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FRONTIERS OF INFINITE TREES (%)

by Bruno COURCELLE (%)

Communiqué par Maurice Nivat

Abstract. — The frontier of an infinite tree is a generalized (infinite) word called an
arrangement. An equation in arrangements has an initial solution which is the frontier of its
solution in the domain of infinite trees. Certain systems of equations can be solved explicitely.

INTRODUCTION

The theory of languages deals with finite words and sets of finite words.
Infinite words as sequences of elements of some finite alphabet X indexed
by 4 have been considered in many papers (in particular McNaughton [5]
and Nivat [6]).

It is clear that the reversal of an infinite word is not defined: it should be
a sequence indexed by the set of negative integers. And the concatenation
of finite words is extended to infinite words in such a way that uv = u if u is
infinite and v finite or infinite, which is somewhat unnatural.

We shall consider a more general concept of infinite word, called an
arrangement. An arrangement of elements of X is a family of elements of X
indexed by some linearly ordered set. (It is convenient to keep the term
“infinite word’> for arrangements indexed by .4#".) The reversal of an arran-
gement is now defined, and the concatenation of arrangements does not
satisfy the above property.

We shall consider equations (and systems of equations) in arrangements.
For example the equation u = aub (where u is a variable ranging over arran-
gements and a, b are symbols from X) has the solution ¥ = a® 57, It has
many other solutions (of the general form a® Ab™° where A is an arbitrary
arrangement) but ¢® b~ is clearly ‘“the simplest one’’. For every system
of equations, we shall define a *simplest’’ solution, which is in some sense
«“generated’” by the system considered as a context-free grammar.

To do this rigorously, we shall use derivation trees. Let us recall that the
Sfrontier of a finite tree is the finite string of the labels of its terminal nodes
considered from left to right. A word is generated by a context-free grammar
if and only if it is the frontier of one of its derivation trees.

(*) Regu en février 1978 et révisé en mai 1978.
(*) LR.ILA,, Rocquencourt, Le Chesnay, France.
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320 B. COURCELLE

The same idea will be used for our equations. Each equation has one infi-
nite derivation tree. Its “simplest’’ solution is the frontier of this derivation
tree (the frontier can be naturally defined as the arrangement of the labels of
the terminal nodes, considered from left to right). We characterize it as an
(the) initial object in the category of all solutions of the given equation. Equa-
tions in categories are more generally considered by Lehmann [4]. Some
other results are proved:

1) every countable arrangement is the frontier of an infinite tree;

2) to have the same frontier (up to an isomorphism) is an equivalence
relation on infinite trees which is a “global”® property, not expressible in
terms of the finite approximations of the considered trees (technically which
is not algebraic in the sense of Courcelle and Nivat [2]);

3) certain systems of equations (called quasi-rational) can be solved expli-
citely by means of regular expressions with parameters.

1. ARRANGEMENTS

1.1. Let X be a finite alphabet. An arrangement is a triple 4 = ( ] Al,m k)
consisting of:

1) aset |4];

2) a linear order = on |4 |;

3) a mapping h:|4|— X.

Let &/ (X) be the class of all arrangements and &/, (X) [resp. &, (X)]
the class of finite (resp. countable) arrangements i. e. such that |A | is finite
[resp. countable].

If X = {a}, an arrangement A is simply a linearly ordered set denoted
by A = (| 4|, ). By convention, “let A = { | 4 |, © ) be an arrangement...”
means that X is singleton.

Let ¢ be the unique arrangement A such that | 4 | = @. Words on X will
be identified with finite arrangements: to the word u=a,4a, ... a,
(where a@;e X)) will correspond the arrangement < {1,2,...,n}, <,h)
where h(i) = a; for i = 1, 2, ..., n. The notation X * will be used instead
of &/, (X). An arrangement of the form (A", £,h) corresponds to an
infinite word in the sense of [6]. Let X be the set of such arrangements
and X® = X®u X*. Finally, for ae X, let us define

a® = <-/V, ..S_sh>’az =<Z’ §5h>
and a™® = { —n/neA }, <, h) with k(i) = a for all i.

In order to compare arrangements, we define morphisms.

R.A.LR.O. Informatique théorique/Theoretical Computer Science



FRONTIERS OF INFINITE TREES 321

Let A =(|A4|,nh) and 4’ = |4'|,n', k') belong to & (X). A
morphism o : A— A’ is a mapping a:|A|—| 4’|

1) which is one-to-one and order-preserving, i. e. (since © and =’ are linear),
a()n’a()<xmy for all x,ye|4|;

2) such that & (x) = i’ (o (x)) for xe| 4]

If o is onto, it is called an isomorphism and we write 4 ~ A’'.

It would be pleasant to identify isomorphic arrangements but this will
not be always possible since there may exist several isomorphisms: 4 — A4'.
For A and A’ in X® there exists at most one isomorphism: 4 — A’, hence
A ~ A’ can be replaced by A = A’ without ambiguity. We will often do so
for arbitrary arrangements when no difficulty arises. Let us finally point
out that there may exist morphisms o : 4 — Band § : B— A4 although 4 and B
are not isomorphic. Just take 4 = a (ab? ab”® a)° and B = ab” a (ab® ab* a)°®
(this depends on definitions and notations given below; thanks to B. Lang
for this example).

1.2. We will define the concatenation of arrangements, which will generalize
the concatenation of words for finite arrangements.

This will be done in terms of another operation called the substitution
which we now define.

Let A=(|A|,mh)esd(X) and 6 =|A4|—> L (X) be a partial
mapping. Let us extend o into a total mapping o by taking for ¢ (x) the one-
element arrangement 4 (x) [i.e. { {1}, n, k) where k (1) = h(x)] when o (x)
is undefined and o (x) otherwise. Let 6 (x) = { |6 (x) |, 7., b, > for xe| A4 |.

Then 6 (4) = A' = | A’ |, n', k') with:

D |4 ={(xp/xe|d|and ye|o®|};

2) (x, y) ' (x', y') if and only if either x # x’ and x x’' or x = x’ and
Yy

3) B ((>x9) =h ().

Note that o (4) does not depend on 4 if ¢ is total.

Furthermore, if o :A4; — 4, is a morphism, o;:|4;| > & (X) is a
substitution for i =1,2,8, : 0, (x) = 6, (a(x)) is a morphism for all x
such that o, (x) is defined, one can define a canonical morphism

"y :0,(4;) — 0, (4,) by taking:

v((x, 1)) = (@ (x), 1) if o, (x) is not defined,

Y (% ¥) = (@ (x), 8, () if o, (x) is defined and ye| oy () |.

As an example, for de o (X),let A® =c (AN, <D)and 47° = (AN, £7D)
where 6 (i) = A4 for all ieA" and i < if j£i for i,jeN.

vol. 12, n° 4, 1978



322 B. COURCELLE

The concatenation of Aand A’ € o (X )is defined by 44" = c(( {0,1}, £))
where, 6(0) =4 and o (1) = 4’. In particular a~® a® ~ a?%.

1.3. PROPOSITION: The concatenation is associative. Namely, there exists
a canonical isomorphism: A; (A, A3) — (A, A,) A; for Ay, Ay, Ay e o (X).
Hence we will write 4, A4, A3 for 4, (4, 45).

For arrangements in X *, this concatenation coincides with the usual one.
But it does not with the concatenation on X described in [6] (Recall that
uw =uif ue X® ve X*.)

1.4. Examples:

aa®=a"ie aa®~a"

a®a # a®,
a®a® # a®.
1.5. We now focus our attention on countable arrangements and represent

them in the form { L, <,, 2) where L < {O, 1 }* and £, is the lexicographic
ordering on L.

Let us recall some definitions.

Letu,ve {0, 1}*; thenw < viff v = uw for somewe {0,1 }*and u <, v
if and only if:

(1) either u < v;
(@ oru=w0u, v=wlv for some w,«, v e{0,1}*
Alanguage L = {0, 1 }*is prefix-free if u < vimpliesu = vforallu, ve L.

A complete language is a maximal element of the set of prefix-free languages
ordered by inclusion.

1.6. LeMMA [7]: A prefix-free language L < {0, 1 }* is complete if for all
u,ve{0,1 }*:

uOveL = ulwelL for some we{0, 1}*
and
ulveL = uOwelL for somewe{0, 1}*.

R.A.LR.O. Informatique théorique/Theoretical Computer Science
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1.7. THEOREM: Every A€ o, (X) is of the form { K, <, k) for some complete
language K < {0, 1 }*.

Proof: The case of a finite arrangement A is trivial. For an infinite 4, the
proof will be done in two steps: we first define a prefix-free language L such
that 4 ~ {( L, <,,1); secondly, we transform L into a complete language K
such that (L, £,,1> ~ (K, £, k).

Let us take A = (A", i, b ) for some linear order x onA" and h : N — X.

We define a sequence (i,),., of words on {0, 1} such that, for all n:

1) L, = {ug, uy, ..., %} is prefix-free;

2) for all m # n, u, # u, and u, <,u, iff mnn;

3) there exists ve {0, 1 }* such that L, u {v} is prefix-free and v <, u;
forali=0,...,n;

4) there exists w e { 0, 1 }* such that L, u {w } is prefix-free and u; <, w
forall i=0,...,n;

5) for all i,je{0,1,...n} such that i #j and imj, there exists
z;,;€{0,1}* such that L,u {z,;} is prefix-free and u; <,z;; <, u;.

Assuming this, we will take L = () L, and /:L— X defined by
neAN

I (u,) = h (n). We construct u, inductively:

® u, = 10. Note that 3) and 4) hold, the other conditions being trivially
satisfied;

oo having defined u, we now define u,,, in the following way:

@ f@m+Dmiforalli =0,1, ..., n, let v be a word defined by 3) for L,
Then we take u,,, = v10;

@) if in(r+1) for i =0, 1, ..., n, let w be defined by 4) for L,. Then
we take u,,, = w 10;

(i) if iw (n+1) = j for some i, je {0, ...,n} and
{kj0sk=ninknj}=1{ij}

then we take u,,; = z;; 10 where z;; is defined by 5) for L,

Conditions 3 to 5 express that there is room left for other elements to the
left and to the right of what has already been constructed and between any
two elements. These possibilities are used in cases (i), (i) and (iii) of the
definition of L, . The factors “10°° are used to preserve conditions 3 to 5.

vol. 12, n°® 4, 1978



324 B. COURCELLE

The rest of the proof follows from:

1.8. LemMA: Let L < {0, 1}* be prefix-free. There exists a complete
language Ke {0, 1 }* such that { L, <,> ~<{ K, £,).

Proof: Let L = {0, 1 }* be prefix-free.

We define a mapping ¢ : L — {0, 1 }*, we will take K = ¢ (L), and ¢ will
be the required isomorphism ¢ : (L, <,>— (K, ;).

A prefix u of some word in L is critical if:

u0{0,1}*NnL=9 <> ul{0,1}*nL=0.

Note that L is complete if and only if it has no critical prefix by lemma 1.6.
Let x; ... x,€L with x;, ..., x€{0,1}.
Then @ (x; ... X)) =»1 - Vi

where

Vi =X if x,...x;_4 is not critical

=g if x,...x;- is critical.

CoamMm 1 : Letu,u'eL. If o (u) <o () then u =u'.

Assume by contradiction that u # #’. Then ¥ =v0w and v’ =vlw
for some v, w, w' e {0, 1}* (or vice versa); but v is mot critical hence
¢ =x0y and ¢ (') =x1y for some x, y, y'e{0,1 }* and we cannot
have ¢ () < o (¥).

Q.E.D.

CLAamM 2 : Let u, w'eL. If u<,u’ then ¢ (u) <,0 @).

We have u = v0w and ¥’ = v1w' for some v,w,w’e{O, 1 }* hence v
is not critical and @ () = x0y, ¢ (u) = x 1y for some x, y, y'e {0, 1 }*

Q. E. D.

Claim 1 shows that K is prefix-free and that ¢ is one-to-one, claim 2 that ¢

preserves =,. We need only show that K is complete.

Let ¢ (#) = v0w for some ue L, v,we {0, 1 }* Then, by the definition
of ¢, we can write:

U=2Xy...% with x;=0 forsome 1 <IZk,

V=Y.V

} as in the defmition of o,
W=Yi+1---V&

X;...X;—4 is not critical.

R.A.IR.O. Informatique théorique/Theoretical Computer Science



FRONTIERS OF INFINITE TREES 325

Hence there exists #' =x; ...x;,_,1zeL for some ze{0,1}* and
clearly,
o)=y;...y-y 1w  for some w'e{0, 1}*
=viw'.
Lemma 1.6 shows then that K is complete.

If we represent prefix-free languages by trees, the transformation of L
into K corresponds to the suppression of nodes with only one son.

As an example, if
L = {0, 1010, 100010, 100011 }
then K = {0, 100, 101, 11 }.

2. THE FONTIER OF AN INFINITE TREE
2.1. Let F = { % } uX. The symbol % will be given the arity 2 and each
x € X the arity 0.

We recall from [1] the definition of M® (F), the set of infinite (and finite)
trees on F by adapting it to the special set F that we are considering.

A tree T is a partial mapping: {0, 1 }* — X U {x} such that the set
of its nodes, Dom (T) = {ue {0, 1 }*/T (u) is defined } satisfies the following
properties:

1) u <veDom (T) = uecDom (T);

2) T(w) e X if and only if # is maximal in Dom (T') w.r.t. <.

Let T, = {ue {0,1}*/T(w)eX}, the set of terminal nodes. Then T,
is prefix-free. It is complete if and only if T is locally finite [1] i. e. if each
node is prefix of some terminal node. We let M (F) denote the set of finite
trees (with a finite set of nodes) and M'° (F), the set of locally finite trees.

A binary operation on trees is defined by T = Tox Ty if T(e) = « and
T(iu) = T;(u) for ue {0,1}* and i =0, 1.

2.2, Examples:
/N
To= ) / \
VAN

corresponds to the mapping T, such that T, (1"0) =a and T, (1") =
for n = 0, otherwise undefined.

vol. 12, n° 4, 1978



326 B.. COURCELLE

Other examples of trees are:

U= ¥ hod /\
NN N

The trees T,, T,, T5 are locally finite, but U is not.
The frontier of Te M® (F) is the countable arrangement
@(T)=<Tsa §bT>
(the third element of this triple is in fact the restriction of 7 to Ty).
Hence @ (T,) =a°, ®©(T,) =a® O(T,)=a"a" O(U) ==
For a finite T, ® (T) € X* and coincides with the usual frontier defined
fot instance in [8]. An immediate consequence of theorem (1.7) is
2.3. THEOREM:
Ay (X) ={®(T))TeM=(F)}={e}u{®()/Te M (F)}.
2.4. PROPOSITION: @ (Tx T") = ®(T) ® (T).
2.5. Example: Let Ty = Tox T; (where Ty, T, are from 2.2).
This tree looks like:

3

AN
N\
—

¥

/

A
d

Clearly ® (T3) = ® (T,) = a®a™°.

=

R.A.LR.O. Informatique théorique/Theoretical Computer Science



FRONTIERS OF INFINITE TREES 327

3. SOLVING EQUATIONS IN « (X)

3.1. We want to solve in & (X) systems of equations of the form

Uy =1t
z :

U =1
the u,’ s are variables of arity 0, ¥V = {u,, ..., }, ,e(X U V)* and ;¢ V
fori=1,...,k

-~ Such a system is a context-free grammar with the special property that
right handsides of equations are monomials rather than polynomials.

It is known that the language generated by a context-free grammar is the
set of frontiers of the trees generated by a regular tree-grammar. A similar
result is used here.

Given X, we define a system % of the form {u; = ;,-, 1 <iZ k) such
that ;e M(FuV)and @) =t fori=1, ...,k
This new system has a unique solution { Ty, ..., T}, > in M® (F) and,

by (2.4), { ® (Ty, ..., ® (T ) is a solution of T in & (X). We shall charac-
terize it by an initiality property and show that it does not depend on the

choice of Z.

3.2. Examples [see (2.2) for Ty, Ty, T, and U]:

b = Solution of X Solution of T
Uy = ally Uo = ak Uy To a® = ® (7T,)
w, =ua U = urka T, a~® =@ (Ty
Uy = auy a U, = ak U ka) T, a®a® = @ (Ty)
u =uu u=uku U e=®W)

Any solution in &/, (X) of w = waw is a dense countable linearly ordered
set without least and greatest element, hence is isomorphic to the order type
of rational numbers.

3.3. NoraTiONS: If 4, is a variable of Z, we let T (E), u;) denote the component
of the solution of £ in M= (F) associated with u;,, and 4 (T, u;) denote

@ (T (Z, u)).

vol. 12, n° 4, 1978



328 B. COURCELLE
Let T(X) =< T uy), ..., T(E u)) and
AR =CAC u), ...r AE, w)D.

3.4. An open decision problem

(P): Given X and X', can we decide whether 4 (%, u,) is isomorphic to
A, u))?

In the special case where X = {a}, this problem is equivalent to the
following one:

(P’): Given two prefix-free rational languages L and L’ on {0, 1}, can
we decide whether { L, <,)> and { L', <,) are isomorphic order types?

In fact these two problems are equivalent. Let us show that (P ) reduces
to (P). If X={ay,a, ...,a,} we can “code” a; by a™®a® a, by
a®a®a% ...,a, by (@ ®)"a® Formally, if A(Z,u)=<{|4]|,m k) we
define a substitution o such that

o(x) =(a"®'a" if xe|A| and h(x)=a;

and similarly, a substitution o’ associated with 4 (Z', u}).
One easily constructs Z; and X such that

[} (A(E9 ul)) = A(zl’ ul)s
o' (AT, uy)) = A(Z3, uh),
and one shows that:
AE, u) = AX, uy) AT AE, uy) = AR, uy)
3.5. Quasi-rational systems
Asystem X = {u; = t;, 1 < i < k) is quasi-rational if it is a quasi-rational
context-free grammar i. e. if for all ¥; and e (X U V)* such that ui%r

then u; occurs at most once in ¢.

The system X is preordered if there exists a preorder 6 on {1, ..., k}
such that for all i and j:

(i) if u; occurs in #; then j 0 i (i. e. j is less than i w.1.1.0),
@ii) if »; and u, have distinct occurrences in ¢; (and possibly j=1) i0j
and i0/ do not hold together.

3.6. PROPOSITION: A system X is quasi-rational if and only if it is preordered.

R.A.LR.O. Informatique théorique/Theoretical Computer Science



FRONTIERS OF INFINITE TREES 329

Proof: Only if. Let X be quasi-rational. Take j0iif i =j or u; %» t for some

te (X v V)* with at least one occurrence of »;. Then 0 is clearly a preorder,
(i) is satisfied; if #; and », have distinct occurrences in ¢; and if 16 and 6/

*
then one can find some 7 e (X U V)* such that: u; — ¢;— ¢t and u; occurs
twice in t.

Hence X is not quasi-rational.
If. Let X be preordered by 6. By induction on the length of a derivation

u, 2 ¢, one shows that if u ; and u; have distinct occurrences in ¢ then i 6 j and
i 0 /do not hold together. In particular, this implies that X is quasi-rational. []
3.7. In order to solve explicitly quasi-rational systems, we define a certain
kind of regular expressions (r.e.) involving exponentiation to ® and —o.
Similar expressions are used in [5].

They are obtained by a finite number of applications of the following
rules:

(i) every ae X isar.e,and e is a r. e,

(ii) RR is a r.e.,

(iii) (R)® is a r.e., and

(iv) (R)"®isar.e.,if Rand R arer. e. We also define regular expressions
with parameters U, ..., Uy by adding following rule:

vy Ujisare fori=1,..., k.

By definitions 1.2 and proposition 1.3, every r.e. R has a well defined
value in &/, (X). A r.e. with parameters U,, ..., U, has a value in & (X)
for every assignment of values in &/ (X) to the parameters. (The same symbol
will denote a regular expression and its value.)

An arrangement A is quasi-rational if A = A (Z, u;) for some quasi-rational
system X.

3.8. THEOREM: An arrangement is quasi-rational if and only if it is defined
by some regular expression.

Proof: The “if”’ part is proved by induction on the structure of regular
expressions:

@) if R=aeXu{e}, then R=A(Z,u;) where L =(u; =a);

@ii) if R= R, R,, one constructs X, = {uy =1t,, ..., 4 =4 );
Zy = Uppy = bygys -y =ty such that Ry = 4 (Zy,4y), Ry = A (Z3, ey y)
then R=A X, u;;,) where T =2, UZ, U U = U Uppq);

(ii) if R = R}, where Ry = A(Z,u,) then R = A4(Z, %) where
2 =3, Uty = Uyt ) (casy lemma left to the reader) and similarly:

(v) if R =R{® then R = A (T, ) Where X = Z; U {thypy = Upyq Ug )e

vol. 12, n° 4, 1978



330 B. COURCELLE

One easily checks at each step of this construction that one gets preordered
systems.

Let £ be preordered by 0 and 4 = 4 (T, u,).

For each ie {1,2, ...,k } one can find t;e (X U V)* such that:

1) ;515

(2) if u; occurs in ¢; then j0i;

(3) if u; occurs in ¢; and i 6 then i =j;

(4) u; has at most one occurrence in f;.

Let ' = Cuy =1, ..., 1 = £ >; then 4 (2) = 4 ().

We now define R; such that R, =AX,u) for i=1, ...,k

We define R; in terms of the R;’s such that j6iand i # j.

(o) If ¢/ contains no occurrence of u;, then by (2) ¢/ contains only occurrences
of u; such that j0i and i # j. Then we take R; = 1] [R;/u;], the substitution
of R; to each occurrence of u; in ¢ for all j.

(B) If ¢/ contains an occurrence of u;, then we obtain three cases:

B ¢t =su;s’;

(B2) 1 =u;s';

B3) ¢y =su;
where s and s’ only contain occurrences of u; such that j0i and j # i. Let
S = s [R;/u;] and S’ = s [R;/u;] [same. notation as in case (x)]. We then
take R; = S®S'~° in the first case, R; = S'~® in the second and R; = S®
in the third. [J
3.9. Example: Let us define R, = A (Z. u;) where

Uy = auz s,
u; = uszbuy,
X uy =u,uuszb,
Uy = aus,
us = ab;
R = ab,
R, = aab,
R; = (aab)*b™".
The first equation is transformed into

u; = au bu, us,
R, = (a(aab)” b~ "b)°((aab)* b~")"® = (a(aab)” b~ )" ((aab)” b~*)"",
R, = (aab)*b™®(a(aab)®*b~*)*((aab)*b™*)"°.
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FRONTIERS OF INFINITE TREES 331

By using regular expressions with parameters, we can also define all solutions
of a given quasi-rational system E. In order to do so we state without proof
the following:

3.10 LeMMA: Let A, A’ € o (X). An arrangement U satisfies the equation
U= AUA’ (resp. U = UA’) (resp. U = AU) if and only if U = A® BA"™®
(resp. U = BA'™®) (resp. U = A® B) for some Be o (X).

Given X as in the second part of the proof of 3.8, let U; be a parameter

forallie { 1, ...,k } such that #/ contains an occurrence of u; let P be this
set of parameters.

We define regular expressions I_t,- with parameters in P in the same way
as before except in case (B) where we take:
Ei = 8°U;S’™® in subcase (B 1),
E,- =U;S'™ in subcase (B 2),
R;=S°U, in subcase (B 3).
We obtain with lemma 3.10 and the above notations:
3.11. THEOREM: The class of solutions of X is exactly the class of values of
{ Ry, ..., R, ) where parameters range over & (X).
3.12. Example: Let ¥ be defined in example 3.9:
Rs = ab,
R, = aab,
R; = (aab)*U; b™°,
R, =(a(aab)*Usb™")*U,;((aab)* U3 b~)"°,
R, is left to the reader.
Hence, the general solution of X depends on two parameters, U, and Us,.

We conclude this section by another characterization of quasi-rational
systems.

Let Te M® (F). An infinite branch of Tis a word we {0, 1 }* such that
w [n] (. e. the finite prefix of w of length n) belongs to Dom (T) forall neA".

A tree is sparse (in French: éparpillé) if it has at most countably many infinite
branches.

3.13 PROPOSITION: A system X is quasi-rational if and only if each T (E, u;)
is sparse.

Proof: Assume that X is not quasi-rational. Then u; 2, ¢ with two occurrences
of u; in ¢t. Then T (T, u;) contains as a subgraph the tree U = Ux U of 2.2.
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Its set of infinite branches is {0, 1 }* which is not countable.

Conversely, let = be preordered. One shows that T'(Z, u;) is sparse by
the same induction as for the construction of the R;’s in the proof of 3.8
and the remark that if 7 is the solution in M*® (F) of an equation

T= t[ T/”O’ Tl/vla RS T;l/vn];
such that

Ty, ..., T, are sparse,
teM(F U {vy, ..., 0,}), t # vy and v, has one occurrence in ¢,

then T is sparse. [] _
This proposition shows in particular that the arrangement 4 such that
A~ AaA (see examples 3.2) is not quasi-rational.

4. INITIALITY OF 4 (%)

4.1. Let £ = (y; = w;; 1 Si<k) be a system of equations over
& (X) where w; e (XU V)* for all i (and V = {uy, u5, ..., % }). Let
T=(u;=t;1 £i=<k) be a system over M (F) where t,e M(FuU V)
is choosen in such a way that ® (#;) = u;. We shall see that all possible choices

for = yield the same result.

We redefine the concept of a solution of X in & (X'), more precisely than
we have done yet:

A solution of X is a k-tuple ( (4, a); 1 =i =< k) of pairs consisting

of an arrangement A4; and an isomorphism «; : 4; — w; [Z] where w; [Z]
is the substitution of A; to the parameter u; in the regular expression w;,

or equivalently, w;, [2] = o (w;) where o is the substitution such that
o (x) = A;ifw; (x) = u;(considering now w; as a finite arrangement on X u V).

A morphism of solutions of X, denoted
BidUna)i 1 Sighkd>CUha; 1 Siskd

is a k-tuple of morphisms _[3: = {P;; 1 £i < k) where, for each i, B; is a
morphism : A4;— A4; and the following diagram commutes:

A4S w[4]
BiJ lm[—BEI

a, -
Ai—’wi[A’]
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The morphism w; [6] is canonically defined : w; [A_j — w; [,Z’ Jasyinl.2
with 4, = 4, = w;, 7 the identity on w,, 3, = B; if w; (x) = u;. We redefine

it in this context: using the fact that w; = ® (¢,), we get for w; [E] the following
definition with

tP = {zeDom (t)/t; (z) = u; }

and 1P = {ze Dom (#)/t; (z) e X }:

w[8](z D) =(z 1) if zet® (4.1.1)
w,[B1((z 2)) =z, B;(z)  if zetd (whence 2'e|4;|). (4.1.2)
4.2. Let now { Ty, T,, ..., T, > be the unique solution of T in M® F).
We shall define morphisms v,, ¥, ..., Vi suchthat { (@ (T, v); 1 £ i Z kD

is a solution of X in the sense of 4.1.
From the equation

Ta=1 TV - O1R T U t5) 4.2.1)

there exists a bijection

Vit Te—tPx T ... UIRx T, 0P x {1} (4.2.3)
such that
v: (@) =(z1) if zety)

=(zy,2,) if z=2z,z, forsome z;etf) and z,eTj.

It follows from the definitions and the properties of trees (see for instance [1])
that v, is a bijection. Its codomain is exactly |o,(®@(s))| where
c;:| @ ()| > (X) is the substitution such that o;(z) = ® (7)) if
t;(z) = u;, for zety Hence, y; is an isomorphism of @ (T;) onto
o (@ (1)) = w; [@(TD/uy, ..., ©(Tuc].

We can now state and prove:

4.3. TueoreM: { (@ (T, v;); 1 £ i £ k) is initial in the category of solutions
of X.

Initial means that for every solution {(D;,8);1 <i < k) of X there
exists one and only one morphism from {(®(T),v);1 <i<k) to it.

Proof: Given a solution < (Dy, 8y), ..., (D, ;) >, assume first the existence
of (By, ..., Bo) such that:

wi[ﬁ]Yi':SiBi for 1sisk. “.3.1)
Then B;: Ty — | D;| satisfies the following:
if zetd then v;(z)=(z 1) and w,[B]((z 1)) =(z 1); 4.3.2)
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by (4.1.1) hence B; () =38;'((z, 1)) by (4.3.1),
if z=zz, with z,et§, z,e Ty, then v;(z) = (z4, z,)
and (4.3.3)
wi[ B]((Zl, z,)) = (zy, ﬁj(zz))
by 4.1.2, hence B; (2) = 8. ((zy, B; (z2)))

These properties insure in fact the existence and unicity of E

-Since v, is bijective, every z € T}, either belongs to ¢ and B; (2) is defined
by (4.3.2) in a unique way, or is of the form z = z, z, with z, € ¢{) and
2, € Ty in a unique way and z, is shorter than z (since t;¢ V) and B, (2)
is defined by (4.3.3) in a unique way if B; (z,) is, which can be assumed since
|z, | <|z| (in a proof by induction).

Hence we have shown the existence and unicity of E O

Since initial objects are isomorphic, { (® (T}), v); 1 < i £ k) does not
depend on the precise choice of £ which has been done to define T, ..., T}.

More precisely, if 2P = {u; =tP;1 <i < k), j=1,2 are two systems
such that tPe M (FU V)—V and ® (V) = @ (¢{?) for 1 < i < k then:
4.4, CoROLLARY: @ (T(EW, u) ~ ®(TE®, u)) for 1LiLk.

5. THE ALGEBRAIC STRUCTURE OF &, (X)/~

5.1. Let us try to find an algebraic presentation of &7, (X)/=~, the set of
isomorphism classes of countable arrangements.

We have shown that every countable arrangement is isomorphic to @ (7))
for some T'e M= (F) (theorem 2.3).

Let = be the equivalence relation on M® (F) defined by T = T’ iff
®(T) =~ ® (7). Itis a congruence by 2.4,i.e. Ty x T, =T x T, if T; = T}
fori =1, 2.

It follows that &/, (X)/~ is isomorphic to M= (F)/=.

Equivalences on M® (F) have been investigated in [2] for a different
purpose. We shall use the concepts of [2] and show a negative result, that =
is not an algebraic congruence on M® (F). It will follow that M® (F)/=
and 7, (X')/=~ are not “pleasantly’’ presented, as we would like them to be.

Let us recall that M ® (F) is the set of maximal elements of an ordered
set Mg (F) defined as follows: the alphabet is augmented with a new symbol Q
and MZ (F) = M® (Fu {Q}). An order relation < on Mg (F) is defined
as follows: 7< 7" iff Dom (T) = Dom (7”) and for all # in Dom (T),
Tw) =Qor T(w) =T (w).
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Intuitively 7 < T if and only if 7" is obtained from 7 by the substitution
of arbitrary elements for certain occurrences of Q in 7. One can also think
of T as an “initial subtree of 7' if T < T".

Let M, (F) be the set of trees of MY (F) with a finite set of nodes. Letters ¢,
t, s, 8 ty, ... will be reserved to elements of Mg (F).

Every increasing sequence (¢,) in Mg (F) has a least upper bound Sup (z,)
in Mg (F), and conversely, every element of Mg (F) is the least upper bound
of an increasing sequence in M, (F).

We shall show that the equivalence = does not satisfy the following
continuity property:

If (¢,) and (¢)) are increasing sequences in M (F) such that ¢, = ¢, for
all ne, then Sup (z,) = Sup (z).

To do so we take an example.
5.2. Example:
Let s,, s, and s, be the increasing sequences in Mg (F) defined by:
So=So=255=29Q,
Sp1 = AKX Sy,
Spe1=Spka,
Sne1 = ax(s,*a).
The sequences s, +s, and s, * s, also are increasing and have least upper
bounds Ty + T, and T, * T, respectively (T, T; and T, are defined in 2.2).
We have clearly:
D(s,*xsy)=a"Qa"Qa" =D(s, xs,),
O(Ty*xT,) =a"aa " *#a%a " %a ™ =0(TL,+ Ty). O
5.3. We can also show that = is not an algebraic congruence on M= (F).
Using definitions of [2], a congruence on M® (F) is said algebraic if there
exists a preorder R on M, (F) satisfying the following
t<t = (tRY, (5.3.1)
Rty and t,Rt, = (t;*t,)R(t;x1t3) (5.3.2)
for all increasing sequences (¢,) and (¢;) in Mg (F) with least upper bounds
in M= (F):
Sup(t,) =Sup(t;) < Vnims.t.t,Rt, and Vmins.t.f,Rt, (5.3.3)

5.4. PROPOSITION: The congruence = on M® (F) is not algebraic.
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Proof: Assuming the existence of a preorder R on Mg (F) satisfying (5.3.1)
to (5.3.3) we shall show that

Vn, 3ms.t.(s, * ;) R(sy, * sp,) (5.4.1)
and
Vm, Ans.t.(sy* s,,) R(s, * s}). (5.4.2)

But a contradiction will follow since Sup (s, * s;) # Sup (s, * 5,,) as shown
in 5.2.
In order to prove (5.4.1), let us fix #» and consider S® = U™ » U'®™

where

U9=1,; U@=m,
U = g% U™; UV =gxU™xa).

It is clear that ® (U™) = a" @ (T,) = a®a™® and
O U®) = a0 = aa.

Finally, ® (S ™) = a®a ®a™® hence S® = T, « T}.

Since s,*s” < S™, we get from (5.3.3) the existence of m such that
(s, *s)) R(sp*s,). And (5.4.1) is proved. One proves similarly (5.4.2)
and a contradiction is obtained. [J

The meaning of 5.2 and 5.4 is that the equivalence of two trees is a global
property which cannot be deduced from a comparison of the finite approxi-
mations of the trees involved.

Another consequence is that &/, (X')/~ cannot be defined as a quotient
of M* (F) in a usable way, and a fortiori is not the set of ideals of a quotient
of M, (F).

6. CONCLUSIONS

Many problems are left open.

1. Deciding whether 4; (T) ~ 4, (X') for systems ¥ and X'

2. Find a complete system of axioms and rules for the equality of regular
expressions.

3. Extend regular expressions to represent the solutions of arbitrary systems.

4. What can be said of the set of arrangements 4 (G) which are generated by
a context-free grammar? of the equivalence relation on grammars defined
by A(G) ~ A(G’') i.e. for every Be A(G) there exists some B’ e A (G)
such that B ~ B’ and vice versa?
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This work being completed, I happened to know that equations in arran-
gements have already been considered by S. Heilbrunner [3]. In particular,
he gives a solution to the third problem that I am leaving open.

REFERENCES

1. B. CourceLLE, A Representation of Trees by Languages, Theoretical Computer
Science Vol. 7, 1978, pp. 25-55.

2. B. CourcerLLE and M. NivAT, Algebraic Families of Interpretations, 17th Sym-
posium on Foundations of Computer Science, Houston, 1976, pp. 137-146.

3. S. HEILBRUNNER, Gleichungssysteme fiir Zeichenreihen, Technische Universitit
Miinchen, Bericht Nr. 7311, 1973.

4, D. LEHMANN, Categories for Fixpoint Semantics, 17th Symposium on Foundations
of Computer Science, Houston, 1976, pp. 122-126.

5. R. MCNAUGHTON, Testing and Generating Infinite Sequences by a Finite Automaton,
Information and Control, Vol. 9, 1966, pp. 311-327.

6. M. NIVAT, Mots infinis engendrés par une grammaire algébrique, this journal,
Vol. 11, 1977, pp. 311-327.

7. M. Nvat, Eléments de la théorie générale des Codes, in Automata Theory,
E. R. CalaNELLO, ed., Academic Press 1966, pp. 278-294.

8. J. W. THATCHER, Generalized Sequential Machines Maps, J. Comput. System Sci.,
Vol. 4, 1970, pp. 339-367.

vol. 12, n° 4, 1978



