Computing grammars and context-sensitive languages

RAIRO. Informatique théorique, tome 12, n° 1 (1978), p. 33-48

<http://www.numdam.org/item?id=ITA_1978__12_1_33_0>
Summary. — We introduce the notion of a computing grammar and we study the family of functions that can be defined by such a grammar with a linearly limited buffer size. These functions in turn define context-sensitive languages. We investigate various closure properties of this family of functions and use them to show that certain languages are context-sensitive.

I. INTRODUCTION

It is a well known fact that every context-sensitive language is a recursive set. Using a diagonalization argument it is possible to prove that the class of context-sensitive languages is strictly included into the class of recursive languages. Moreover, the progress of Computational Complexity Theory now permits the direct specification of languages that are recursive but not context-sensitive since they require exponential space for recognition — e. g. extended regular expressions denoting the empty set ([1], chap. 11) — and are therefore outside the scope of any linear bounded automaton.

Therefore, for formal language theory it is an important matter to clarify as much as possible the border of the class of context-sensitive languages by proving that certain classes of recursive languages are composed in fact by context-sensitive languages.

By N_1 we shall denote the set of positive natural numbers $N_1 = N \setminus \{0\}$. The aim of our paper is to study a certain subset of the set of functions $\{f \mid f : N_1^k \rightarrow N_1^k, k, h \in N_1\}$ for which the bounded languages

$$L_f = \{i_1^{m_1} \cdots i_h^{m_h} \mid (m_1, \ldots, m_h) \in f(N_1^k)\}$$

are context-sensitive. Here i_1, \ldots, i_h are symbols belonging to an appropriate alphabet I.
After studying closure properties of this class of functions with respect to common operations of recursive function theory we consider some elementary examples which justify the interest of this topic.

II. COMPUTING GRAMMARS AND FUNCTIONS COMPUTABLE WITH A LINEARLY-LIMITED BUFFER-SIZE

In the sequel we shall introduce a new rewriting device.

Définition : A computing grammar (cg) is a 7-uple

\[K = (I_N, I_T, \{x_1, \ldots, x_k\}, \{i_1, \ldots, i_h\}, b, \#, F) \]

where \(I_N \) and \(I_T \) are finite nonvoid sets representing respectively the nonterminal and the terminal alphabet, \(\{x_1, \ldots, x_k\} \subseteq I_N \) is the set of start symbols, \(I_T = \{i_1, \ldots, i_h, \#, b\} \), where "\#" is the marker and "\(b \)" is the buffer and \(F \) is a finite set of pairs of words from \((I_N \cup I_T)^* \times (I_N \cup I_T)^*\).

In addition, we suppose that if \((u, v) \in F\) then:

(i) \(u \) contains at least a nonterminal symbol;
(ii) if "\#" occurs in \(u \) then "\#" has exactly only one occurrence both in \(u \) and \(v \), namely in the first position of these words.

If \((u, v) \in F\) this fact will be denoted by \(u \rightarrow v \).

The generation relation "\(\Rightarrow \)" and its reflexive and transitive closure are considered exactly as for grammars.

A cg is length-increasing if for every rule \(u \rightarrow v \) we have \(l(u) \leq l(v) \), where \(l(p) \) is the length of the word \(p \).

If \(n = (n_1, \ldots, n_k) \in N^k \) the number \(||n|| \) is the sum \(\sum \{n_j \mid 1 \leq j \leq k\} \).

A function \(f : N^k \rightarrow N^h \) is computed by a cg \(K = (I_N, I_T, \{x_1, \ldots, x_k\}, \{i_1, \ldots, i_k\}, b, \#, F) \) if for every \(n = (n_1, \ldots, n_k) \in N^k \), there exists an unique \(m = (m_1, \ldots, m_h) \in N^h \) so that

\[\# x_1^{n_1} \ldots x_k^{n_k} \Rightarrow_K \# i_1^{m_1} \ldots i_h^{m_h} b^{M^K_f}(n). \]

The number \(M^K_f(n) \) is the buffer size for the function \(f \) and the input \(n \) in the cg \(K \). In this manner we obtain a function \(M^K_f : N^k_1 \rightarrow N^h_1 \).

A function \(f : N^k_1 \rightarrow N^h_1 \) is computable with a linearly limited buffer size by the length-increasing cg \(K \) if there exists \(c \in R^+ \) so that:

\[M^K_f(n) \leq c || f(n)||, \]

for every \(n \in N^k \setminus Q_f \), where \(Q_f \) is a finite subset of \(N^k_1 \).

Let \(LLBS \) be the class of functions which are computable by length-increasing cgs with linearly limited buffer size.
The usefulness of this concept of c_g is pointed out by:

Theorem 1: If a function $f : N^*_k \rightarrow N^*_k$ belongs to LLBS then the language

$$L_f = \{ i_1^{m_1} \ldots i_h^{m_h} \mid m = (m_1, \ldots, m_h) \in f(N^*_k) \}$$

is a context-sensitive one.

Proof: Suppose that f is computed by the length-increasing c_g $K = (I_N, I_T, \{ x_1, \ldots, x_k \}, \{ i_1, \ldots, i_h \}, b, \#, F)$ and let us consider the length-increasing grammar

$$G = (I_N \cup \{ y_1, \ldots, y_k \}, I_T, x_0, F \cup \{ x_0 \rightarrow \# y_1 \ldots y_k, y_1 \rightarrow y_1 x_1, y_1 \rightarrow x_1, \ldots, y_k \rightarrow y_k x_k, y_k \rightarrow x_k \})$$

where y_1, \ldots, y_k are new symbols non belonging to the set $I_N \cup I_T$.

We infer that the language

$$L = \{ L(G) \cap \{ \# \} \{ i_1 \}^+ \ldots \{ i_h \}^+ \{ b \}^* \} - \{ \# i_1^{q_1} \ldots i_h^{q_h} \mid (q_1, \ldots, q_h) \in f(Q_f) \}$$

is again context-sensitive since the class of context-sensitive languages is closed with respect to intersection with regular languages.

Let us take $p \in L$. The derivation $x_0 \Rightarrow_G^* p$ can be split as follows:

$$x_0 \Rightarrow \# y_1 \ldots y_k \Rightarrow \# x_1 \ldots x_k \Rightarrow \# i_1^{m_1} \ldots i_h^{m_h} b^{M_f^k(n)}$$

where the last part of the derivation uses only rules from F.

We conclude that L has the following form

$$L = \{ \# i_1^{m_1} \ldots i_h^{m_h} b^{M_f^k(n)} \mid m = f(n), n \in N^*_k \setminus Q_f, m = (m_1, \ldots, m_h) \}$$

Let us consider now the homomorphism

$$H : \{ i_1, \ldots, i_h, b, \# \} \rightarrow \{ i_1, \ldots, i_h \}^*$$

given by:

$$H(y) = \begin{cases} y & \text{if } y \in \{ i_1, \ldots, i_h \}, \\ e & \text{if } y \in \{ b, \# \}. \end{cases}$$

H is a $(c+2)$-linear erasing homomorphism with respect to L for, if $p = \# i_1^{m_1} \ldots i_h^{m_h} b^{M_f^k(n)}$ we have

$$l(p) = 1 + \parallel f(n) \parallel + M_f^k(n) \leq 1 + \parallel f(n) \parallel + c \parallel f(n) \parallel \leq (c+2) \parallel f(n) \parallel = (c+2) l(H(p)),$$

since $H(p) = i_1^{m_1} \ldots i_h^{m_h}$ and $f(n_1, \ldots, n_k) = (m_1, \ldots, m_h)$.

vol. 12, no 1, 1978
Taking into account that the class of context-sensitive languages is closed under linear erasing [4] it follows that $H(L)$ is a context-sensitive language.

III. CLOSURE PROPERTIES OF THE CLASS OF FUNCTIONS COMPUTABLE BY LENGTH-INCREASING cgs

This part of the paper contains a study of closure properties of functions computable by length-increasing cgs.

We shall recall first the definitions of several well known operations on functions.

If $f : N_1^k \rightarrow N_1^h$ and $g : N_1^h \rightarrow N_1^t$ are two functions, the combination of f and g is the function $f \times g : N_1^k \times N_1^h \rightarrow N_1^t$, given by

$$(f \times g) (m, p) = (f(m), g(p)),$$

for every $m \in N_1^k$ and $p \in N_1^h$.

The *exponentiation* of the function $f : N_1^k \rightarrow N_1^1$ is the function $f : N_1^{k+1} \rightarrow N_1^1$ which is defined by:

$$f^\#(n, p) = f \circ f \circ \ldots \circ f(n),$$

where "\circ" denotes the composition of functions.

The function $f : N_1^{k+1} \rightarrow N_1^1$ is obtained by *primitive recursion* from $g : N_1^k \rightarrow N_1^1$ and $h : N_1^{k+1+1} \rightarrow N_1^1$ if $f(n, 1) = g(n)$ and

$$f(n, p + 1) = h(n, p, f(n, p)), n \in N_1^k, p \in N_1.$$

The operations of composition, combination, exponentiation and recursion are not independent. For instance, it is possible to prove [2] that each function defined by exponentiation starting from a primitive recursive function can also be defined by primitive recursion from primitive recursive functions. In this proof the projections are inherently involved. Since these functions are obviously non-computable by a length-increasing computing grammar, it is useful to study closure properties of the set of functions with respect to the whole set of operations.

The strategy of our approach is the following. In the next four theorems we prove closure properties of the class of functions computable by cgs.

After establishing evaluations for the buffer size of the computed functions we obtain in the corollaries, closure properties of the class of LLBS functions.

Theorem 2: The class of functions which are computable by length-increasing cgs is closed with respect to composition.

Proof: Let $f : N_1^k \rightarrow N_1^h$, $g : N_1^k \rightarrow N_1^l$ be the functions computed respectively by the grammars:

$$K_f = (I_{Nf}, I_{Tf}, \{x_1, \ldots, x_k\}, \{i_1, \ldots, i_h\}, b, \#, F_f),$$

$$K_g = (I_{Ng}, I_{Tg}, \{x'_1, \ldots, x'_h\}, \{i'_1, \ldots, i'_h\}, b, \#, F_g).$$

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
Without loss of generality we assume that
\[I_{NF} \cap I_{Ng} = \emptyset \quad \text{and} \quad I_{TF} \cap I_{Tg} = \{ b, \# \}. \]

Then the composition \(g \circ f : N^k_1 \rightarrow N^l_1 \) is computed by the cg:

\[
K_{g \circ f} = (I_{NF} \cup I_{Ng} \cup (I_{TF} \setminus \{ b \}), I_{Tg}, \{ x_1, \ldots, x_k \}, \{ i'_1, \ldots, i'_l \}, b, \#, \{ i_m \rightarrow x_m' \mid 1 \leq m \leq h \} \cup F_f \cup F_g)
\]

since we can write:

\[
\begin{align*}
\# x_1^{i_1} \ldots x_k^{i_k} & \Rightarrow \# i_1^{i_1} \ldots i_k^{i_k} b^{M_f^K(n)} \\
& \Rightarrow \# x_1^{i_1} \ldots x_k^{i_k} b^{M_f^K(n)} \# i_1^{p_1} \ldots i_k^{p_k} b^{M_g^{K*}(f(n)) + M_f^{K*}(n)}.
\end{align*}
\]

Corollary 1: If \(f, g \in LLBS \), \(\| g(n) \| \leq \| n \| \) for almost all \(n \in N^k_1 \) (excepting possibly a finite set \(Q \subseteq N_1^k \)) and \(f^{-1}(Q_g \cup Q) \) is a finite set then the composition \(g \circ f \) belongs to LLBS.

Proof: From the proof of th. 2 it follows that

\[M^{K*} _{g \circ f}(n) = M^K_f(n) + M^{K*}_g(f(n)), \]

hence it is possible to obtain the following evaluation:

\[
M^{K*} _{g \circ f}(n) \leq c_g \| g(f(n)) \| + c_f \| f(n) \| \leq c_g \| g(f(n)) \| + c_f \| g(f(n)) \| \leq \max(c_g, c_f) \| g(f(n)) \|,
\]

where \(f(n) \notin Q_g \cup Q \) and \(n \notin Q_f \). These restriction can be summarized asking \(n \notin Q_f \cup f^{-1}(Q_g \cup Q) \) and, since this last set is finite it follows \(g \circ f \in LLBS \).

Theorem 3: The class of functions which are computable by length-increasing cg's is closed with respect to combination.

Proof: Suppose that \(f : N^k_1 \rightarrow N^h_1 \) and \(g : N^l_1 \rightarrow N^t_1 \) are two functions computed by the cg's:

\[
K_f = (I_{NF}, I_{Tf}, \{ x_1, \ldots, x_k \}, \{ i_1, \ldots, i_h \}, b, \#, F_f),
\]

\[
K_g = (I_{Ng}, I_{Tg}, \{ x'_1, \ldots, x'_l \}, \{ i'_1, \ldots, i'_l \}, b', \#, F_g).
\]

Assuming that \(I_{NF} \cap I_{Ng} = \emptyset \) and \(I_{TF} \cap I_{NF} = \emptyset \) we shall consider the following length-increasing cg:

\[
K_{f \times g} = (I_{NF} \cup I_{Ng} \cup \{ b, \#' \}, (I_{TF} \setminus \{ b \}) \cup (I_{Tg} \setminus \{ \#' \}), \{ x_1, \ldots, x_k, x'_1, \ldots, x'_l \}, b', \#, \]

\[
F_f \cup F_g \cup \{ bx'_1 \rightarrow b \#' x'_1, i_h x'_1 \rightarrow i_h \#' x'_1 \} \cup \{ bi_t \rightarrow i_t b \mid 1 \leq t \leq l \} \cup \{ b' \rightarrow b \}).
\]

vol. 12, n° 1, 1978
Denoting by \(c = M^K_f(n) \) and \(d = M^K_g(q) \) we have in this new eg:

\[
\# x_1^{n_1} \ldots x_k^{n_k} x_1^{q_1} \ldots x_j^{q_j} \Rightarrow \ # i_1^{m_1} \ldots i_h^{m_h} b^c \ # x_1^{q_1} \ldots x_j^{q_j}
\]

\[
\Rightarrow \ # i_1^{m_1} \ldots i_h^{m_h} b^c \ # x_1^{q_1} \ldots x_j^{q_j}
\]

\[
\Rightarrow \ # i_1^{m_1} \ldots i_h^{m_h} b^{i_1^{p_1}} \ldots i_1^{p_1} b^d
\]

\[
\Rightarrow \ # i_1^{m_1} \ldots i_h^{m_h} b^{i_1^{p_1}} \ldots i_1^{p_1} b^{c+d}.
\]

Hence, the function \(f \times g \) is computed by the cg \(K_{f \times g} \) and we have

\[
M^K_{f \times g}((n, q)) = M^K_f(n) + M^K_g(q). \quad (1)
\]

Corollary 2: The combination of any two functions from LLBS is again in LLBS.

Proof: Let \(f, g \in \text{LLBS} \), where \(M^K_f(n) \leq c_f \| f(n) \| \) for \(n \in N_k \setminus Q_f \) and \(M^K_g(q) \leq c_g \| g(q) \| \) for \(q \in N^q \setminus Q_g \). Taking into account (1) it is possible to obtain the following evaluation:

\[
M^K_{f \times g}((n, q)) = M^K_f(n) + M^K_g(q) \leq c_f \| f(n) \| + c_g \| g(q) \| \leq \max(c_f, c_g)(\| f(n) \| + \| g(q) \|)
\]

for \(n \notin Q_f \cup Q_g \), hence \(f \times g \in \text{LLBS} \).

Theorem 4. If \(f \) is a function computed by a length-increasing cg then there exists a length-increasing cg which computes its iteration \(f^h \).

Proof: Let us suppose that the function \(f : N^k \rightarrow N^k \) is computed by the length-increasing cg \(K = (I_N, I_T, \{ x_1, \ldots, x_k \}, \{ i_1, \ldots, i_k \}, b, \#, F) \) and let us take

\[
q^h = (q_1^h, \ldots, q_k^h) = \underbrace{f \circ f \circ \cdots \circ f}_{h \text{ times}}(n) \quad \text{and} \quad d^h = M^K_f(q^{h-1}).
\]

We shall consider the cg:

\[
K_{\#} = (I_N \cup \{ x_{k+1}, z_1, \ldots, z_k, y \}, \quad I_T, \{ z_1, \ldots, z_k, x_{k+1} \}, \{ i_1, \ldots, i_k \}, b, \#, F \cup F_1)
\]

where \(F_1 \) consists of the following rules:

(i) \(z_j x_{k+1} \rightarrow x_{k+1} x_j, 1 \leq j \leq k; \)

(ii) \(i_j x_{k+1} \rightarrow x_{k+1} x_j, 1 \leq j \leq k; \)
(iii) $bx_{k+1} \rightarrow x_{k+1} b$

(iv) $\# x_{k+1} x_1 \rightarrow \# y x_1$

(v) $y i_j \rightarrow i_j y, 1 \leq j \leq k$

(vi) $i_k y b \rightarrow i_k b b, i_k y x_{k+1} \rightarrow i_k b x_{k+1}$

Since F consists only from length-increasing rules so $F \cup F_1$ does, hence $K_\#$ is indeed a length-increasing eg.

Now, we obtain in $K_\#$ the following derivation:

\[
\# z_1^{n_1} \ldots z_k^{n_k} x_{k+1}^p \xrightarrow{(*)} \# x_{k+1} z_1^{n_1} \ldots z_k^{n_k} x_{k+1}^{p-1} \\
\Rightarrow \# y z_1^{n_1} \ldots z_k^{n_k} x_{k+1}^{p-1} \xrightarrow{(iv)} \# y i_1^{q_1} \ldots i_k^{q_k} b^{d_1} x_{k+1}^{p-1} \\
\Rightarrow \# i_1^{q_1} \ldots i_k^{q_k} z_1^{n_1} \ldots z_k^{n_k} x_{k+1} b^{d_1} x_{k+1}^{p-2} \\
\Rightarrow \# z_1^{n_1} \ldots z_k^{n_k} x_{k+1} b^{d_1} x_{k+1}^{p-2} \\
\Rightarrow \# z_1^{n_1} \ldots z_k^{n_k} x_{k+1} b^{d_1+1} x_{k+1}^{p-2} \\
\Rightarrow \# y z_1^{n_1} \ldots z_k^{n_k} b^{d_1+1} x_{k+1}^{p-2} \\
\Rightarrow \# y i_1^{q_1} \ldots i_k^{q_k} b^{d_1+1} x_{k+1}^{p-2} \\
\Rightarrow \ldots \Rightarrow \# i_1^{q_1} \ldots i_k^{q_k} b^d,
\]

where $d = p + \sum \{ d_j \mid 1 \leq j \leq p \}$.

It is clear now that $f^\# : N_1^{k+1} \rightarrow N_1^k$ is computed by $K_\#$. Moreover, we have

\[
M_{f^\#}^K(n, p) = \sum_{j=1}^{p} M_f^K(f \circ f \circ \ldots \circ f(n)) + p.
\]

Corollary 3: Suppose that for the function $f : N_1^k \rightarrow N_1^k$ there exists $\alpha \in (0, 1)$ so that $\|n\| \leq \alpha \|f(n)\|$, excepting possibly a finite set $Q \subseteq N_1^k$. If $f \in LLBS$ and $f(N_1^k) \cap Q = \emptyset$ then $f^\# \in LLBS$.

Proof: We have to evaluate $M_{f^\#}^K(n, p)$. In view of the fact that $\|n\| \leq \alpha \|f(n)\|$ we have the following non-decreasing sequence of real numbers:

\[
\|f^j(n)\| \leq \alpha \|f^{j+1}(n)\| \leq \alpha^2 \|f^{j+2}(n)\| \leq \ldots \leq \alpha^{p-j} \|f^p(n)\|,
\]

vol. 12, n° 1, 1978
for every j, $0 \leq j \leq p - 1$, since $f(N^k_1) \cap Q = \emptyset$. Hence

$$M^k_{f^#}(n, p) = \sum_{j=0}^{p-1} M^K_j(f \circ f \circ \ldots \circ f(n)) + p$$

$$\leq \sum_{j=0}^{p-1} c \| f \circ f \circ \ldots \circ f(n) \| + p < \sum_{j=0}^{p-1} c a^{p-j} \| f^p(n) \| + p$$

$$= c \| f^p(n) \| \left(\sum_{k=1}^{p} a^k \right) + p = c \| f^p(n) \| \frac{a - a^{k+1}}{1-a} + p$$

$$< \frac{a c}{1-a} \| f^p(n) \| + p.$$

From $\| n \| < a \| f(n) \|$ it follows that $\| f(n) \| > A \| n \|$, where $A = 1/a > 1$. Hence $\| f^p(n) \| > A^p \| n \| > \left[1 + p (A-1) \right] \| n \| > p (A-1)$. Therefore $p < 1/(A-1) \| f^p(n) \|$ and the previous inequality is completed as follows:

$$M^k_{f^#}(n, p) < \left(\frac{a c}{1-a} + \frac{1}{A-1} \right) \| f^p(n) \| = \frac{c(1+a)}{1-a} \| f^#(n, p) \|$$

$$= c_1 \| f^#(n, p) \|,$$

hence $f^# \in LLBS$.

Theorem 5: The class of functions which are computable by length-increasing grammars is closed under primitive recursion.

Proof: Let us consider the cgs K_g and K_h which compute the functions $g : N^k_1 \rightarrow N^l_1$ and $h : N^{k+1+l} \rightarrow N^l_1$, respectively

$$K_g = (I_{Ng}, I_{Tg}, \{ z_1, \ldots, z_k \}, \{ i'_1, \ldots, i'_l \}, b, \#, F_g),$$

$$K_h = (I_{Nh}, I_{Th}, \{ s_1, \ldots, s_k, v, y_1, \ldots, y_l \}, \{ i_1, \ldots, i_l \}, b, \#, F_f),$$

where $I_{Ng} \cap I_{Nh} = \emptyset$.

We shall construct the cg

$$K = (I_{Ng} \cup I_{Nh} \cup I_{Ns}, I_{Th}, \{ x_1, \ldots, x_k, x_{k+1} \},$$

$$\{ i_1, \ldots, i_l \}, b, \#, F'_g \cup F_f \cup F_S),$$

which computes the function $f : N^{k+1} \rightarrow N^l_1$ obtained by recursion from g and h. Here I_{Ns} is the set of supplementary nonterminal symbols, F'_g is obtained from F_g by replacing each symbol i'_j by y_j, $1 \leq j \leq l$ and each occurrence of "#" with a new symbol v and F_S is the set of supplementary rules. The sets I_{Ns} and F_S will be specified in the sequel.
Let us denote \(f(n, p) = (q^n_p, \ldots, q^n_k) \).

The activity of the CG \(K \) starts from the word \(x^n_1 \ldots x^n_k x^n_{k+1} \). We shall exhibit the rules which allow the derivation:

\[
\# x^n_1 \ldots x^n_k x^n_{k+1} \quad \Rightarrow \quad \# x^n_1 \ldots x^n_k v z^n_1 \ldots z^n_k t^n_1 \ldots t^n_k w x^n_{k+1}^{-1}.
\]

Namely, for the beginning we shall include in \(F_s \) the following sets of rules:

(i) \(X_j x_{k+1} \rightarrow x_{k+1} s_j z_j t_j, 1 \leq j \leq k \);
(ii) \(\# x_{k+1} \rightarrow \# \sigma \);
(iii) \(\begin{cases} t_j s_h \rightarrow s_h t_j, 1 \leq j, h \leq k, j \leq h; \\ t_j z_h \rightarrow z_h t_j, 1 \leq j, h \leq k, j \leq h; \end{cases} \)
(iv) \(z_j s_h \rightarrow s_h z_j, 1 \leq j, h \leq k, j \leq k; \)
(v) \(\sigma s_j \rightarrow s_j \sigma, 1 \leq j \leq k; \)
(vi) \(s_k \sigma z_1 \rightarrow s_k v \theta z_1; \)
(vii) \(\theta z_j \rightarrow z_j \theta, 1 \leq j \leq k; \)
(viii) \(z \theta t_1 \rightarrow z_k \tau t_1; \)
(ix) \(\tau t_j \rightarrow t_j \tau, 1 \leq j \leq k; \)
(x) \(t_k \tau x_{k+1} \rightarrow t_k u x_{k+1}. \)

Indicating by subscripts the rules which were used we have the derivation:

\[
\# x^n_1 \ldots x^n_k x^n_{k+1} \quad \Rightarrow \quad \# x^n_1 (s_1 z_1 t_1)^n_1 \ldots (s_k z_k t_k)^n_k x^n_{k+1}^{-1} \quad \Rightarrow \quad \# \sigma (s_1 z_1 t_1)^n_1 \ldots (s_k z_k t_k)^n_k x^n_{k+1}^{-1} \quad \Rightarrow \quad \# \sigma (s_1 z_1)^n_1 \ldots (s_k z_k)^n_k t^n_1 \ldots t^n_k x^n_{k+1}^{-1} \quad \Rightarrow \quad \# \sigma s_1^n \ldots s_k^n z_1^n \ldots z_k^n t^n_1 \ldots t^n_k x^n_{k+1}^{-1}.
\]

Before moving \(\sigma \) it is compulsory to arrange \(s_j, z_j, t_j \) in the manner which was indicated, in order to eliminate \(\sigma \). This derivation can be continued as follows:

\[
\# \sigma s_1^n \ldots s_k^n z_1^n \ldots z_k^n t_1^n \ldots t_k^n x^n_{k+1}^{-1} \quad \Rightarrow \quad \# s_1^n \ldots s_k^n \sigma z_1^n \ldots z_k^n t_1^n \ldots t_k^n x^n_{k+1}^{-1} \quad \Rightarrow \quad \# s_1^n \ldots s_k^n \sigma v \theta z_1^n \ldots z_k^n t_1^n \ldots t_k^n x^n_{k+1}^{-1} \quad \Rightarrow \quad \# s_1^n \ldots s_k^n \sigma v z_1^n \ldots z_k^n \theta t_1^n \ldots t_k^n x^n_{k+1}^{-1}.
\]

vol. 12, n° 1, 1978
Hence, we put in evidence the derivation
\[\# s_1 \ldots s_k x_{k+1} \Rightarrow \# s_1^{n_1} \ldots s_k^{n_k} v y_1 \ldots y_k b \ldots t_1^{n_1} \ldots t_k^{n_k} w x_{k+1}^{p-1}. \]

Now, our aim is to construct a derivation
\[\# s_1^{n_1} \ldots s_k^{n_k} y_1^{q_1} \ldots y_k^{q_k} b \ldots t_1^{n_1} \ldots t_k^{n_k} w x_{k+1}^{p-1} \Rightarrow \# s_1^{n_1} \ldots s_k^{n_k} y_1^{q_1+1} \ldots y_k^{q_k+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} w x_{k+1}^{p-1}(j+1), \]
\[1 \leq j \leq p-1. \]

Since in \(K_h \) have the derivation
\[\# s_1^{n_1} \ldots s_k^{n_k} y_1^{q_1} \ldots y_k^{q_k} \Rightarrow \# i_1^{q_1+1} \ldots i_l^{q_l+1} b^{d_j} \]

it follows that in \(K \) it is possible to write
\[\# s_1^{n_1} \ldots s_k^{n_k} y_1^{q_1} \ldots y_k^{q_k} b \ldots t_1^{n_1} \ldots t_k^{n_k} w x_{k+1}^{p-1} \Rightarrow \# i_1^{q_1+1} \ldots i_l^{q_l+1} b \ldots d_j t_1^{n_1} \ldots t_k^{n_k} w x_{k+1}^{p-1}, \]

where \(d_j = M_h^k (n, p, q^i), q^i = (q_1^j, \ldots, q_l^j) \).

At this stage we shall consider the rules:

- (xi) \(w x_{k+1} \rightarrow w a u w \);
- (xii) \(w a \rightarrow \alpha u w \);
- (xiii) \(t_j \alpha \rightarrow \alpha u_j v_j, 1 \leq j \leq k \);
- (xiv) \(b \alpha \rightarrow \alpha b \);
- (xv) \(i_c \alpha \rightarrow \alpha y_c, 1 \leq c \leq l \);
- (xvi) \# \alpha \rightarrow \# \xi ;
- (xvii) \[
\begin{align*}
& t_j u_h \rightarrow u_h t_j, 1 \leq j \leq h \leq k; \\
& b u_h \rightarrow u_h b; \\
& y_c u_h \rightarrow u_h y_c, 1 \leq c \leq l;
\end{align*}
\]

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
and \(1 \leq h < k\).

\[
\begin{align*}
\text{(xviii)} & \quad t_j u \rightarrow ut_j, \quad 1 \leq h \leq k; \\
\text{(xix)} & \quad bu \rightarrow ub; \\
\text{(x)} & \quad i_c u \rightarrow ui_c, \quad 1 \leq c \leq l; \\
\text{(xii)} & \quad \xi u_h \rightarrow s_h \xi, \quad 1 \leq h \leq k; \\
\text{(xx)} & \quad v \xi y_1 \rightarrow v \eta y_1; \\
\text{(xxi)} & \quad \eta y_c \rightarrow y_c \eta, \quad 1 \leq c \leq l; \\
\text{(xxii)} & \quad y_1 \eta b \rightarrow y_1 bb;
\end{align*}
\]

Using the rules introduced here we have the continuation:

\[
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_k^{n_k} w^j x_{k+1}^{p-j}
\]

\[
\Rightarrow
\]

\[
\#egin{cases}
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} w^j \alpha u w x_{k+1}^{p-j+1} \\
\# \alpha y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1)
\end{cases}
\]

\[
\Rightarrow
\]

\[
\#egin{cases}
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} \alpha (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \alpha y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1)
\end{cases}
\]

\[
\Rightarrow
\]

\[
\#egin{cases}
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} \alpha \cdot w \cdot x_{k+1}^{p-j}(j+1) \\
\# \alpha y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1)
\end{cases}
\]

\[
\Rightarrow
\]

\[
\#egin{cases}
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} \alpha (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} \alpha (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \alpha y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1)
\end{cases}
\]

\[
\Rightarrow
\]

\[
\#egin{cases}
\# i_1^{t_1+1} \ldots i_1^{t_1+1} b \ldots t_1^{n_1} \ldots t_k^{n_k} \alpha (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} \alpha (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \alpha y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1) \\
\# \xi y_1^{t_1+1} \ldots y_1^{t_1+1} b \ldots (u_1 t_1)^{n_1} \ldots (u_k t_k)^{n_k} (u w)^{j+1} x_{k+1}^{p-j}(j+1)
\end{cases}
\]

vol. 12, n° 1, 1978
Thus coupling the derivations we obtain in G the derivation

$$\# x_1^{n_1} \ldots x_k^{n_k} x_{k+1} \xrightarrow{*} \# s_1^{n_1} \ldots s_k^{n_k} v^j v_1^{q_1} \ldots v_k^{q_k} b \ldots t_1^{n_1} \ldots t_k^{n_k} w^j x_{k+1}^{p-j}$$

for $1 \leq j \leq p-1$.

Taking $j = p-1$ it is possible to obtain in K:

$$\# x_1^{n_1} \ldots x_k^{n_k} x_{k+1}^p \xrightarrow{*} \# s_1^{n_1} \ldots s_k^{n_k} v^p \ldots v_1^{q_1} \ldots v_k^{q_k} b \ldots t_1^{n_1} \ldots t_k^{n_k} w^p x_{k+1}^{p-1}$$

$$\xrightarrow{f_{k+1}} \# i_1^{q_1} \ldots i_k^{q_k} b \ldots t_1^{n_1} \ldots t_k^{n_k} w^p x_{k+1}.$$

The role of the next group of rules is to eliminate the last supernumerary symbols. Namely, we shall consider the rules:

- $(xxiii)$ \(w x_{k+1} \rightarrow \delta b; \)
- $(xxiv)$ \(w \delta \rightarrow \delta b; \)
- (xxv) \(t_j \delta \rightarrow \delta b, 1 \leq j \leq k; \)
- $(xxvi)$ \(b \delta \rightarrow \delta b. \)

Finally, we have obtained the derivation

$$\# x_1^{n_1} \ldots x_k^{n_k} x_{k+1} \xrightarrow{*} \# i_1^{q_1} \ldots i_k^{q_k} b \ldots$$

The buffer size is given by

$$M_f^K(n, p) = M_g^K(n) + \sum_{j=1}^{p-1} M_h^K(n, p, q^j) + 2p + \|n\| - 1.$$

Corollary 4: Let \(g : N_1^k \rightarrow N_1^1 \) and \(h : N_1^{k+1+i} \rightarrow N_1 \) be two functions from LLBS where \(M_g^K(n) \leq c_g \|n\| \) for \(n \in N_1^k \setminus Q_g \) and

$$M_h^K(n, p, q) \leq c_h \|h(n, p, q)\|$$

for \((n, p, q) \in N_1^{k+1+i} \setminus Q_h\), where \(Q_g \) and \(Q_h \) are finite sets. If there exist \(\alpha, \beta \in (0, 1) \) so that \(\|n\| < \beta \|g(n)\| \) and \(\|q\| < \alpha \|h(n, p, q)\| \) for all \((n, p, q) \in N_1^k \times N_1 \times N_1^k \setminus Q\), where \(N_1^{k+i} \times N_1 \times h(N_1^{k+i}, N_1, N_1^k) \cap Q = \emptyset \), then the function \(f \) defined by recursion from \(g \) and \(h \) belongs to LLBS.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
Proof: Using a similar approach as in corollary 3 we can write

\[M^f_g(n, p) = M^g_h(n) + \sum_{j=1}^{p-1} M^h_k(n, p, q^j) + 2p + ||n|| - 1 \]
\[\leq c_g ||g(n)|| + \sum_{j=1}^{p-1} c_h ||h(n, p, q^j)|| + 2p + ||n|| - 1 \]
\[\leq c_g ||g(n)|| + \sum_{j=1}^{p-1} c_h ||q^{j+1}|| + 2p + ||n|| - 1, \]

if \(n \notin Q_g \) and \((n, p, q^j) \notin Q_h, 1 \leq j \leq p-1.\)

Since \(q^{j+1} = h(n, j, q^j) \) we have \(||q^j|| < \alpha ||q^{j+1}|| \), hence

\[||q^j|| < \alpha^{p-j} ||q^p||, \]

for every \(j, 1 \leq j \leq p. \)

Afterwards, since \(q^1 = g(n) \) we have also \(||n|| < \beta ||q^1|| < \beta \alpha^{p-1} ||q^p||. \)

Putting together these evaluations we obtain

\[M^f_g(n, p) < c_g ||q^1|| + c_h ||q^p|| + \sum_{j=1}^{p} \alpha^{p-j} + 2p + ||n|| - 1 \]
\[\leq c ||q^p|| \left(\sum_{j=1}^{p} \alpha^{p-j} \right) + 2p + \beta \alpha^{p-1} ||q^p|| - 1 \]
\[\leq c ||q^p|| \frac{1-\alpha^p}{1-\alpha} + 2p + ||q^p|| \leq ||q^p|| \left(\frac{c}{1-\alpha} + 1 \right) + 2p \]
\[= c_1 ||q^p|| + 2p, \]

where \(c = \max(c_g, c_h) \) and \(c_1 = [c/(1-\alpha)] + 1. \)

Taking into account that

\[||q^p|| > A^{p-1} ||q^1|| = A^{p-1} ||g(n)|| > A^{p-1} B ||n||, \]

where \(A = 1/\alpha > 1 \) and \(B = 1/\beta > 1 \) it follows that

\[||q^p|| > \left[1 + A(p-1) \right] ||n|| > 1 + A(p-1) > p. \]

Therefore we have

\[M^f_g(n, p) \leq (c_1 + 2) ||q^p|| = (c_1 + 2) ||f(n, p)||, \]

hence \(f \) is in \(LLBS. \)
IV. SOME ELEMENTARY EXAMPLES

We shall present in the sequel some elementary examples of "basic" functions from LLBS from which we shall construct more complex functions using the closure properties of the LLBS class presented in corollary 1-4.

(i) The function \(f : N^1 \rightarrow N^1 \) given by \(f(n) = an + c \), where \(a \in N^1 \), \(c \in N \) is in LLBS. Indeed, let us take
\[
K = (\{x \}, \{i_1, b, \#\}, \{x \}, \{i_1\}, b, \#,
\{\# x_1 \rightarrow \# i_1^c yx_1, yx_1 \rightarrow i_1^a y, y \rightarrow b\}).
\]
In this grammar there exists the derivation
\[
\# x_1^n \Rightarrow \# i_1^c yx_1^n \Rightarrow \# i_1^c i_1^n yx_1^{n-1} \Rightarrow \# i_1^{na+c} y \Rightarrow \# i_1^{na+c} b,
\]
and \(f \) is obviously from LLBS since \(M^K f(n) = 1 \), \(\forall n \in N^1 \).

(ii) It is a very well known fact that the language \(\{i^n_1 \ldots i^k_n | n \geq 1 \} \) is context-sensitive. This fact can be recaptured here by proving that the function \(h : N^1 \rightarrow N^k \) given by \(h(n) = (n, n, \ldots, n) \) is from LLBS.

Let us consider the length-increasing eg:
\[
K = (\{x \}, \{i_1, \ldots, i_k, b, \#\}, \{x \}, \{i_1, \ldots, i_k\}, b, \#,
\{x_1 \rightarrow y_1 \ldots y_k, y_j y_l \rightarrow y_l y_j, 1 \leq l \leq j \leq k, y_j \rightarrow i_j, 1 \leq j \leq k\}).
\]
If, in this grammar we have a derivation
\[
\# x^n_1 \Rightarrow \# i_1^{n_1} \ldots i_k^{n_k} \quad (3)
\]
we must have \(n_1 = n_2 = \ldots = n_k \). Indeed, the derivation (3) has necessarily the form:
\[
\# x^n_1 \Rightarrow \# (y_1 \ldots y_k)^n \Rightarrow \# y_1^n y_2^n \ldots y_k^n \Rightarrow \# i_1^{n_1} \ldots i_k^{n_k}
\]
and the buffer size is zero.

(iii) The sum \(f_S : N^2_1 \rightarrow N_1 \) given by \(f_S(n_1, n_2) = n_1 + n_2 \) belongs to LLBS. This function is computed by the length-increasing cg:
\[
K_S = (\{x_1, x_2\}, \{i_1, b, \#\}, \{x_1, x_2\}, \{i_1\}, b, \#, \{x_1 \rightarrow i_1, x_2 \rightarrow i_1\})
\]
since we have the derivation \(\# x_1^{n_1} x_2^{n_2} \Rightarrow \# i_1^{n_1+n_2} \).

(iv) The product \(f_P : N^2_1 \rightarrow N_1 \), where \(f_P(n_1, n_2) = n_1 n_2 \) is a function from LLBS. To prove this let us consider the cg:
\[
K_P = (\{x_1, x_2, y, z, v\}, \{i_1, b, \#\}, \{x_1, x_2\}, \{i_1\})
\]
b, #, \{ x_1 x_2 \rightarrow i_1 b, x_1 x_1 x_2 \rightarrow x_1 v^2, x_1 x_2 x_2 \rightarrow v^2 x_2, \\
v^2 x_2 \rightarrow x_2 v^2, x_1 x_2 \rightarrow i_1 x_2 x_1, x_1 i_1 \rightarrow i_1 x_1, \\
x_2 i_1 \rightarrow i_1 x_2, x_1 v^2 \rightarrow x_1 y b, x_1 y \rightarrow yi_1, x_2 y \rightarrow yi_1, y \rightarrow i_1 \}\).

\(K_p\) computes \(f_p\) since in this cg it is possible to write:

\[
\begin{align*}
\# x_1^{n_1} x_2^{n_2} & \Rightarrow \# x_1^{n_1-1} v^2 x_2^{n_2-1} \Rightarrow \# x_1^{n_1-1} x_2^{n_2-1} v^2 \\
\Rightarrow \# i_1^{(n_1-1) (n_2-1)} x_1^{(n_2-1)} x_1^{(n_1-1)} v^2 \\
\Rightarrow \# i_1^{(n_1-1) (n_2-1)} x_1^{(n_2-1)} x_1^{(n_1-1)} y b \\
\Rightarrow \# i_1^{(n_1-1) (n_2-1) + (n_1-1) + (n_2-1) + 1} b = \# i_1^{n_1 n_2} b.
\end{align*}
\]

We conclude also that \(M_{K_p}^{(n_1, n_2)} = 1\).

(v) In [3] S. Istrail exhibited a context-sensitive grammar for a language \(L_p = \{ i^{P(n)} | n \in \mathbb{N} \}\), where \(P\) is a polynomial having its coefficients in \(\mathbb{N}\) proving that \(L_p\) is a type-1 language.

This result can be retrieved in our new approach as follows. Suppose that

\[
P(n) = a_0 n^m + a_1 n^{m-1} + \ldots + a_{m-1} n + a_m
\]

We shall act by induction on \(m\).

Denoting by \(\varphi_j : \mathbb{N}^2 \rightarrow \mathbb{N}\) the function \(\varphi_j(m, n) = mn + a_j, 2 \leq j \leq m\) and by \(\varphi_1 : \mathbb{N} \rightarrow \mathbb{N}\) the function \(\varphi_1(n) = a_0 n + a_1, P(n)\) is given by

\[
P(n) = \varphi_m((\ldots(\varphi_3(\varphi_2(\varphi_1(n), n), n), \ldots, n)).
\]

We have proved at (i) that \(\varphi_1 \in LLBS\), with \(M_{\varphi_1}^{(n)} = 1, \forall n \in \mathbb{N}\) for a suitable cg. Since, for \(n = (m, p)\) we have \(|n| = m+p\) the condition \(|n| \leq |f(n)|\) considered in theorem 3 becomes \(m+n \leq mn+a_j\) this condition is satisfied for all \((m, n) \in \mathbb{N}^2\) since \(a_j \geq 1\).

Denoting by \(\iota : \mathbb{N} \rightarrow \mathbb{N}\) the identity map \(\iota(n) = n\), the function \(\varphi_1 \times \iota\) belongs to \(LLBS\), hence \(\varphi_2 \circ (\varphi_1 \times \iota) \in LLBS\), where

\[
\varphi_2 \circ (\varphi_1 \times \iota)(n) = \varphi_2(\varphi_1(n), n) = (a_0 n + a_1) n + a_2.
\]

Suppose that we have proved that each polynomial with degree less or equal to \(m\) is in \(LLBS\) and let \(H = a_0 n^m + a_1 n^{m-1} + \ldots + a_{m+1}\) be a polynomial whose degree is \(m+1\).

Since \(H = (a_0 n^m + a_1 n^{m-1} + \ldots + a_m) n + a_{m+1} = \varphi_{m+1}(P(n), n)\) it follows immediately that \(H \in LLBS\).
Let us consider now the exponential function $g : N^+ \rightarrow N^+$ given by $g(n) = a^n$, where $a > 1$. This function is computed by the eg:

$$
K = \{ \{ x_1, y \}, \{ i_1, b, \# \}, \{ x_1 \}, \{ i_1 \}, b, \#
\}
$$

\[
\begin{align*}
\# x_1^n & \Rightarrow \# y_i^{a^2-1} x_1^{n-1} \Rightarrow \# yx_1 i_1^{a^2-a} x_1^{n-2} \\
& \Rightarrow \# y_i^{a^3-1} x_1^{n-2} \Rightarrow \# yx_1 i_1^{a^3-3} x_1^{n-3} \\
& \Rightarrow \# y_i^{a^4-1} x_1^{n-4} \Rightarrow \ldots \Rightarrow \# y_i^{n+1} \Rightarrow \# i_1^n.
\end{align*}
\]

The last rule $y \rightarrow i_1$, can not be applied until the last step because x_1 can be eliminated only using the rule $yx_1 \rightarrow y_i^{a^2-1}$.

Remark: By a slight modification of the proof of theorem 1 it is possible to prove the following assertion:

If the language $L_D = \{ j_1^{n_1} \ldots j_k^{n_k} | (n_1, \ldots, n_k) \in D \}$ is a context-sensitive one (where D is a suitable subset of N^k) and $f : N^1 \rightarrow N^1$ is a function from LLBS then the language $\{ i_1^{m_1} \ldots i_1^{m_k} | (m_1, \ldots, m_k) \in f(D) \}$ is again context-sensitive (the proof is left for the reader).

For instance, starting from the fact that the language $\{ i^p | p \text{ is a prime} \}$ is context-sensitive (see [4]) it follows immediately, using the example (vi) that the language $\{ i^{2p} | p \text{ is a prime} \}$ is again context-sensitive a. s. o.

REFERENCES