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COMPUTING GRAMMARS
AND CONTEXT-SENSITIVE LANGUAGES (*)

by Dan A. SmMovicr and Sorin ISTRAIL (1)

Communicated by J. F. Perrot

Summary. — We introduce the notion of a computing grammar and we study the family
of functions that can be defined by such a grammar with a linearly limited buffer size. These
functions in turn define context-sensitive languages. We investigate various closure properties
of this family of functions and use them to show that certain languages are context-sensitive.

I. INTRODUCTION

It is a well known fact that every context-sensitive language is a recursive
set. Using a diagonalization argument it is possible to prove that the class
of context-sensitive languages is strictly included into the class of recursive
languages. Moreover, the progress of Computational Complexity Theory
now permits the direct specification of languages that are recursive but not
context-sensitive since they require exponential space for recognition—e. g.
extended regular expressions denoting the empty set ([1], chap. 11)— and
are therefore outside the scope of any linear bounded automaton.

Therefore, for formal language theory it is an important matter to clarify
as much as possible the border of the class of context-sensitive languages by
proving that certain classes of recursive languages are composed in fact by
context-sensitive languages.

By N, we shall denote the set of positive natural numbers N; = N\ {0 }.
The aim of our paper is to study a certain subset of the set of functions
{f|f: N#*— N, k,he N, } for which the bounded languages

Ly={if"...i" | (my, ..., mpe f(N})}

are context-sensitive. Here i,, ..., i, are symbols belonging to an appropriate
alphabet 1.

(*) Received August 1977; revised October 1977. Note: A preliminary version of this
paper was presented at the 6th Conference on Mathematical Foundations of Computer
Science (Tatrouska Lomnica, Czechoslovakia, September 1977), but an unexpected delay
presented its inclusion in the Proceedings.

(*) Department of Mathematics, University of Iasi, Iagi, Romania. Research Group
of Formal Language and Automata Theory, University of Iasi.
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34 D. A. SIMOVICI, S. ISTRAIL

After studying closure properties of this class of functions with respect to
common operations of recursive function theory we consider some elementary
examples which justify the interest of this topic.

II. COMPUTING GRAMMARS AND FUNCTIONS COMPUTABLE WITH A
LINEARLY-LIMITED BUFFER-SIZE

In the sequel we shall introduce a new revriting device.
DEFINITION : A computing grammar (cg) is a 7-uple

K =(IN, IT’ {xl, “eey xk}, {iI, caey ih}: b, #, I"),

where Iy and I are finite nonvoid sets representing respectively the nonterminal
and the terminal alphabet, { x,, ..., xk} < Iy is the set of start symbols,
Ip = {iy, ..., 0, #, b}, where “# > is the marker and b’ is the buffer and F
is a finite set of pairs of words from (Iy U I;)* x (Iy v Ip)*.

In addition, we suppose that if (4, v) € F then:

(i) u contains at least a nonterminal symbol;

(ii) if “#°* occurs in u then “#** has exactly only one occurence both in u
and v, namely in the first position of these words.

If (u, v) € F this fact will be denoted by v — v.

The generation relation ¢ = ”” and its reflexive and transitive closure are

considered exactly as for grammars.

A cg is length-increasing if for every rule u — v we have / () < I (v), where
I(p) is the length of the word p.

If n = (ny, ..., m) € N% the number ||n|| is the sum ¥ {n; |1 =j S k}.

A function f: N% — N*% is computed by a cg K= (Iy, Ir, {X1, ..., % },
{i,, R }, b, #, F) if for every n = (n,, ...,nk)eN’l‘, there exists an
unique m = (my, ..., m,) € Nt so that

* K
# XXk = #ir ... impMFm,

The number M (n) is the buffer sizer for the function f and the input n
in the cg K. In this manner we obtain a function MX : Nk — N*.

A function f: N¥ — N* is computable with a linearly limited buffer size
by the length-increasing cg K if there exists ¢ € R, so that:

M7 (@) < || f @],

for every ne N¥\\Q,, where Q; is a finite subset of N%.
Let LLBS be the class of functions which are computable by length-
increasing cgs with linearly limited buffer size.
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COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 35

The usefulness of this concept of cg is pointed out by:

THEOREM 1: If a function f: N* — N" belongs to LLBS then the language

Lf = {i']_’” . irh | m=(m1, ceey mh)Ef(N’{)}
IS a context-sensitive one.

Proof: Suppose that f is computed by the length-increasing cg K = (Iy, Ir,
{x1, ..,x } {i1, .., 04 }» b, #, F) and let us consider the length-increasing
grammar

G=Uyu{ysy --» W}
I, Xo, FU{Xo> #y1 ... Vi, V1= V1 %y,
V1= X105 oo or Y™ YiXs Vi X)),

where yy, ..., y, are new symbols non belonging to the set Iy U I.
We infer that the language

L=(L&@n{#}{i,}" ... {in}"{b}H
"‘{# i | G s qh)ef(Qf)}

is again context-sensitive since the class of context-sensitive languages is
closed with respect to intersection with regular languages.

Let us take p € L. The derivation x, X p can be split as follows:
G

* *
Xo = #HYi---Ve = #XI'...xF = #i’{"...i,':"'bM}((“),

where the last part of the derivation uses only rules from F.
We conclude that L has the following form

L={#...imbp™® | m=f(@m),neN\Q,, m=(my, ..., m)}.
Let us consider now the homomorphism
H:{iy . i by # 3= {igy iy }*
given by:
y if yeliy, ..., i},
e if ye{b, #}.
H is a (c+2)linear erasing homomorphism with respect to L for, if
p = #im ... imbMI® we have
1(p) = 1+]| F @[+ M @) < 1+ f @) |[+¢]| £ @)
S (c+)||f @] = (c+2) I(H(p)),

since H(p) = im ... imand f(ng, ..., m) = (my, ..., my).

H(y)={

vol. 12, n° 1, 1978



36 D. A. SIMOVICI, S. ISTRAIL

Taking into account that the class of context-sensitive languages is closed
under linear erasing [4] it follows that H (L) is a context-sensitive language.

III. CLOSURE PROPERTIES OF THE CLASS OF FUNCTIONS COMPUTABLE
BY LENGTH-INCREASING cgs

This part of the paper contains a study of closure properties of functions
computable by length-increasing cgs.

We shall recall first the definitions of several well known operations on
functions.

If f: N¥ — N"* and g : N4 — N¢ are two functions, the combination of f
and g is the function f xg : N¥ x N5 — N%x N¢, given by

(fxg) (m,p) = (f(m), g (p)),

for every m e N* and p e N%.

The exponentiation of the function f': N%¥ — N is the function f': N%*1— Nk
which is defined by:

fE@p=fefo o/ @)
p

where “o > denotes the composition of functions.

The function f:N%k*!— N. is obtained by primitive recursion from
g:N¥x— N' and h: Nk*1*t— N if f(m, 1) = g (n) and

f(n»P"'l) = h(n,P,f(n,P)),DEN’;aPENv

The operations of composition, combination, exponentiation and recursion
are not independent. For instance, it is possible to prove [2] that each function
defined by exponentiation starting from a primitive recursive function can
also be defined by primitive recursion from primitive recursive functions.
In this proof the projections are inherently involved. Since these functions
are obviously non-computable by a length-increasing computing grammar,
it is useful to study closure properties of the set of functions with respect to.
the whole set of operations.

The strategy of our approach is the following. In the next four theorems
prove closure properties of the class of functions computable by cgs.

After establishing evaluations for the buffer size of the computed functions
we obtain in the corollaries, closure properties of the class of LLBS functions.

THEOREM 2: The class of functions which are computable by length-
increasing cgs is closed with respect to composition.

Proof: Let f: Nk — N* g :N"— N be the functions computed respec-
tively by the grammars:

Kf=(INf’ ITf’ {xl, ...,xk}, {il, « ey ih}’ b, #, Ff)’
K, =Iygs Iy, {x%, .., %1} {01 - in ), b, #, F).

R.A.LR.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 37

Without loss of generality we assume that
ImeINg':@ and ITntTg= {b, # }.
Then the composition g o f : Nk — N* is computed by the cg:
KgOf = (INfU INyU(ITf\{b})9 ITg’ {xla e ey xk}’
{it, ..., i1}, by #, {in—>x, | 1ESm=Zh}UF,UF)

since we can write:

* K
EXI X = g, My @

* K K K7 o\,

= #x™ L X bM,’(n)# i i;pbeg‘(f(n))'*M,’(n)
CoroLLARY 1: If f, ge LLBS, ||g@)|| 2 ||n|| for almost all ne N¥

(excepting possibly a finite set Q = N¥) and f (0, u:Q) is a finite set then
the composition g o f belongs to LLBS.

Proof: From the proof of th. 2 it follows that
Mg’ () = M7 @)+ Mg*(f (w),

hence it is possible to obtain the following evaluation:

MgE7(m) ¢, || g(F @) ||+, || f @] S ¢ || g (f @) ]|
+er||g(f @)} = max(c,, ¢p) || g(f @) ]|,

where f(n) ¢ Q, U Q and n ¢ Q. These restriction can be summarized asking
n¢Q,uf"'(Q,u Q) and, since this last set is finite it follows
gofe LLBS.

THEOREM 3: The class of functions which are computable by length-increasing
cgs is closed with respect to combination.

Proof: Suppose that f:N* — N* and g:NJ— N! are two functions
computed by the cgs:
Kp=ys, Ipp, {%g5 s X} {igs <o s in}s b, #, Fp),
Ky =yys Irgs {x1 oo X33 {i% - s i}, B, #, F,).
Assuming that Iy, n Iy, = @ and Iy, n Iy, = @ we shall consider the fol-
lowing length-increasing cg:
Krwg=ns0lygu{b, #'}, Uz, \{bH LU \{ #'}),
{x1, -0 Xy X5, .. X1 D, #,
F OF,u{bx|—b# Xy, i,xy—i,# xi}
u{bi,»i;b | 1st<1}u{b’ ->b}.

vol, 12, n° 1, 1978



38 D. A. SIMOVICI, S. ISTRAIL

Denoting by ¢ = M §s(n) and d = M%X*(q) we have in this new cg:

*
n . .
# XU oxEx x> #aT b L XY

*

= #Fap . b # X X

Zomm i g
1 ... h l « . l

; # ™ jMh ;1 P1 jppetd
TR il VL .

Hence, the function f x g is computed by the cg K., and we have
M (0, @) = M (0)+ My*(q). 1)

COROLLARY 2: The combination of any two functions from LLBS is again
in LLBS.

Proof: Let f, g € LLBS, where MXs(n) < ¢, ||f(m) || for ne NI\ @, and
M%s (@) < ¢, ||g(q) || for g€ N3\ Q,. Taking into account(l) it is possible
to obtain the following evaluation:

MELE(n, @) = MF @)+ M=(q) < c;|| f ()|
+¢,]|g(@ || £ max(c,, (|| fW|[+][ g @]
= max(cs, ¢,){| fxgm, )|,
for n¢ Qr U Q,, hence f x ge LLBS.

THEOREM 4. If f is a function computed by a length-increasing cg then there
exists a length-increasing cg which computes its iteration f#.

Proof: Let us suppose that the function f: Nk — N is computed by the

length-increasing cg K = (Iy, I, { x4, ..., X }, {11, i b, b, #, F) and
let us take

=@l - aqp=fofof...ofm) and  d"=Mf(g"").

htimes

We shall consider the cg:

K# = (INU{xk-l-l’ Zis vy Zpy J’},
Ip, {24, o5 Zis Xewr 3 {81, oy ik} by, #, FUF))
where F; consists of the following rules:
M) z; X441 = X41 X5, 1 Ej S ks
(1) i Xer1 > Xer1 X5, 1 SjS ks

R.A.LR.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 39

(i) bxyry — Xi41 b3
(V) # Xpry X9 — # Y Xq;
™M yij—iy1Sj<k;
(Vi) G b — i Bb, i Y Xy 1 — i DXyt s
Since F consists only from length-increasing rules so Fu F; does, hence

K, is indeed a length-increasing cg.

Now, we obtain in K , the following derivation:

*
ny ng P ny ne p—1

H#Zy 2 X1 = FE X1 X1 e X Xt

=  # px™ XM P71 ; # i"'l‘ iq’l‘bd‘x”—l
VX1 oo X Xg4q 7 Yig© .o k+1
e % -1 -q} g pd1+1 p—1

= #i{l... ifx bt xPl ] > #if . iEb T xR
1 1
. . di+1 -2

= il X DT xR

bd|+1xp—2

a} gk
= # Xgp1 X1 .. X k+1

i kpdi+1 p-2
= #yxP. o xpbNT XE ]

(iv)
* 2 2

. . + -
= #yifto T
* * v
= = #if, . gkpd

whered = p+¥ {d;|1<j<p}.
It is clear now that f# ;. N' k*1 — Nk is computed by K 4+ Moreover, we have

ML D)= % MEG oS o of @)+p.

Jj—1 times

COROLLARY 3: Suppose that for the function f: Nk — Nk there exists
«€(0,1) so that ||n||o £ |[f(n) ||, excepting posszbly a ﬁmte set Q < N*k.
If fe LLBS and f(N¥) n Q @ then f#ec LLBS.

Proof: We have to evaluate M7 (n, p). In view of the fact that

||m || o ||f(m) || we have the follo#vevmg non-decreasing sequence of real
numbers:

@l e/l se?|| /2 m) s ... @™ 2w,

vol. 12, n° 1, 1978



40 D. A. SIMOVICI, S. ISTRAIL

for every j, 0 < j < p—1, since f(N*) n Q = @. Hence

p—1
M )= Y Mi(fefo...of @)+p

m— e ———

J

p—=1 p—-1
s T ellfeso cr@litp< % e[ P wll+p

J;; U S
~ i@l 3 o) ro=cll @l 4
oxC || 4p
<1Ta||f @]} +p.

From ||n||<a||f(m)]| it follows that ||f(m)||> 4]||n], where
A = 1/o > 1. Hence || fr(@) || > 47 |[n|| > [1+p(4=1)]|[n]|| > p(4=1).
Therefore p < 1/(4—1) || f? (n) || and the previous inequality is completed
as follows:

K 2 v Y| =S4
e p< (32 4 L Irel =<2 e )

= || /7 @ pl|,
hence f#*e LLBS.

THEOREM 5: The class of functions which are computable by length-increasing
grammars is closed under primitive recursion.

Proof: Let us consider the cgs K, and K, which compute the functions
g :N%— N! and h: N¥*1+1— NI, respectively
Kg =(INg9 ITg, {21, RIS Zk}’ {1,1~ LRI ] l;}’ b, #a Fg)’
Kh = (INh’ ITh: {sl’ ey S, Uy yl’ L yl}7 {il’ R il}’ b’ #’ Ff)7
where Iy, N Iy, = O.
We shall construct the cg
K =(1NgUIN;.U INs’ ITh’ {xl, ceey xk, xk+1},
{iy, ..., it} b, #, F,UF,UFy),
which computes the function f: N¥*1— N! obtained by recursion from g

and h. Here Iys is the set of supplementary nonterminal smbols, £ is obtained

from F, by replacing each symbol i} by y;, 1 < j =/ and each occurence of
“# > with a new symbol v and Fj is the set of supplementary rules. The sets
Iys and Fg will be specified in the sequel.

R.A.LR.O. Informatique théorique/Theoretical Computer Science
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Let us denote f(m, p) = (qg‘, s gP).
The activity of the cg K starts from the word x ... xm xP . We shall
exhibit the rules which allow the derivation:
ny LI * ny Mic . N1 Ny 4ny e p—1
F Xy X X1 > FSY 80z Lz B WX

Namely, for the beginning we shall include in Fg the following sets of rules:
() x5 X410 = X182 8, 1 SjS ks
(i) # X441 — # ©;

(lll) tjsh_’sh tj’l é.],h é k’.] é h9
tjzh_>zhtj91§j,h§k’j§h9
i) z;8, o8, 2;, 1 Sj,hZ k,jZ k;
J*°h h“j

V) os;—s;0,1 £j=k;
i) 0z, > s, 002z
(vii) 0z;—2;6,1 £j < k;

(viii) 2, 0¢, >z, T¢y;
(ix) t;, >, 1 <j=<k;

(X) 1T X g > B W Xty
Indicating by subscripts the rules which were used we have the derivation:

*
74 nky.P ny i .p— 1
XL e X Xptq o # Xpr1 (S1208)™ oo (S zi )™ xF5 1

, -1
(?i) #o(sizt)" ... (Seze )™ XE+ 1

LY Nic 4711 e L p—1
(i=i>i) #o(sgz)" o Sz )™t ..t xpe
(f>) #OsT szt e xET L
1v

Before moving o it is compulsory to arrange s;, z;, ¢; in the manner which

was indicated, in order to eliminate o. This derivation can be continued as
follows:

n N N ~1
#osy oz Lzt gk zll
; # ny N ng nktnl I"k p—1
(v) sl '--sk czl . -Zk 1 EEIRY k xk+1
(=?) #S s o0t e e xPT )
vi
* ny nic ny ny ny ne p—1
(?) #sy oSzt Loz 0 L e xE
vii

vol. 12, n° 1, 1978



42 D. A. SIMOVICI, S. ISTRAIL

= #sTLsuZt . L e XD

(viii)

; ny ne ny ne Nt nic p—1

o F Sy o S0z 2 T X

1X

E-—>) # ST sz LY L e wxD ]

X

; n L 1Y ak 7. m 1% oxP 1
-y #Sl...skvyl...ykb-..1...kka+1.
-4

Hence, we put in evidence the derivation

* , . -
#sP oSl = #ST.osoyBl L ySb L wxPT L
Now, our aim is to construct a derivation
. ¥ i " —
#sy L ospvyit o yRb L w XY

* n
= #s5'...

me  J+1gjtt gi*1 ny
Sev! Ty ooyl bt

e, J+1 p—(i+1)
] w7 Xt s

1<jsp-1

Since in K, have the derivation

n e i al i % g+t Gt 14a
#st . ospvyftoyE = #ift i bY

it follows that in K it is possible to write

;i J —3

#sT s Yy L yEb L e xBTS
* ! af*t +dj gy e ol 3P~
= #ll "'ll b... tl"'tk xk+1,

where d. = M%» (n, p, q’), ¢/ = @ - g
At this stage we shall consider the rules:
xi) w x4 — woLuw;
(xil)) w o — o uw;
(xiii) t;a—au;v;, 1 £j = k;
xiv) bo— a b;
@) ipo—ay,lSc<;
(xvi) # oa— #E;
tiu,—u,t;, 1 SjShsk;
(xvii) { bu, — u, b;
Yo=Y, 1 Sc =1

R.A.LR.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 43
and 1 £ h <k
tiu—ut;, 1 <h < k;

(xviii) { bu — ub;
iu—ui,,1<c=Z;
&uh_’shgil é h é k;
Eu—vé&;

(xx) vEyy —vnyy;

xxi) ny.—yml=c=;
(xxii) y;n b— y, bb;

(xix)

Using the rules introduced here we have the continuation:

gltt ad+1 . —
#ift i b gw XD
i+l i1 . s
= #ET b w auwxP YD
X1
* : s9dt! 9f Tt ny e j+1_p—(j+1)
(=?_) # 7 i bty o (uwy T xRS
X11
* i+t _q‘j+lb n e Jj+1 _p—(+1)
(——__>_‘ #ir ... cocouat )™ L ()™ (uw) T xPS
xiii)
* ait! it o p n e j+1 p=(i+1)
e # T it ab . (ugt )M ()™ (uw)y T XD
X1
* j+1 j+t . .
q n N j+1 p—(+1)
foet #oaylt oyf b (uet)™ (U k)™ (ww) T xET
XV
C aj*! n1 i j+1 p=(j+1)
(=>.) #EYT oy b (u )" ()™ (uw) T XELT
(xvi
* ny me j+1 _qjt! q{“b ny (e i +1 5= (+1)
(x=__) #EuP .. ukul Ty Y% W T xRS
(xvii
o ny me, j+1g aht! ot ny fik i t1 = U+1)
Pl #s1 .. EYTY Ly, RV VAN <of 1/ T
; J+1 i+t f+1_p—(+1
= #ST s T inytt L yE b P I PT D
* g g+l ogltt At i+l (D
(?Xi) lo-okv yl --ﬁyl n 'nutl CEEEEY kw xk+1
, s J+1 J+1 i+1 -(J+1
el # ML smepdTLYIT YT L e P XTI,
Xx11

vol. 12, n°® 1, 1978



44 D. A. SIMOVICI, S. ISTRAIL

Thus coupling the derivations we obtain in G the derivation

* ) -
# XU xkxb, = #s'{‘...sZ"v’y;’{...yf{b...t’{‘...t}""w’x,ﬁ{

for 1 < <p-1.
Taking j = p—1 it is possible to obtain in K:

Ty N P
# XY e X X+t
* ny me . p—1 gR™! = ny me, p=1
= F S SV yi R 15 ot W T X
.a? aP —
= #i iDL wT X
h

The role of the next group of rules is to eliminate the last supernumerary
symbols. Namely, we shall consider the rules:

(xxiil) w x4 — 6 b;

(xxiv) wd — 3 b;

(xxv) ;8 —=3b,1 £ j =< k;
(xxvi) b & — bb.

Finally, we have obtained the derivation

*
XL xPexE, = #i% . ifb. ..
The buffer size is given by

P

-1
MX (@, p) = M+ (n)+ Zl M, p, ¢)+2p+||n||-1.

j=

COROLLARY 4: Let g: N¥— N! and h:N'+*1*'— N, be two functions
from LLBS where MKs(m) < c, || n||for ne N¥\ Q, and

M (n,p,q) S ¢ ||h(n, p,q) ||
for (n, p, q) € Nx+1+I\ Q,, where Q, and Q, are finite sets. If there exist
o,Be(0,1) so that |[n|| <B|lg)]|| and ||q]|| < ]|k (@, p,q) || for all
(@, p, ) € N x Ny x N\ Q, where N4XN;xh(N% N;,N)NQ=0, then
the function f defined by recursion from g and h belongs to LLBS.

R.A.L.R.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 45

Proof: Using a similar approach as in corollary 3 we can write
p=1 .
M¥%(n, p) = M m)+ ), My*(n, p, ¢)+2p+j|n||-1
j=1
p—1 N
<qlle@ll+ 2 allh®. pq)||+2p+][n]|-1
j=
p—1 X
sqlls@ll+ 2 alla™!{|+2p+[n]-1,
j=

ifn¢Q,and (n,p,q)¢ Q) 1 £j=p—1
Since ¢/*1 = /i (n, j, q/) we have ||q/ || < o || ¢/*" ||, hence

lla/ || < "7 {la |},
for every j, 1 < j < p.
Afterwards, since q' = g (n) we have also ||n|| < B||q" || < Ba®" || q?||.
Putting together these evaluations we obtain

p .
ME@ D < lla [ +all ]| 5 o +2p+a]-

p .
sellell( £ o) +2pemet -1

< P 1-o” Pl « 1] ¢

scllq H1 +2p+||@|| < ||| — +1)+2p
—a i—a

=c||q®||+2p,

where ¢ = max (¢,, ¢,) and ¢; = [¢/(1—o)]+1.
Taking into account that

lla®]| > 4”7 || " || = 4" {|g (]| > 4”7 B[ n]|,
where A = 1/a > 1 and B = 1/B > 1 it follows that
|l > [1+4A(@—D]]||n]| > 1+4(p—-1) > p.
Therefore we have
Mj(n, p) S (¢, +2)|{q"|| = (c; +2)|| f (m, P) ||,
hence fis in LLBS.
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IV. SOME ELEMENTARY EXAMPLES

We shall present in the sequel some elementary examples of “basic’’ func-
tions from LLBS from which we shall construct more complex functions
using the closure properties of the LLBS class presented in corollary 1-4.

(i) The function f: N, — N; given by f(n) = an+c, where ae N, ce N
is in LLBS. Indeed, let us take
K = ({xl }’ {ila b, # }’ {.xl }a {il}a b, #’
{#x1> #iiyx, yx; > i1y, y > b))
In this grammar there exists the derivation

n i C n ; 2C :a n—1 * ;- snatc sma+c
#xl = #llyxl = #llllyxl = # 1 y = #ll
and f is obviously from LLBS since M% (n) = 1, Vne N;.
(i) It is a very well known fact that the language {i% ... i"|n2=1} is
context-sensitive. This fact can be recaptured here by proving that the function
h:N,— N given by h(n) = (n,n, ..., n) is from LLBS.

e —
ktimes

Let us consider the length-increasing cg:

K=({X1}, {i17 RS ] ika b: #}’ {x1}> {ib AR ik}a b) #a
{xt=yi Yy 0y, 1SISj Sk y; =05, 1S < k).

If, in this grammar we have a derivation

b

*
#X] = #i.. 0F 3)

we must have ny = n, = ... = n,. Indeed, the derivation (3) has necessarily
the form:

n * n * n n H * ;zoamy 073
#xy = #Q1...¥) = #Viye...yx = #Iiy ... 0
and the buffer size is zero.

(iii) The sum f5 : N2 — N, given by f; (n;, n;) = n; +n, belongs to LLBS.
This function is computed by the length-increasing cg:

KS=({x13 x2}’ {ils ba # }5 {x15 xZ}, {il}: b, #9 {x1—>i1’ x2_)i1})

. . * .
since we have the derivation # XnXm = jnene,

(iv) The product f, : N2 — N, where f,(ny, n;) = nyn, is a function
from LLBS. To prove this let us consider the cg:

KP = ({xl’ x2> J/, z, U}, {ils bs’ # }, {xls xz}, {Ll }.,
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. 2
b, #, {xy %, =iy b, x; X, X > X1 V%, X1 X3 X, > 07 x,,
02 X5 = X 0%, Xy X5 > iy X3 Xg, Xq By = iy Xy,

X iy = iy X, Xy v? > X, Yo, X1y = yiy, X3y = yiz, y =iy })~
K, computes f, since in this cg it is possible to write:

- - X - - 2
#x’{‘x"zz = #x’{‘ 1vzxn22 1 S #x'lll lx'z’z 1y

%

# i(lm—l)("z—l)x(znz—l) x(llu—l)v2

= # i(lm—1)(nz—1)x(2nz—1)x(1nx—l)yb

| *

# i(lnl—l)(lu—l)-i-(ru—1)+(Ilz—l)+1 b — # i);;nz b.

We conclude also that M e (ny, ny) = 1.

(v) In [3] S. Istrail exhibited a context-sensitive grammar for a language
L, = {i?® |nenN }, where P is a polynomial having its coefficients in N,
proving that L, is a type-1 language.

This result can be retrived in our new approach as follows. Suppose that
P(n)=aon™+a,n" *+...+a,_;n+a,
=(...((apn+a))n+ay)...)n+a,.
We shall act by induction on m.

Denoting by ¢; : N2 — N, the function @;(m,n)=mn+a;, 2 <j<m
and by ¢, : Ny — N, the function ¢, (n) = ay n+a,, P (n) is given by

P(n) = (Pm( . ((P3 ((pl ((Pl (n)’ n)’ n)’ AR ] n))

We have proved at (i) that ¢, € LLBS, with MX (n) =1, Vne N for a
suitable cg. Since, for m = (m,p) we have ||n|| = m+p the condition
[|m|] £ || f () || considered in theorem 3 becomes m+n < mn +a; this condi-
tion is satisfied for all (m, n) € N2 since a; = 1.

Denoting by 1 : Ny — N, the identity map 1 (n) = n, the function ¢, X1
belongs to LLBS, hence ¢, o (¢, X1) € LLBS, where

02°(01 X ) (1) = 02(9;(n), n) = (agn+ay)n+a,.

Suppose that we have proved that each polynomial with degree less or
equal to m is in LLBS and let H = ag n™*' +a, n"+... +a,,, be a poly-
nomial whose degree is m+1.

Since H = (ao W™ +a, 1" +. .. +a,) n+apns1 = Omiq (P (1), n) it follows
immediately that H e LLBS.
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48 D. A. SIMOVICI, S. ISTRAIL

(vi) Let us consider now the exponential function g : N, — N, given by
g (n) = a", where a > 1. This function is computed by the cg:

K=({x1’ y}a {il’ b, #}, {x1}9 {il}’ b’ #’
{(#x> # 97 iy o iy i)

since it is possible to write

*
n : a—1 -1 . 2a2— -2
#xl = #ytl X'; = #yxl 31 a'x,;
*
=

a2—1 n—2 a3—3 n-—-3
= #yli; X #yxgly X

:ad—-1 _n—4 an—1 -an
= #yi; X = ... = #yi = #1i,.

The last rule y — i;, can not be applied until the last step because x; can
be eliminated only using the rule yx, — yi a-1,

Remark: By a slight modification of the proof of theorem 1 it is possible
to prove the following assertion:

If the language L, = {jm ... jm|(ny, ..., m)e D} is a context-sensitive
one (where D is a suitable subset of N%) and f: N — N* is a function from
LLBS then the language { imo. . im | (my, ..., m)ef(D) } is again context-
sensitive (the proof is left for the reader).

For instance, starting from the fact that the language { i? | p is a prime } is
context-sensitive (see [4]) it follows immediately, using the example (vi) that
the language {i2” |p is a prime } is again context-sensitive a. s. o.
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