I. H. Sudborough

Some remarks on multihead automata

RAIRO. Informatique théorique, tome 11, no 3 (1977), p. 181-195

<http://www.numdam.org/item?id=ITA_1977__11_3_181_0>
SOME REMARKS ON MULTIHEAD AUTOMATA(*)

by I. H. SUDBOROUGH (1)

Communicated by R. V. BOOK

Abstract. — Various relationships are described between families of languages defined by multihead finite state automata and pushdown automata. The main results are (1) a translational method for bounding the complexity of multihead pda languages in terms of the complexity of single head pda languages, (2) a simulation algorithm which shows that nondeterministic pda with k heads are as powerful as nondeterministic finite state automata with 2k heads, and (3) an improved hierarchical result which shows that k + 4 heads are better than k heads (for finite state automata) even on languages over a single letter alphabet.

INTRODUCTION

It is known that the family of languages recognized by multihead two-way pushdown automata is identical to the family P-TIME of languages recognized in polynomial time by deterministic multitape Turing machines [7]. It is also known that the family of languages recognized by deterministic (nondeterministic) multihead two-way finite state automata is identical to the family DLOG (NLOG) of languages recognized by deterministic (nondeterministic) log (n)-tape bounded Turing machines [17]. It is not known whether or not P-TIME = DLOG, P-TIME = NLOG, or DLOG = NLOG. These problems have been investigated recently in the literature [4-9, 13, 17, 21, 22, 29, 30]. They can be loosely interpreted in the following forms. Does adding an unbounded auxiliary pushdown store increase the computing power of a tape bounded Turing machine? Does allowing nondeterministic transitions increase the computing power of tape bounded Turing machines?

It is known that every context-free language (i.e. nondeterministic one-way pushdown automaton language) can be recognized by (1) a deterministic multitape Turing machine in \(n^{2.81} \) steps [31], (2) a unit cost random access machine (RAM) in \(n^2 \log n \) steps [32] and a deterministic multitape Turing

(*) This work is supported in part by NSF Grant No. GJ-43228.

(*) Received, Aug. 1975; revised, Oct. 1976.

(1) Department of Computer Sciences, Technological Institute, Northwestern University, Evanston, Illinois.

A context-free language is known whose time or space complexity is the least upper bound on the time or space complexity for the whole family of context-free languages [14]. For some special cases, better results are known; the family of linear context-free languages and the family of one counter languages are both recognizable by deterministic Turing machines in time n^2 [15, 24]. Two-way nondeterministic one-head pushdown automata languages can be recognized in space n^2 and time n^4 by deterministic Turing machines and time $O(n^3)$ by RAM's [1]. Two-way deterministic one-head pda languages can be recognized in space n and time $n^2 \log n$ by deterministic Turing machines [1] and in linear time by unit cost RAM's [10].

The results described here extend some of these complexity bounds for the case of multihead automata. The main results are that (1) every nondeterministic one-way k-head pda language can be recognized by a deterministic Turing machine in time $n^{2.81k}$, and (2) every nondeterministic two-way $2k$-head finite state automaton language can be recognized by a nondeterministic two-way k-head pda and, hence, by a deterministic multitape Turing machine in time n^{4k} and by a RAM in time $O(n^{3k})$. (3) every nondeterministic two-way (one-way) k-head finite state automaton language can be recognized by a deterministic $2k$-head (k-head) pda and, hence, by a RAM in time $O(n^{3k}) (O(n^k))$, and (4) that there are languages over a single letter alphabet which are recognized by a nondeterministic (deterministic) two-way ($k + 4$)-head finite state automaton but cannot be recognized by any such automaton which k heads.

The reader is referred to [3, 11, 16-19] for formal definitions of multihead automata, Turing machines, and random access machines. We assume that in any transition of a multihead automaton only one of the heads is used to scan the input tape and only that head may move to the right or to the left during that transition. This means the set of states can be partitioned into collections of states which “control” a particular head. (The reader is referred to [16] for further details.)
ded Turing machines with a k symbol tape alphabet. Thus $DLOG = \bigcup_k \text{DSPACE}(\log n, k)$ and $NLOG = \bigcup_k \text{NSPACE}(\log n, k)$. We shall assume throughout these remarks that the tape bounded Turing machines have a one-way infinite worktape and that they have the power to detect when the two-way worktape head is scanning the leftmost square. (The effects of various changes in the basic tape bounded Turing machine model in a restricted worktape symbol alphabet environment are discussed in [27]). It is well known that constant factors are not important for tape or time bounds on multitape Turing machines [18]. Thus we shall not be concerned in general with the base of the logarithm in discussing $\log (n)$-tape bounded Turing machines. For symbol restricted models constant factors are relevant and, in this case, $\log (n)$ will be used as notational shorthand for the bound $[\log_2 n]$, where $[x]$ denotes the greatest integer less than x. (We shall also use the notation $[x]$ to denote the least integer greater than x, where x is a real number, and $|w|$ to denote the length of a string w of symbols over some alphabet).

TRANSLATION FROM MULTIHEAD TO SINGLE HEAD PDA

Our first result is obtained by a translational technique basically similar to those described in [4-6, 12, 13, 19, 29]. It would seem to differ from these earlier translations mainly in that it allows relationships to be described between one-way multihead automata classes.

Let $\Delta = \Delta^{(1)}$ be an alphabet. For $i \geq 2$, let $\Delta^{(i)}$ be the set $\{ (c_1, c_2, \ldots, c_i) \mid c_1, c_2, \ldots, c_i \text{ are in } \Delta \}$. Let b_2, b_3, b_4, \ldots be a countably infinite set of symbols which are not elements of $\bigcup_{i \geq 1} \Delta^{(i)}$. For any a in Δ let h_a be the length preserving homomorphism defined by:

$$h_a(c_1, c_2, \ldots, c_i) = (c_1, c_2, \ldots, c_i, a) \quad \text{and} \quad h_a(b_j) = b_j,$$

for all positive integers i and j and symbols c_1, c_2, \ldots, c_i in Δ. For any string $x = a_1, a_2, \ldots, a_n$ of n symbols over Δ, any integer $i \geq 2$, and any string y over the alphabet $\Delta^{(i-1)} \cup \{ b_2, \ldots, b_{i-1} \}$, define the string $g(x, i, y)$ by:

$$g(x, i, y) = h_{a_1}(y)b_{h_{a_1}(y)}b_{h_{a_2}(y)}b_{h_{a_2}(y)}b_{i-1} \ldots h_{a_n}(y)b_i h_{a_n}(y).$$

Define the strings $f(i, x)$, for $i \geq 1$, recursively by:

$$f(1, x) = x$$

$$f(i, x) = g(x, i, f(i-1, x)), \text{ for } i \geq 2.$$

For $k \geq 1$ and integers i_1, i_2, \ldots, i_k, such that $1 \leq i_j \leq |x|$ for $1 \leq j \leq k$, the position $P_x^{(k)}(i_1, i_2, \ldots, i_k)$ of $f(k, x)$ is defined as follows:

$$P_x^{(1)}(i) = i$$

$$P_x^{(k)}(i_1, i_2, \ldots, i_k) = P_x^{(k-1)}(i_1, i_2, \ldots, i_{k-1}) + (i_k - 1)(|f(k-1, x)| + 1), \text{ for } k \geq 2.$$
It follows by induction \(P_k^n(i_1, i_2, \ldots, i_k) \) is equal to
\[
i_1 + \sum_{j=2}^k (i_j - 1)(|f(j - 1, x)| + 1).
\]

It is claimed that the symbol at position \(P_k^n(i_1, 2i_2 - 1, \ldots, 2i_k - 1) \) of \(f(k, x) \) is \((a_{i_1}, a_{i_2}, \ldots, a_{i_k})\), if \(x = a_1 a_2 \ldots a_n \) where each \(a_j \) is a symbol in \(\Delta \). For \(k = 1 \) this is clearly the case, since \(P_x^1(i) = i \) and the symbol at position \(i \) of \(f(1, x) = x = a_1 a_2 \ldots a_n \) is \(a_i \). For the inductive step, assume that the symbol at position \(P_k^n(i_1, 2i_2 - 1, \ldots, 2i_k - 1) \) of \(f(k, x) \) is \((a_{i_1}, a_{i_2}, \ldots, a_{i_k})\). By definition
\[
f(k + 1, x) = g(x, k + 1, f(k, x))
\]
\[
= h_{a_1}(f(k, x)) b_{k+1} h_{a_2}(f(k, x)) b_{k+1} \ldots h_{a_n}(f(k, x)) b_{k+1} h_{a_n}(f(k, x)).
\]
Since
\[
Q = P_k^{k+1}(i_1, 2i_2 - 1, \ldots, 2i_{k+1} - 1)
\]
\[
= P_k^x(i_1, 2i_2 - 1, \ldots, 2i_k - 1) + (2i_{k+1} - 2)(|f(k, x)| + 1)
\]
and \(|f(k, x)| + 1 \) is the length of \(h_{a_j}(f(k, x)) b_{k+1} \), for any symbol \(a \), the symbol at position \(Q \) of \(f(k + 1, x) \) is the symbol at position
\[
Q' = P_k^n(i_1, 2i_2 - 1, \ldots, 2i_k - 1)
\]
of \(h_{a_j}(f(k, x)) \), where \(j = i_{k+1} \). By the inductive hypothesis the symbol at position \(Q' \) of \(f(k, x) \) is \((a_{i_1}, a_{i_2}, \ldots, a_{i_k})\). Therefore, the symbol at position \(Q' \) of \(h_{a_j}(f(k, x)) \), where \(j = i_{k+1} \), is \((a_{i_1}, a_{i_2}, \ldots, a_{i_{k+1}})\). This establishes the claim.

Since \(Q = P_k^n(i_1, i_2, \ldots, i_j, \ldots, i_k) \) is equal to
\[
i_1 + \sum_{j=2}^k (i_j - 1)(|f(j - 1, x)| + 1),
\]
to move from position \(Q \) to position \(Q' = P_k^n(i_1, i_2, \ldots, i_j + 1, \ldots, i_k) \) requires moving the head \(m = (|f(j - 1, x)| + 1) \) squares. It can easily be observed that each substring of \(f(k, x) \) which does not contain occurrences of any symbol \(b_l \), for \(l > j \), has exactly \(m \) symbols between successive occurrences of the symbol \(b_j \). This property allows one to measure the proper distances in movements of the head in the algorithm expressed in the proof of the following theorem.

Lemma 1: Let \(k \geq 2 \) and let \(M \) be a nondeterministic (deterministic) one-way \(k \)-head pushdown automaton. A nondeterministic (deterministic) one-way one-head pushdown automaton \(M' \) can be effectively constructed such that \(x \) is recognized by \(M \) if and only if \(f(k, x \#) \) is recognized by \(M' \).

Proof: \(M' \) is constructed to simulate on input \(f(k, x \#) \) a computation of \(M \) on input \(x \). (What \(M' \) does on input strings not of the form \(f(k, x \#) \) is of no

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
concern.) M' will represent a configuration of M where heads $1, 2, \ldots, k$ are scanning cells i_2, i_2, \ldots, i_k on input $x \neq \#$, where $\#$ is the right endmarker, by placing its head in position $P^k_{x, \#}(i_1, 2i_2 - 1, \ldots, 2k - 1)$. If $x \neq = a_1a_2 \ldots a_{n+1}$, where each a_i is an input symbol, for $1 \leq i \leq n$, and $a_{n+1} = \#$ (the right endmarker), then M in this configuration would be scanning the symbols a_1, a_2, \ldots, a_k with heads $1, 2, \ldots, k$, respectively. As previously observed, M' with its head at position $P^k_{x, \#}(i_1, 2i_2 - 1, \ldots, 2k - 1)$ in $f(k, x \neq \#)$ will scan the symbol (a_1, a_2, \ldots, a_k). Thus M' has all the input information on this one square that M has on the k squares its k heads scan.

It is sufficient to indicate how M' can simulate a move of one of the heads of M. If M has a transition that moves head j to the right, for some $2 \leq j \leq k$, then M' must move its head from position $P^k_{x, \#}(i_1, 2i_2 - 1, \ldots, 2i_j - 1, \ldots, 2k - 1)$ to position $P^k_{x, \#}(i_1, 2i_2 - 1, \ldots, 2(i_j + 1) - 1, \ldots, 2k - 1)$ on the input $f(k, x \neq \#)$. That is, as observed, M' must move its head to the right a distance equal to twice the length of $f(j - 1, x \neq \#)$ in order to be in the proper position. This may be done by simply (1) moving the head to the right to the first b_j symbol and adding a special symbol to the top of the pushdown store for each input symbol passed, then (2) moving the head to the right one square for each special symbol deleted from the pushdown store until all such special symbols are deleted, and the (3) repeating steps (1) and (2) one additional time. That is, let there be n symbols between each successive occurrence of the symbol b_j in each substring of $f(k, x \neq \#)$ which does not contain an occurrence of the symbol b_j, for $l > j$. Then steps (1) and (2) take the head from cell i of one of these “blocks” of length n to cell $n - i + 1$ of the next such block to the right. Thus two executions of steps (1) and (2) move the head from cell i of one such block to cell i of the second such block to the right. Since each such block in $f(k, x \neq \#)$ is of length $n = \lfloor f(j - 1, x \neq \#) \rfloor$, the head has been moved by this process to the correct position.

If M has a transition that moves head one to the right one square, then M' need only move its head to the right one square. Thus, M' can with one head on $f(k, x \neq \#)$ simulate M with its k heads on input x; M' will accept $f(k, x \neq \#)$ if and only if M enters an accepting state. Thus, M' accepts $f(k, x \neq \#)$ if and only if M accepts x.

We observe that $|f(k, x \neq \#)| \leq c |x|^k$, for some constant c which does not depend upon x. That is, for any string x of length n, $g(x, i, y)$ is of length $2n(|y| + 1)$, for all $i \geq 1$. Let $\text{DTIME}(T(n))$ denote either the family of languages recognized (1) in time $T(n)$ by deterministic Turing machines, or (2) in time $0(T(n))$ by deterministic RAM’s.

Theorem 1: For any $k \geq 2$ and any nondecreasing function $T(n) \geq n$, if $1\text{NPDA}(1) \subseteq \text{DTIME}(T(n))$, then $1\text{NPDA}(k) \subseteq \text{DTIME}(T(cn^k))$, for some constant c.

Proof: Let M be a nondeterministic one-way k-head pushdown automaton. By Lemma 1 there is a nondeterministic one-way one-head pushdown
automaton M' such that x is accepted by M if and only if $f(k, x \#)$ is accepted by M'. By hypothesis the latter question can be answered in $O(T(|f(k, x \#)|))$ steps. Since $|f(k, x \#)| \leq c |x|^k$, for some constant c, and $T(n)$ is nondecreasing, the number of such steps is not greater than $O(T(c |x|^k))$. Thus, one can decide whether x is accepted by M by (1) generating $f(k, x \#)$ from x, and (2) using the given algorithm to decide whether $f(k, x \#)$ is accepted by M'. Step (1) requires at most $O(|f(k, x \#)|)$ steps. Thus, at most $O(T(c |x|^k))$ steps are required for the whole process.

In [31] Valiant has shown that context-free languages can be recognized in $n^{2.81}$ steps by deterministic multitape Turing machines. In [32] it has been shown that context-free languages can be recognized by random access machines (RAM's) using the unit cost measure in $O(n^2 \log n)$ steps. Thus it follows from Theorem 1, since $1NPDA(1)$ is the family of context-free languages, that every $1NPDA(k)$ language can be recognized in $n^{2.81k}$ steps by a deterministic multitape Turing machine and in $O(n^{2k} \log n)$ steps by a unit cost RAM.

It is straightforward to modify Lemma 1 and Theorem 1 so that "one-way" is replaced everywhere by "two-way". In fact, in this case many other suitable transformations have previously been described [13, 19]. Thus from the fact established in [1] that each $2NPDA(1)$ language is recognized by a random access machine in $O(n^3)$ steps and by a deterministic multitape Turing machine in $O(n^4)$ steps we have an easy proof of the fact that each $2NPDA(k)$ language is recognized by a random access machine in $O(n^{3k})$ steps and by a deterministic multitape Turing machine in $O(n^{4k})$ steps. Furthermore, the known fact that each $2DPDA(k)$ language is recognized by a unit cost RAM in $O(n^k)$ steps follows from the proof of the case when $k = 1$ [10]. The proof for the case $k = 1$ is perhaps easier to describe. This has been done in [3].

Lemma 1 and Theorem 1 may easily be restated for other classes of multihead automata and other complexity measures. For example, it is easily modified for the multihead stack automata of [20]. It may also be observed that given x one may produce $f(k, x \#)$ on an output tape without using more than $\log |x|$ worktape cells with the multitape transducer of [21, 26]. Thus the reduction from x to $f(k, x \#)$ is a log-tape reduction [21, 26].

For the multihead finite automata of [4, 12, 17, 19, 29] and the multihead one counter automata of [15] the results need to be somewhat modified. That is, the pushdown store is no longer available to measure the distance needed to obtain a new position (as described in the proof of Lemma 1). Thus, for multihead finite automata the statement of Lemma 1 would need to be revised so that the automaton M' is (1) a one-head finite state automaton with an additional counter (which is linear bounded), or (2) a two-head finite state automaton. Similar revisions would need to be made for multihead one counter automata, since the "special symbol", described in the proof of Lemma 1, cannot be used in this case.
MULTIHEAD FINITE AUTOMATA VERSUS MULTIHEAD PDA

The next result indicates that adding an auxiliary pushdown store does add some additional computing power to a k-head finite state automaton. We show that $2\text{NFA}(2k) \subseteq 2\text{NPDA}(k)$. It is known that $2\text{DFA}(k) \subseteq 2\text{DFA}(k + 2)$ and $2\text{DPDA}(k) \subseteq 2\text{DPDA}(k + 1)$ for $k \geq 1$ [19]. The same hierarchical results have been established for the nondeterministic families [19, 27]. Combining these facts with our result we may conclude that if for any k there is an m_k such that $2\text{NPDA}(k) \subseteq 2\text{NFA}(m_k)$, then $m_k \geq 2k$.

Our result is similar to an earlier result in the literature which states that $\text{NSPACE}(\log_2 n, t) \subseteq 2\text{NPDA}$ [2]. However, there is no apparent method to obtain our result from this earlier one. Nor does there seem to be a method to obtain the earlier result from ours. The best relationships known between the number of symbols in the worktape alphabet and the number of heads is given by

1. $2\text{DFA}(k) \subseteq \text{DSPACE}(\log_2 n, 2^k)$ [17, 27]
2. $2\text{DPDA}(\log_2 n, 2^k) \subseteq 2\text{DFA}(k + 3)$. (The second relationship is established in this paper; both relationships are also valid for nondeterministic families.)

Our result, for example, gives $2\text{NFA}(2) \subseteq 2\text{NPDA}$. To obtain this from the above relationships would seem to require showing $\text{NSPACE}(\log_2 n, 4) \subseteq 2\text{NPDA}$. This would be a nontrivial extension of the results in [2].

Theorem 2: For $k \geq 1$, $2\text{NFA}(2k) \subseteq 2\text{NPDA}(k)$.

Proof: Let M be a nondeterministic two-way $2k$-head finite state automaton. Let the set of states of M be partitioned into two sets S_1 and S_2 such that S_1 is the set of all states which control one of the heads numbered one through k and S_2 is the set of all states which control one of the heads numbered $k + 1$ through $2k$. (S_2 is the set of all states not in S_1.) We construct a nondeterministic two-way k-head pushdown automaton P_M which indirectly simulates M. We shall consider the steps in a computation by M as being divided into two sets: those steps involving states in S_1 and, secondly, those steps involving states in S_2. Clearly, in general, a computation will alternate between steps involving states in S_1 and steps involving states in S_2. We shall assume, without any loss of generality, that the initial state and each final state is in S_1.

A sequence of states $P_0, P_1, \ldots, P_{2m}, P_{2m+1}$ is called a transition sequence if

1. for $1 \leq i \leq m$, P_{2i-1} is in S_2, (2) P_{2m+1} and, for $0 \leq i \leq m$, P_{2i} are in S_1, (3) P_0 is the initial state of M, and (4) P_{2m+1} is a final state of M. A transition sequence $P_0, P_1, \ldots, P_{2m}, P_{2m+1}$ is S_1-consistent on the input string x if there exists a sequence I_0, I_1, \ldots, I_m, where I_0 is the initial position for heads numbered 1 through k, such that, for $0 \leq j \leq m$, if M starts in state P_{2j} with heads 1 through k in position I_j, then there exists a sequence of steps such that M enters state P_{2j+1} (which is in S_2) with heads 1 through k in position I_{j+1} and M will not have entered any state in S_2 at any earlier step in the sequence. Likewise,
a transition sequence $P_0, P_1, \ldots, P_{2m}, P_{2m+1}$ is S_2-consistent on the input string x if there exists a sequence $I_0, I_1, \ldots, I_{m-1}$, where I_0 is the initial position for heads $k + 1$ through $2k$, such that, for $0 \leq j < m$, if M starts in state P_{2j+1} with heads $k + 1$ through $2k$ in position I_j, then there is a sequence of steps such that M enters state P_{2j+2} (which is in S_1) with heads $k + 1$ through $2k$ in position I_{j+1} and M will not have entered any state in S_1 at any earlier step in the sequence. It follows from the definitions that there is a transition sequence which is both S_1-consistent and S_2-consistent on the input string x if, and only if, x is accepted by M.

The k-head pushdown automaton P_M will operate in two phases. Phase I consists of writing an S_1-consistent transition sequence on the pushdown store. Phase II is to determine whether the pushdown store contains an S_2-consistent transition sequence. Some of the details of the manner in which P_M executes each phase is described below:

Phase I: In this phase P_M constructs on its pushdown store an S_1-consistent transition sequence. P_M begins by nondeterministically selecting a position I for its k heads and a final state s in S_1 of M. (The position I is selected by moving the k heads into that position.) Since it is desired that the transition sequence appear in order on the pushdown store, the elements of the sequence are obtained in reverse order. That is, a final state is at the bottom of the pushdown store and the initial state is on top. P_M writes the state s on the pushdown store and executes the following steps, for $s_0 = 0$ and $I_0 = I$:

1. Among the set of all states s in S_1 and head positions I such that M may in one step move from state s with heads 1 through k in position I to state s_0 with heads 1 through k in position I_0, P_M chooses one such state s' and position I'. (If the set is empty, then P_M stops without accepting the input. Since each of the possible head positions investigated must be obtained by moving a single head either right of left from position I_0, P_M has no difficulty keeping track of its original head position I_0 during this investigation.) P_M then moves its k heads to position I', sets I_0 to I', and sets s_0 to s'. If the new s_0 is the initial state of M and I_0 is the initial position for the heads 1 through k of M, then P_M may choose next to enter Phase II. Otherwise, P_M nondeterministically chooses whether to execute step (1) or step (2) of Phase I.

2. P_M writes the state s_0 on its pushdown store, chooses nondeterministically a state s in S_2, writes s on the pushdown store, and executes step (1) of Phase I with $s_0 = s$.

Phase II. In this phase P_M determines whether the transition sequence which appears in the pushdown store is S_2-consistent. At the beginning of this phase s_0 is set to the initial state of M and I_0 is set to the initial position for heads $k + 1$ through $2k$ of M. P_M places its k heads in position I_0 and executes the following steps:

1. P_M deletes the top two state symbols, say s_1 and s_2, from the pushdown store. If $s_1 \neq s_0$, then P_M halts without accepting the input string. Otherwise, if
\[s_1 = s_0, \text{ then } P_M \text{ sets } s_0 \text{ to } s_2. \] If the pushdown store is empty, then \(P_M \) halts and accepts the input. Otherwise, \(P_M \) executes next step (2) of Phase II.

(2) \(P_M \) chooses nondeterministically a state \(s \) and position \(I \) such that \(M \) may in one step move from state \(s_0 \) with heads \(k + 1 \) through \(2k \) in position \(I_0 \) to state \(s \) and heads \(k + 1 \) through \(2k \) in position \(I \). \(P_M \) sets \(s_0 \) to \(s \) and \(I_0 \) to \(I \), moves its \(k \) heads to position \(I \), and, if \(s_0 \) is in \(S_1 \), then \(P_M \) executes next step (1) of Phase II. Otherwise, if \(s_0 \) is in \(S_2 \), then \(P_M \) re-executes step (2) of Phase II.

It follows that \(P_M \) recognizes those, and only those, input strings \(x \) for which there is an \(S \)-consistent and \(S_2 \)-consistent transition sequence. As indicated, this is equivalent to the statement that \(P_M \) recognizes \(x \) if, and only if, \(M \) accepts \(x \).

It is not known whether \(2DFA(2k) \subseteq 2DPDA(k) \) is true for any value of \(k \geq 1 \). We conjecture that \(2DFA(2) \subseteq 2DPDA(1) \) is false. A “hardest” language \(L \) for the family \(2DFA(2) \) is described later in these remarks which is in \(2DPDA(1) \) if and only if \(2DFA(2) \subseteq 2DPDA(1) \).

It follows from Theorem 2 and our observations on the time bounds for recognizing multihead pda languages that \(2NFA(2k) \) is contained in the class of languages recognized in time \(n^{4k} \) by deterministic multitape Turing machines and time \(0(n^{3k}) \) by random access machines. That is, each language in \(2NFA(k) \) can be recognized in time \(n^{4k/2} \) by a Turing machine and time \(0(n^{3k/2}) \) by a RAM. These are improvements on earlier stated time bounds [15].

The next result gives an upper bound on the number of heads needed by a deterministic two-way pda to simulate a nondeterministic two-way \(k \)-head finite state automaton. It is known that for each \(k \) there is an \(m_k \) such that \(2NPDA(k) \subseteq 2DPDA(m_k) \) [7]. It is also known that \(m_k \) need not be larger than \(12k + 1 \) [23]. The following result yields a smaller bound for the class \(2NFA(k) \).

Theorem 3: For \(k \geq 1 \), \(2NFA(k) \subseteq 2DPDA(2k) \).

Proof. Let \(M \) be a nondeterministic two-way \(k \)-head finite automaton. We construct a deterministic two-way \(2k \)-head pushdown automaton \(P_M \) to recognize those, and only those, strings recognized by \(M \). \(P_M \) operates basically by trying all possible computations of \(M \) on the given input. (The algorithm is similar to the depth first search algorithm for finding paths in a graph given on pages 16-18 of [13]). The auxiliary store of \(P_M \) is used to record the most recent attempted computation of \(M \). \(P_M \) uses \(k \) of its heads to simulate a computation of \(M \) and the other \(k \) heads to count the number of steps of \(M \) s computation simulated. Since a computation by \(M \) may not terminate, it would appear that the extra heads used for a counter are necessary in general. The fact that \(k \) heads are sufficient to detect nondetermination follows from the observation that there are only \(c n^k \) distinct configurations of \(M \) on an input of length \(n \), for some \(c > 0 \). Thus if \(M \) recognizes a word \(x \) then there must be a computation which indicates acceptance of \(x \) and does not repeat a configuration. Finally, it is straightforward to implement with \(k \) heads on an input \(x \) a counter to represent numbers as large

vol. 11, n° 3, 1977.
as $c|_{x^k}$, for any $c \geq 0$. In the following algorithm we shall refer to the number represented by the position of heads $k + 1$ through $2k$ as “the counter.” Let the variable s be set initially to the initial state of M and the variable j be set initially to one. Heads 1 through k of P_M are placed initially on the left endmarker and the counter is set to zero. Let h be the head selector function of M. For each state t of M and input symbol a we shall order the possible transitions of M in state t scanning a with head $h(t)$. Therefore, we may refer to choice i, for $1 \leq i \leq m$, where m is the number of such choices. (If m is zero, then there are no transitions in state t scanning the symbol a.) A choice will be a pair (t', λ) consisting of a next state t' and an indication that head $h(t)$ is moved right λ squares ($\lambda \in \{ -1, 0, 1 \}$).

(1) If M in state s with head $h(s)$ scanning the symbol scanned presently by head $h(s)$ of P_M does not have a j-th choice, then P_M next executes step (2). Otherwise, let (t, λ) be choice j. P_M writes (s, λ, j) on the pushdown store, sets s to t, sets j to one, moves head $h(s)$ to the right λ cells, and adds one to the counter. If the new state s is a final state, then P_M stops and accepts the input. If the state s is not final but the counter is presently at its maximum value, then P_M next executes step (2). Otherwise, P_M executes step (1) again.

(2) If the auxiliary store of P_M is empty, then P_M stops and rejects the input. Otherwise, P_M takes the top triple (s', λ', j') off the store, sets s to s', moves head $h(s')$ to the left λ' cells, sets j to $j' + 1$, decreases the counter by one, and executes step (1). □

For nondeterministic one-way k-head finite state automata we may obtain a better result. That is, the previous algorithm required k additional heads, used as a counter, to detect nondeterminating computations by the nondeterministic k-head automaton. In the special case of one-way k-head finite state automata one can eliminate transitions that leave each head fixed in place; therefore, one can eliminate nonterminating computations. That is, if M is a one-way k-head automaton with s states and M has more than s consecutive transitions which leave every head in the same position, then M has a shorter equivalent computation. Therefore, any such automaton M can be replaced by an equivalent automaton M' with the same number of heads that does not possess transitions which leave every head in the same position. By eliminating the k heads used for a counter in the previous algorithm one obtains the following result.

Corollary 2: For $k \geq 1$, $1NFA(k) \subseteq 2DPDA(k)$.

It follows from our earlier observations on time bounds for multihead pda languages that any language in $1NFA(k)$ can be recognized in time $O(n^k)$ by a RAM. It is unknown whether or not $1NFA(k + 1) \subseteq 2DPDA(k)$ is valid for any value of $k \geq 1$.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
The next result shows that $\text{NSPACE}(\log_2 n, 2^k) \subseteq 2\text{NFA}(k + 3)$ and $\text{DSPACE}(\log_2 n, 2^k) \subseteq 2\text{DFA}(k + 3)$. This improves on earlier results [17, 27]. First we establish a special case (which settles an open question posed by Seiferas [27])

Lemma 2 : $\text{DSPACE}(\log_2 n, 2) \subseteq 2\text{DFA}(4)$

$\text{NSPACE}(\log_2 n, 2) \subseteq 2\text{NFA}(4)$

Proof : Let T be a $[\log_2 n]$ tape bounded Turing machine with two work-tape symbols. We construct a four-head finite state automaton M_T which indirectly simulates T as follows. One of the heads of M_T is used to simulate the movements of the input head of T. Let the other three heads be called heads A, B, and C. Then M_T with heads A and B shall represent the contents of T's worktape as two integers in 2-adic notation. That is, let T have the worktape symbols 1 and 2. If T has the string $a_0a_1 \ldots a_ma_{m+1} \ldots a_{m+p}$ on its worktape, where a_i is either the symbol 1 or 2 ($1 \leq i \leq m+p$) and a_{m+1} is the current symbol scanned by T, then M will represent this worktape configuration by placing head A on square $a_02^m + a_12^{m-1} + \ldots + a_m$ and head B on square $a_{m+1} + a_{m+2} + \ldots + a_{m+p}2^{p-1}$. Head C is used in the process of halving or multiplying by two these head positions in order to represent a new worktape configuration of T and in detecting whether the symbol scanned is 1 or 2. That is, as either head A or head B moves toward the left endmarker head C may, starting at the left endmarker, move two squares to the right for each square head A or head B passes. Thus when head A or head B reaches the left endmarker head C is at a position twice as far to the right as where head A or B started. A similar process may also be used for halving the head positions.

M_T may detect which symbol is scanned by T by halving the position of head B and in the process detecting whether the position was an odd or even number of squares to the right. The position is an odd number of squares to the right if and only if the symbol scanned is 1. M_T may then return head B to its original position by reversing this process.

M_T may represent a transition of T which prints the symbol d_1 over the symbol $d_2(d_1, d_2$ in $\{ 1, 2 \})$ and moves the worktape head to the right by: (1) multiplying by two the position of head A and then moving d_1 more squares to the right and (2) moving head B to the left d_2 squares and then halving the new position of head B. In a similar manner M_T may represent transitions of T which move the worktape head left.

Thus M_T may simulate T with only four heads. M_T will be nondeterministic if and only if T is nondeterministic. □

We can extend Lemma 2 to the general case in many ways. The technique described here is due to Seiferas [28]. It is known that the family of languages
recognized by $[\log_2(n)]$-tape bounded Turing machines with 2^k worktape symbols is identical to the family of languages recognized by $kL \log_2(n)$-tape bounded Turing machines with two worktape symbols. Using this observation we see that k "pages" each of length $[\log_2(n)]$ can be represented by $k + 1$ heads, where two of these heads, as in the proof of Lemma 2, are used to represent the currently scanned page. With the bookkeeping head C and the head used for simulating the input head, as described in the proof of Lemma 2, we have a total of $k + 3$ heads. Therefore, we have established the following result:

Theorem 4: $\text{DSPACE}(\log_2 n, 2^k) \subseteq 2\text{DFA}(k + 3)$
$\text{NSPACE}(\log_2 n, 2^k) \subseteq 2\text{NFA}(k + 3)$

Corollary: For $k \geq 1$, there is an $L \subseteq \{ 1 \}^*$ which is in $2\text{NFA}(k + 4) - 2\text{NFA}(k)$, $(2\text{DFA}(k + 4)-2\text{DFA}(k))$.

Proof: Seiferas has shown the existence of an $L \subseteq \{ 1 \}^*$ which is in $\text{NSPACE}(\log_2 n, 2^{k+1}) \text{NSPACE}(\log_2 n, 2^k)$, $(\text{DSPACE}(\log_2 n, 2^{k+1})-\text{DSPACE}(\log_2 n, 2^k))$ [27]. The result then follows from the relationships $\text{NSPACE}(\log_2 n, 2^{k+1}) \subseteq 2\text{NFA}(k + 4)$, $2\text{NFA}(k) \subseteq \text{NSPACE}(\log_2 n, 2^k)$, and the similar relationships for deterministic classes.

This hierarchical result improves on earlier results in [4, 12, 27]. It is unknown whether $2\text{NFA}(k + 3) - 2\text{NFA}(k)$ or $2\text{DFA}(k + 3) - 2\text{DFA}(k)$ contains a language over a single letter alphabet.

We note in conclusion that each of the families $2\text{DFA}(k)$, $2\text{NFA}(k)$, $2\text{DPDA}(l)$, and $2\text{NPDA}(l)$, for $k \geq 2$ and $l \geq 1$, possess a language L_0 with the property that for any language L in the family there is a homomorphism h such that $L - \{ e \} = h^{-1}(L_0)$. That is, there is a hardest language in each of these families. (A hardest context-free language is described in [14].) That each of these families is closed under the operation of inverse homomorphism is easily verified. Thus if \mathcal{L}_1 and \mathcal{L}_2 are two such families then $\mathcal{L}_1 \subseteq \mathcal{L}_2$ if and only if the language L_0 for the family \mathcal{L}_1 is in \mathcal{L}_2. Furthermore the time and tape complexity of the hardest language L_0 for a class \mathcal{L} is the least upper bound for the complexity of the whole class. (This is true if the complexity bounding function f for the hardest language is *semihomogeneous*. That is, for every $c > 0$ there is a $d > 0$ such $f(cn) \geq df(n)$, for all n.)

Corresponding to each k-head automaton M with input alphabet $\{ 0, 1 \}$ we may associate a unique encoding string e_M over an alphabet not containing the symbols 0 or 1. This encoding function should satisfy the property that (1) the set of all encodings is a regular set and (2) there is an automaton V in the class encoded such that if V is provided with a string representing a state of an automaton M, also in the class, (this string being provided either by the position of one of the heads on a substring of the encoding of M, in the case of a class of multihead finite state automata, or by the initial portion of the contents of the
pushdown store, in the case of a class of multihead pda) and if \(V \) is provided with an input symbol and, in the case of a class of multihead pda, the top pushdown store symbol, then \(V \) is able to determine from an input string \(e_M \) the set of possible next transitions of \(M \). Most row by row encodings of transition tables for automata satisfy these conditions. For any given class, let
\[
L_0 = \{ a_1xa_2x \ldots a_nx \mid n \geq 1 \text{ and } x \text{ is the encoding of an automaton } M \text{ in the given class such that } M \text{ recognizes } a_1a_2 \ldots a_n \}
\]
Let \(L \) be a language in one of the stated classes. If \(M \) is a \(k \)-head automaton that recognizes \(L \), then let \(h \) be the homomorphism defined by \(h(0) = 0e_M \) and \(h(1) = 1e_M \). It follows that for any nonempty string \(x \) over the alphabet \(\{ 0, 1 \} \) that \(h(x) \) is in \(L_0 \) if and only if \(x \) is in \(L \). Furthermore, by the conditions imposed on the encodings, \(L_0 \) is recognized by an automaton in the given class. It is clear that for languages \(L \) in the given class which are not over the alphabet \(\{ 0, 1 \} \) there are languages \(L' \subseteq \{ 0, 1 \}^* \) in the class such that \(L = g^{-1}(L') \). Therefore, the claim has been established. As an illustration of the information obtained from this observation we note that
\[
2\text{DPDA}(k) \neq \text{DLOG} \text{ for any } k. \text{ A different technique has been used to show that } 2\text{DPDA}(1) \neq \text{DLOG} \text{ in [13]. Our observation follows from the known facts that } \text{DLOG} = \bigcup_k 2\text{DFA}(k) \text{ and } 2\text{DFA}(k) \subseteq 2\text{DFA}(k + 2) \text{ for all } k \text{ [17, 19]. That is, DLOG cannot possess a hardest language (in the sense indicated) and, therefore, cannot be identical to any class which does. Whether or not } \text{DLOG} \subseteq 2\text{DPDA}(k) \text{ for some } k \text{ or } 2\text{DPDA} \subseteq \text{DLOG} \text{ is unknown. Galil has shown that } 2\text{DPDA} \subseteq \text{DLOG} \text{ if and only if } \text{P-TIME} = \text{DLOG} \text{ [13].}
\]

Note added in proof: The author has recently shown that
\[
2\text{NPDA}(k) \subseteq 2\text{DPDA}(4k + 1) \text{ which improves on results cited in the paragraph before theorem 3. This improved result and other results relevant to the topics described in this paper are contained in } \text{Separating Tape Bounded Auxiliary Pushdown Automata Classes}, \text{ Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, held in Boulder, Colorado (U.S.A.), May 2-4, 1977.}
\]

REFERENCES