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COMPUTING GRAMMARS
AND CONTEXT-SENSITIVE LANGUAGES (*)

by Dan A. SIMOVICI and Sorin ISTRAIL (1)

Communicated by J. F. Perrot

Summary. — We introducé the notion of a computing grammar and we study the family
offunctions that can be defined by such a grammar with a linearly limited buffer size. These
functions in turn define context-sensitive languages. We investigate various closure properties
of this family offunctions and use them to show that certain languages are context-sensitive,

I. INTRODUCTION

It is a well known fact that every context-sensitive language is a recursive
set. Using a diagonalization argument it is possible to prove that the class
of context-sensitive languages is strictly included into the class of recursive
languages. Moreover, the progress of Computational Complexity Theory
now permits the direct spécification of languages that are recursive but not
context-sensitive since they require exponential space for récognition — e. g.
extended regular expressions denoting the empty set ([1], chap. 11)— and
are therefore outside the scope of any linear bounded automaton.

Therefore, for formai language theory it is an important matter to clarify
as much as possible the border of the class of context-sensitive languages by
proving that certain classes of recursive languages are composed in fact by
context-sensitive languages.

By Nx we shall dénote the set of positive natural numbers Nx — N\{ 0 }.
The aim of our paper is to study a certain subset of the set of functions
{f\f:Nfl^>Nk

l,k,heNl } for which the bounded languages

are context-sensitive. Here il9 . . . , ih are symbols belonging to an appropriate
alphabet I.

(*) Received August 1977; revised October 1977. Note: A preliminary version of this
paper was presented at the 6th Conference on Mathematical Foundations of Computer
Science (Tatrouska Lomnica, Czechoslovakia, September 1977), but an unexpected delay
presented its inclusion in the Proceedings.

(*) Department of Mathematics, University of Iasi, Iasi, Romania. Research Group
of Formai Language and Automata Theory, University of Iasi.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 12, n° 1, 1978

3



3 4 D. A. SIMOVICI, S. ISTRAIL

After studying closure properties of this class of functions with respect to
common opérations of recursive function theory we consider some elementary
examples which justify the interest of this topic.

IL COMPUTING GRAMMARS AND FUNCTIONS COMPUTABLE WITH A
LBNEARLY-LIMITED BUFFER-SIZE

In the sequel we shall introducé a new revriting device.

DÉFINITION : A Computing grammar (eg) is a 7-uple

K = (IN, IT> {XU . . . , xk}, {il9 . . . , ih}9 b, #9F),

where IN and IT are finite nonvoid sets representing respectively the nonterminal
and the terminal alphabet, {xu . . . , xk } ^ IN is the set of start symbols,
h = { *i» •••>'*> #> b }> where " # " is the marker and "b" is the buffer and F
is a finite set of pairs of words from (IN u IT)+ x (/^ u /T)*.

In addition, we suppose that if (u, v) e F then :
(i) u contains at least a nonterminal symbol;

(ii) if " # " occurs in u then " # " has exactly only one occurence both in w
and t;, namely in the first position of these words.

If (w, v) e F this fact will be denoted by u-+v.
The génération relation "=> " and its reflexive and transitive closure are

K

considered exactly as for grammars.
A eg is length-increasing if for every rule u —* v we have l(u) ^ l (v), where

/(/?) is the length of the word p.
If n = («ls . . . , nk) e N\ the number || n || is the sum ^ { «̂  | 1 ^ j g A: }.
A function f:N\-^Nh

1 is computed by a eg ^ = (IN, IT, {xu . . . , xk },
{ ïl3 . . . , ik } , b, #, F) if for every n = (nu . . . , nk) e N*9 there exists an
unique m = (mu . . . , mh) e Nh so that

Xx . . . Xk => # lh . . . lh O f

K

The number M^ (n) is the buffer sizer for the function ƒ and the input n
in the eg K. In this manner we obtain a function M f : Nk

±—*N\.
A function ƒ : Nk

x —> Nh
± is computable with a linearly limited buffer size

by the length-increasing eg K if there exists c e R+ so that:

for every n e Nk\Qf, where Qf is a finite subset of Nk
v

Let LL^»S be the class of functions which are computable by length-
increasing cgs with linearly limited buffer size.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 35

The usefulness of this concept of eg is pointed out by:

THEOREM 1 : If a function ƒ : Nk
±—> Nh

± belongs to LLBS then the language

Lf = {*?... C | m = (inu . . . , mh)ef(N\)}

:is a context-sensitive one.

Proof: Suppose that ƒ is computed by the length-increasing cg K= (IN, IT,
{xu ..., xk}, { ils . . . , ih },b, # , F) and let us considerthe length-increasing
grammar

G = (IN\j{yu . . . , yk},

where yu . . . ,7 f c are new symbols non belonging to the set IN u 7r.
We infer that the language

is again context-sensitive since the class of context-sensitive languages is
closed with respect to intersection with regular languages.

Let us take p e L. The dérivation x0 => p can be split as foliows :
G

^0 ^^ # ^1 . * . yk ^ # Xx . . . Xk => # Ï! . . . lh O f K \

where the last part of the dérivation uses only rules from F.
We conclude that L has the following form

L = { # iT . . . ;^fcM/K(n) | m = ƒ (n), neJVÎ\Q t f , m = (mls . . . , mA)}.

Let us consider now the homomorphism

^ : { zl9 . . . , ih, by # } —>- { ïl5 . . . , ih }*
given by:

y if ye{/ l 5 . . . , ih}9

e if

/f is a (c-f2)-linear erasing homomorphism with respect to L for, if
p = # ï'mi . . . /̂ ft bMf^ we have

since f r ( p ) = i™' • • • * T a n d / ( « i » • • • , « * ) = K , •••,mh).
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36 D. A. SIMOVICI, S. ISTRAIL

Taking into account that the class of context-sensitive languages is closed
under linear erasing [4] it follows that H (L) is a context-sensitive language.

HL CLOSURE PROPERTIES OF THE CLASS OF FUNCTIONS COMPUTABLE
BY LENGTH-INCREASING cgs

This part of the paper contains a study of closure properties of functions
computable by length-increasing cgs.

We shall recall first the définitions of several well known opérations on
functions.

If ƒ : Nk
t —> JV* and g : JV* —• Nc

t are two functions, the combination of ƒ
and g is the function ƒ x g : N* x JV* —» iVJ x Nc

l9 given by

for every me N\ and p e F r

The exponentiation of the function ƒ : Nk
± —• Nk

x is the function ƒ : Nk
±

+ 1

which is defined by:

where "o ' dénotes the composition of functions.
The function f : N*^1 —> Nl

x is obtained by primitive recursion from
g:N\-+ N[ and h : N\+x + l -> N[ if/ (n, 1) = g (n) and

ƒ (n5/> + l) = h (nyp,f(n,p)), n e N\9pe N±.

The opérations of composition, combination, exponentiation and recursion
are not independent. For instance, it is possible to prove [2] that each function
defined by exponentiation starting from a primitive recursive function can
also be defined by primitive recursion from primitive recursive functions.
In this proof the projections are inherently involved. Since these functions
are obviously non-computable by a length-increasing computing grammar,
it is useful to study closure properties of the set of functions with respect to
the whole set of opérations.

The strategy of our approach is the following. In the next four theorems
prove closure properties of the class of functions computable by cgs.

After establishing évaluations for the buffer size of the computed functions
we obtain in the corollaries, closure properties of the class of LLBS functions.

THEOREM 2: The class of functions which are computable by length-
increasing cgs is closed with respect to composition.

Proof: Let ƒ : JV* —* Nh
v g : JV* —> N[ be the functions computed respec-

tively by the grammars:

ITf, {xl9 . . . , x k } , {h, . . . , ih}> b, #,Ff\

g, I T g t {x'l9 . . . , x ; } , { ï i , . . . , i ï } , b , # , F g ) .

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 3 7

Without loss of generality we assume that

hf n h9 = 0 and ITf nITg = {b, # }.

Then the composition gof:Nk
1~^N[ is computed by the eg:

since we can write:

COROLLARY II If f9 g e LLBS, II g(n) || ^ ||-Mm H /o r a/iwatf a// « e iV*
(excepting possibîy a finite set Q £ N*) andf'1 (Qg ̂ \Q) is a finite set then
ihe composition g o ƒ belongs to LLBS.

Proof: From the proof of th. 2 it follows that

Mfy/(n) = Mf(n)
hence it is possible to obtain the foliowing évaluation :

(n)) || + c r || ƒ (n) || ̂  cff |j g ( / (n) ) ||

where ƒ (n) £ Qg u g and n ̂  gy. These restriction can be summarized asking
n $ Qf u ƒ "* (ô0 u g) and, since this last set is finite it follows
gofeLLBS.

THEOREM 3 : The cîass offunctions which are computable by length-increasing
cgs is closed with respect to combination.

Proof: Suppose that ƒ : JV* —* JV* and g : NJ[ —• N[ are two fonctions
computed by the cgs:

K9 = (/*,, hB, {*i *}}, {il «}, *', #', Fg).
Assiiming that INf n INg = 0 and ITf nINf = 0 we shall consider the fol-
lowing length-increasing cg:

Kf*B = (hfuINtvj{b, #'}, (ITf\{b})u(IT,\{ #'}),

{x l s . . . , xk> x1? . . . , xjf9 b , #,

* b # 'xi, iAxi -• ih # 'x i}

vol. 12, n" 1, 1978



38 D. A. SIMOVICI, S. ISTRAIL

Denoting by c = M ff (n) and d = MK
g

8 (q) we have in this new eg:

# xï1 ... xn
k
kx[q* ...x'fJ X #i^ ... CbcxT . •. x'f*

t #%*... i**i'x
pi...ïl

pib'e+d.

Hence, the fonction ƒ xg is computed by the eg Kfxg and we have

M ^ / ( ( n , q)) = M*'(n) + M**(q). (1)

COROLLARY 2: The combination of any two functions from LLBS is again
in LLBS.

Proof: Let ƒ g e LLBS, where Mff (n) ^ cf || ƒ (n) || for n G N£\Qf and
M£s (q) ^ c5 || g (q) || for q G A^^\öff. Taking into account (1) it is possible
to obtain the following évaluation:

xyi(n9 q)) = M^(n) + M^(q) ^ cf \\ ƒ (n

xg(n, q)||,

for n$ Qf\j Qg9 hence ƒ x g e LLBS.

THEOREM 4. /ƒƒ w a function computed by a length-increasing eg then there
exists a length-increasing eg which computes Us itération / # .

Proof: Let us suppose that the function ƒ : Nk
t —• JV̂  is computed by the

length-increasing eg K = (IN, 7r, { xl5 . . . , xk }s { iu ..., ïfc }5 è, # , F) and
let us take

/itimes

We shall consider the eg:

a n d d * = M *

where ^ consists of the following rules:
(O zj xk+1 ^ xk+1 Xj, 1 ^j Sk;
(ii) z; x k + 1 -> xfc+1 x j , 1 ^ 7 é fc;

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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(iii) bxk+1->xk+lb;
(iv) #

(vi) ik yb -> ik bb9 ikyxk+1^ ik bxk+1.

Since F consists only from length-increasing rules so FvFx does, hence
K# is indeed a length-increasing eg.

Now, we obtain in K# the following dérivation :

# —Hl _»k VP _ ^ n v v « l v«fc -v-P~ 1

Zj . . . Zk X k + i => Ĉ A f c + 1 Xi . . . Xk A f c + 1

=> # yx1 . . . xfc x k + 1 => #
(iv) F

* 1 1

=> 7r t j • • • ik y o xk+i =̂ >
(v) (iv)

* 1 1
- ^ . -IL 7*9l ,*9fc -y- Jl''1"'"^ V * P ~ 2

( m ) # ï l • • " I * X f e + 1 0 X k + 1

* 1 1

(ii) * + l 1 ft

^A -\ . . . At f At _|_ 1*k
(iv)

• „2

where d =
It is clear now tha t / # : iV^+1 —̂  iV* is computed by K^. Moreover, we have

JJ

J - l times

COROLLARY 3: Suppose that for the function f:Nk
1-+N\ there exists

a e (0, 1) so that ]| n || a ̂  | |/(n) ||, excepting possibly a finite set Q £ N\.
If f e LLBS and f(N\) nQ = 0 then f& e LLBS.

Proof: We have to evaluate MK# (n, p). In view of the fact that
| |n || ̂  a ||/(n) || we have the following non-decreasing séquence of real
numbers :

vol. 12, n° 1, 1978



4 0 D. A. SIMOVICI, S. ISTRAIL

for every j , 0 ^ j ' ^ p — 1, since ƒ (Nty n Q = 0 . Hence

M ^ ( n , p) = S MK
f(f o ƒ o . . . o ƒ (n)) + p

J i-o • , -
J

~ j=0 . j = 0

<

^k=i / 1—a

From || n || < a || ƒ (n) || it follows that || ƒ (n) || > A \\ n ||, where
A - l/a > 1. Hence | | /> (a) || > AP \\ n || > [1 +p ( ^ - 1 ) ] |j n\\> p (A-l).
Therefore p < 1/(̂ 4 — 1) | | / ^ (n) || and the previous inequality is completed
as follows:

hence f^eLLBS.

THEOREM 5 : The class offunctions which are computable by length-increasing
grammars is closed under primitive recursion.

Proof: Let us consider the cgs Kg and Kh which compute the functions
g : N\ - ^ N[ and h : N\+1+l -> N[, respectively

K0 = (INg, ITg, {zu • . . , zk}> {i'u • • • > ii}> b, #,Fg),

Kh = (INh, ITh, {sx> . . . , sk, vyyu . . . , y , } , {iu . . . , ï,}, è, # , F ; ) ,

where 7 ^ n / ^ = 0 .
We shall construct the eg

which computes the function ƒ : A^+ 1 —> iV^ obtained by recursion from g
and A. Here ^ is the set of supplementary nonterminal smbols, F'g is obtained
from Fg by replacing each symbol ij by yj9 1 ^ j ^ / and each occurence of
" # ** with a new symbol v and F5 is the set of supplementary rules. The sets
INS and Fs will be specified in the sequel.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRÀMMARS AND CONtEXT-SENSlTlVE LANGUAGES 41

Let us dénote ƒ (n,/?) = (qv9 . . . , #£).

The activity of the cg K starts from the word x1^ . . . x** x£+l. We shall
exhibit the rules which allow the dérivation:

Namely, for the beginning we shall include in Fs the foliowing sets of rules:
(i) Xj xk+i > xk+1 Sj Zj tj, 1 S j = k ;

(ii) # xk+1^ # a;

..... f f* sh -^ shtït,l < j9 h < k,j < h;
(111) < ~ . - ' • / - '

( iv) Zj sh -^ sh Zj, 1 Sj,hS k,j S k;

(vi) «y a z >^ v 0 z *
(vii) ez ; -+z , .9 , 1 ^ 7 £ * ;
(viii) zfc 0 t1 —> zk x t1 ;

(ix) T tj —• ?ƒ T, 1 Sj S k;

Indicating by subscripts the rules which were used we have the dérivation :

(iv)

# a ( 5 l z t)
ni . .

. . . sk z1 ... zk tl . . . ik xk+lm

Bef ore moving a it is compulsory to arrange Sj, zs, t} in the manner which

was indicated, in order to eliminate a. This dérivation can be continued as

follows :

a s x . . . sk Zj . . . zk rj . . . ik z k + 1

==> ^ s a . . . sk GZi . . . zfc rx . . . ik xk+1

(v)

(Wi)

vol. 12, n° 1, 1978
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(viii)

•
(ix)

*

F'

D. A. SIMOVICI, S. ISTRAIL

S j . . . S k VZ^ . . . Zk f j . . .

Hence, we put in évidence the dérivation

5t . . . sk xk+1 => ff sx . . . sk vyt ... yk

Now, our aim is to construct a dérivation

# 5Î1 . . . s n
k

k v J y \ l . . . yf b . . . *y . . . C ^ * x r

£ # # . . . s f ̂ + 1 ^ + 1 ... y ? J + 1 6 .. . t

Since in ATA have the dérivation

it follows that in K it is possible to write

where d
is

# # . . .

(n, ̂ ,

xb...

f ) { {
At this stage we shall consider the rules:

(xi) w xk+1~^wauw;

(xii) w a —* a MM;;

(xiii) f y a -^a M,- i?y, 1 Sj^k;
(xiv) èa->ai;

(xv) ÏC a —> a^c5 1 ^ c S l\

(xvi) # a ^ # Ç ;

(xvii) buh->uhb;

ycuh-+uhyc> 1 ^ c ^ / ;

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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and 1 < h < k.

43

(xviii)

(xix)

tj u-+ utp 1 ^ h ^ k;

bu—+ub;

ic u—* uic, 1 ^ c ^ /;

(xx) v Ç y± -> v r\ yx ;

(xxi) r\yc~->ycT\9 1 ^ c ^ /;

(xxii)

Using the rules introduced here we have the continuation:

(xi)

(xii)

(xiv)

=>
(XV)

= >
(xvi)

(xvii)

•

(xix)

=>
(XX)

# IV

# l\{

# ïï{'

#

#

b . . . # . . .

y f'b .t

sk

(xxii)

vol. 12, n° 1, 1978
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Thus coupling the dérivations we obtain in G the dérivation

# xï1 . . . x?xjf+1 £ # 5Ï1 . . .

for 1 ^j^p-l.
Taking j = p— 1 it is possible to obtain in K:

# xx ... xk xk+x

=> # sx . . . sk v yx . . . vy o ... tx ... tk w xk+x

*i • • * h w

The role of the next group of rules is to eliminate the last supernumerary
symbols. Namely, we shall consider the rules:

(xxiii) w xk+1 —> S b;

(xxiv) ÏÜO—>8b;

(xxv) /,. 8 ->5è , 1 <>j^k;

(xxvi) b 8^> bb.

Finally, we have obtained the dérivation

The buffer size is given by

M*(n, p) =

COROLLARY 4: Le^ g : N*^>Nl
1 and h : N*+i + l —*NX be two functions

front LLBS where M f* (n) ^ c9 || n || f om e N\\Qg and

Mk
h*(n,p,q) g ch || A (n, />, q) ||

/ör (n,/?; q) e ^ + 1 + ï \ Ö f t 5 where Qg and Qh are finite sets. If there exist
oc, p e (0, 1) ™ / t o || n || < p || g (n) || a«rf || q || < a || h (n9p, q) || for all
(n,p, q) e N\ xNxx N\\Q, where NQxNxxh (N\, Nl9NQnQ = 0 , then
the function f defined by recursion front g and h belongs to LLBS.

R.A.LR.O. Informatique theorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 4 5

Proof: Using a similar approach as in corollary 3 we can write

' Ë l > p, qÔ-f-2p+j|n||-1

if n £ g , and (n,/>, qJ) £ Q h , l è j S p-1.

Since q' + 1 = h (n,y5 qj) we have | | qi | | < a | | qj + 1 | | , hence

for every y, 1 ̂  y ̂  p.
Afterwards, since q1 = g (n) we have also || n || < P || q1 || < pa p - 1 || qp

Putting together these évaluations we obtain

M^n,p)<cg\\q
1\\+ch\\q"\\i a ^

j 2

= 1̂1 «fil+2/,,
where c = max(c5, ch) and cx =

Taking into account that

where A = 1/a > 1 and B = 1/P > 1 it follows that

Therefore we have

hence ƒ is in LLBS.

vol. 12, n° 1, 1978



46 D. A. SIMOVICI, S. ISTRAIL

IV. SOME ELEMENTARY EXAMPLES

We shall present in the sequel some elementary examples of "basic" func-
tions from LLBS from which we shall construct more complex functions
using the closure properties of the LLBS class presented in corollary 1-4.

( i ) T h e f u n c t i o n fiN^—* N± g i v e n b y f(ri) = an + c, w h e r e aeNl9 ceN
is in LLBS. Indeed, let us take

K = ({x1}9 {iu b, # } , {Xl}, {h}9b, #,

{ # x1 -> # i\ yxl9 yxx -> i\ y, y -> b }).

In this grammar there exists the dérivation

and ƒ is obviously from LLBS since M^ (n) ~ 1, VneN^
(ii) It is a very well known fact that the language { in

x ... f jj | n ^ 1 } is
context-sensitive. This fact can be recaptured here by proving that the function
h:N1^N\ given by h (n) = (« ,« , . . . ,« ) is from LLBS.

fctimes

Let us consider the length-increasing eg:

}, fe, # ,

If, in this grammar we have a dérivation

#x\ (3)

we must have nx = n2 — . . . = «fc. Indeed, the dérivation (3) has necessarily
the form:

#x\ t #(yi...yky X #iïyn
2...y

n
k X # ^ ... i?

and the buffer size is zero.

(iii) The sum fs : N* —> ^ given by fs (nu n2) = «i +«2 belongs to LLBS.
This function is computed by the length-increasing eg:

Ks = ({xu xi}> Ou b, # } , {xl5 x2}, {/i}, 6, # , {Xi-^ïi, Xa-M'i})

since we have the dérivation # JĈ 1 x^2 => # Ï^1 + B2.
(iv) The product fp :N*—*Nl9 where fP(nl9n2) = «i «2 is a function

from LLBS. To prove this let us consider the eg:

£p = ({*l> *2, J5 Z, ^} ? {h, by # } , {*!, X2}5 {/i},

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES 47

b, # , {xxx2^>i1

v2 x2 -> x2 v
2, xx x2 -» ix x2 xu xx ix -» ix xl9

x2 ix -> ix x2, xx v
2 -> xx yb, xxy^> yiu x2y^> yi2, y

Kp computes fp since in this cg it is possible to write:

« «i ~ 1 2 n2 - 1 «i - 1 B2 - 1 2

# i<?i

We conclude also that Mfp (nl9 n2) = 1.

(v) In [3] S. Istrail exhibited a context-sensitive grammar for a language
Lp = { £p<") | n e TV }, where P is a polynomial having its coefficients in Nx

proving that Lp is a type-1 language.
This resuit can be retrived in our new approach as follows. Suppose that

We shall act by induction on m.
Denoting by q>j : N2 —> Nx the fonction cpy (m, n) = mn+a^ 2 ^ j ^

and by cp! : Nx—+ Nx the function cpj (n) = a0 « +a l s P («) is given by

P(n) = 9ffl(... (<p3(<p2(q>i(n), n), n), . . . , n)).

We have proved at (i) that ç1eLLBS, with M* («) = 1, Vn e Â  for a
suitable cg. Since, for n = (m,p) we have || n || = m+p the condition
|| n || ^ | |/(n) || considered in theorem 3 becomes m+n ^ mn+as this condi-
tion is satisfied for ail {m, n) e N2 since ay ^ 1.

Denoting by x : Nx —>• Nx the identity map i (n) = n, the function (pA xx
belongs to LLBS, hence <p2 o ($t x x) e LLBS, where

Suppose that we have proved that each polynomial with degree less or
equal to m is in LLBS and let H = a0 n

m + i+ax nm+... +ûm+1 be a poly-
nomial whose degree is m +1.

Since H = (a0 «
m+«i «m~1 + . . . +f l j »+ûm+i = 9m+i QP («)• «) it follows

immediately that .fiT e LLBS.
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(vi) Let us consider now the exponential function g : N±—y Nt given by
g (n) = a

n
9 where a > 1. This function is computed by the eg:

K = ({xuy}, {iub, #},{xi}>{h}>b> # ,

since it is possible to write

The last rule >» —> /l5 can not be applied until the last step because xx can
be eliminated only using the rule yxt —tyi0'1.

Remark: By a slight modification of the proof of theorem 1 it is possible
to prove the following assertion:

If the language LD = {jn^ . . . j ^ | (nu . . . ? nk) e D } is a context-sensitive
one (where D is a suitable subset of Nk

t) and ƒ: JV̂  —» iV̂  is a function from
LLBS then the language { i«» . . . /£"• | (m^ . . . , mh) ef(D) } is again context-
sensitive (the proof is left for the reader).

For instance, starting from the fact that the language { F | p is a prime } is
context-sensitive (see [4]) it follows immediately, using the example (vi) that
the language {i2P \p is a prime } is again context-sensitive a. s. o.
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