \rangle = L(M) \) for a normalized one counter machine with \(k \) states. There is an integer \(n, k + 1 \leq n \leq k(k + 1) + 1 \) such that, for every \(w \) in \(L \) and every accepting computation for input \(a^n wb^n \), the counter size does not fall below \(k + 1 \) nor increase by more than \(k \) during the scan of \(w \).

Proof: Lemma 1 tells us that there is an integer \(n \leq k(k + 1) + 1 \) such that, for every \(w \) in \(L \) and every accepting computation for input \(a^n wb^n \), the counter size does not fall below \(k + 1 \) during the scan of \(w \). We claim that the counter size also cannot increase by more than \(k \) during the scan of \(w \), for otherwise we could pump up a subword of \(w \) and a subword of \(b^n \) and get an accepting computation for a word not in \(\langle L \rangle \). Note that \(n \geq k + 1 \), since \(M \) is normalized.

Consider an accepting computation \(C \) for input \(a^n wb^n \), \(w \) in \(L \). This computation can be divided into pieces \(C_1, C_2, C_3 \) with

\[
C_1 : (q_0, a^n wb^n, 0) \xrightarrow{\ast} (q_1, wb^n, z_1),
\]

\[
C_2 : (q_1, wb^n, z_1) \xrightarrow{\ast} (q_2, b^n, z_2),
\]

\[
C_3 : (q_2, b^n, z_2) \xrightarrow{\ast} (f, e, 0),
\]

R.A.I.R.O. Informatique théorique/Theoretical Informatics
where \(q_0 \) is the initial state, \(f \) is some accepting state, the counter size is at least \(k + 1 \) through \(C_2 \) and so in particular never becomes 0, and \(z_1, z_2 \geq k + 1 \).

Suppose the counter size increases by \(k + 1 \) or more during \(C_2 \); that is, the counter size reaches \(z_1 + k + 1 \) at some point during \(C_2 \). Since \(M \) is normalized, there are at least \(k + 1 \) increasing steps and since \(M \) has \(k \) states, two must be in the same state. We can divide \(C_2 \):

\[
C_2 : (q_1, wb^n, z_1) \to^* (p, vxb^n, z) \to^* (p, xb^n, z + r) \to^* (q_2, b^n, z_2)
\]

where \(w = uvx \) and \(r > 0 \). Similarly, since \(z_2 \geq k + 1 \), the counter must drop by at least \(k + 1 \) during \(C_3 \), so there must be a segmentation

\[
C_3 : (q_2, b^n, z_2) \to^* (q, b^l, z') \to^* (q, b^{i-m}, z' - s) \to^* (f, e, 0),
\]

with \(s > 0 \). Furthermore, we can assume that during the first segment of \(C_3 \) the counter size is at least \(z' + 1 \) and during the second segment, at least \(z' - s + 1 \). Since \(M \) is normalized, \(m \geq s > 0 \).

Since the counter never becomes zero during \(C_2 \), we can pump it up without affecting the legitimacy of the computation. So, repeating \(us + 1 \) times, we have

\[
C_2' : (q_1, uw^s+1 xb^{n+mr}, z_1) \to^* (p, xb^{n+mr}, z + (s + 1) r) \to^* (q_2, b^{n+mr}, z_2 + rs).
\]

Similarly, the counter never becomes zero during the first two segments of \(C_3 \), so the same steps can be performed with a larger counter size. Thus, we have

\[
C_3' : (q_2, b^{n+mr}, z_2 + rs) \to^* (q, b^{i+mr}, z' + rs) \to^* (q, b^{i-m}, z' - s) \to^* (f, e, 0).
\]

Hence, putting together \(C_1, C_2' \) and \(C_3' \), we can obtain an accepting computation for \(a^n u w^s+1 x b^{n+mr} \), a contradiction, since \(mr \geq 1 \). \(\square \)

Theorem 1: The family of one counter languages is strongly resistant to chevron.

Proof: Let \(\langle L \rangle = L(M) \) for a one counter machine \(M \) with \(k \) states. Without loss of generality, we can assume that \(M \) is normalized. Let \(n \) be the integer given by lemma 2, \(k + 1 \leq n \leq k(k + 1) \). For any accepting computation for input \(a^n wb^n \), \(w \) in \(L \), the counter size does not exceed \(2n + k \leq (2k + 1)(k + 1) + 1 \). One can construct from \(M \) a one counter machine \(M' \) which simulates all and only computations of \(M \) with counter size not exceeding \((2k + 1)(k + 1) + 1 \). Clearly, \(L(M') \) is regular. Let \(T \) be the finite alphabet of \(L \) and \(L' = \{ w \text{ in } T^* | a^n wb^n \text{ is in } L(M') \} \). By definition of \(\langle L \rangle \), \(L' \subseteq L \). For any \(w \in L \), \(M' \) simulates an accepting computation for some word \(a^n wb^n \), so \(L = L' \). Hence, \(L \)
can be obtained from $L(M')$ by the homomorphism which erases a's and b's and is the identity elsewhere. Thus, L is regular. On the other hand, if L is regular, $\langle L \rangle$ is obviously a one counter language.

REFERENCES

