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CAHIERS DE TOPOLOGIE ET Vol L-4 (2009)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

QUASEFEQUATIONS IN LOCALLY PRESENTABLE
CATEGORIES

by Jiri ADAMEK and Michel HEBERT

Dedicated to Francis Borceux on the occasion of his siztieth
birthday

Résumé

Dans la tradition de Hatcher et de Banaschewski-Herrlich,
nous définissons une quasi-équation comme étant une paire pa-
ralléle de morphismes finitaires. Un objet satisfait une quasi-
équation si le foncteur contravariant qui lui correspond égalise la
paire de morphismes qui la constitue. Les sous-catégories d’une
catégorie localement finiment présentable qui peuvent étre pré-
sentées par des quasi-équations sont précisément celles qui sont
fermées sous les produits, les sous-objets et les colimites filtrées.
Nous caractérisons les morphismes de théories correspondants
dans le style de Makkai et Pitts, comme étant précisément les
morphismes quotient forts. Ces résultats peuvent étre vus comme
l’analogue du théoréme classique de Birkhoff pour les catégories
localement finiment présentables. En cours de route, nous démon-
trons ce résultat plutét surprenant que dans les catégories locale-
ment finiment présentables, tout épimorphisme fort finitaire peut
s’écrire comme composé d’un nombre fini d’épimorphismes régu-
liers.

Abstract

Following the tradition of Hatcher and Banaschewski-
Herrlich, we introduce quasi-equations as parallel pairs of fini-
tary morphisms. An object satisfies the quasi-equation iff its
contravariant hom-functor merges the parallel pair. The sub-
categories of a locally finitely presentable category which can
be presented by quasi-equations are precisely those closed under
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products, subobjects and filtered colimits. We characterize the
corresponding theory morphisms in the style of Makkai and Pitts
as precisely the strong quotient morphisms. These results can be
seen as an analogue of the classical Birkhoff Theorem for locally
finitely presentable categories. On the way, we show the rather
surprising fact that in locally finitely presentable categories, ev-
ery finitary strong epimorphism is a composite of finitely many
regular epimorphisms.

1 Introduction

Equations in classical (finitary, one-sorted) General Algebra are pairs of
terms in n variables, that is, pairs of morphisms

u,u':n=31

in a Lawvere algebraic theory 7. An algebra, that is, a functor A: 7
— Set preserving finite products, satisfies the equation iff A(u) =
A(u'). General parallel pairs in T

uwu':n=3k

are nothing else than k-tuples of equations. Analogously, for S-sorted
algebras we can form the Lawvere theories, which are categories whose
objects are finite words s;83...5, over S so that the word is a product of
the one-letter words s;. Again, parallel pairs

u,u': 8189...8, = titg...

are just k-tuples of properly sorted equations.

In the present paper we apply the same idea to locally finitely pre-
sentable categories K and their Gabriel-Ulmer theories 7. Recall that
KC can, up to equivalence, be identified with the category Lex T of func-
tors A: T — Set preserving finite limits. A quasi-equation in K is
then a parallel pair of morphisms of 7, and an object A satisfies the
quasi-equation (u,u’) iff A(u) = A(v'). The quasi-equational subcate-
gories, that is, the full subcategories which can be specified by a set
of quasi-equations, are precisely those which are closed under products,
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subobjects, and filtered colimits in . This might seem surprising at
first sight since in case K is the category of ¥-algebras for some signa-
ture ¥, we obtain precisely the concept of a quasi-variety, not that of a
variety. However, this simply reflects the fact that whereas the Lawvere
theory works with finitely generated free algebras, the Gabriel-Ulmer
theory works with all finitely presentable algebras.

It was first observed by Bernhard Banaschewski and Horst Herrlich
[5] that quasi-varieties can be presented by orthogonality with respect
to finitary regular epimorphisms - and this is, as we demonstrate below,
just a variation on presentation by quasi-equations in the Gabriel-Ulmer
theory. Thus, the above characterization follows easily from [5], Propo-
sition 2. What is now in our approach is that the existence of regular
factorizations is not needed. Considering parallel pairs as a sort of iden-
tity was already investigated by Bill Hatcher [10] in a general setting,.
Actually, since 7°° can be seen as a full subcategory of K, our quasi-
equations are a special case of what Hatcher calls identities, and we
introduce them precisely in this manner.

There is another substantial difference between the case of Lawvere
theories and those of Gabriel-Ulmer: in the former one, every equational
subcategory A of AlgT defines a congruence on 7; more precisely, it
defines a surjective theory morphism

Q:7T—S

(which means a finite products preserving full functor which is the iden-
tity on objects) such that S is an algebraic theory of A and the em-
bedding A — AlgT induces the theory morphism Q). Conversely, every
surjective theory morphism is induced by an equational subcategory of
AlgT (in the sense of the duality of [2]; see [3] for details). In contrast,
quasi-equations in a Gabriel-Ulmer theory 7 do not, in general, define
a congruence on 7. Instead, we obtain a quotient functor Q: T — S
in the sense of Michael Makkai and Andrew Pitts [16]. This means that

(i) every object of S is isomorphic to one in Q[7], and
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(ii) every morphism f: QT3 — QT3 of S has the form

QT ! QT

| _a

QTy

where s is an isomorphism.

We prove that the theory morphisms corresponding to quasi-
equation-al subcategories are precisely the strong quotient functors,
which means that in (ii) above we can always choose s = (Qm)~! for
some strong monomorphism m: 7] — T} in 7. Here we closely follow
the results obtained by Jifi Rosicky and the authors in [12].

Acknowledgement. We are grateful to Enrico Vitale for formu-
lating the problem of characterizing quasi-equational subcategories of
locally finitely presentable categories (personal communication).

2 Quasi-equations in Finitely Accessible
Categories

2.1. Assumption Throughout this section X denotes a finitely acces-
sible category in the sense of [15] or [14]. That is, K has filtered colimits
and a set

’Cfp

representing all finitely presentable objects, and whose closure under
filtered colimits is all of K.

2.2. Conventions Morphisms with finitely presentable domains and
codomains are called finitary. By a finitely presentable morphism is
meant a morphism f: A—s B which is a finitely presentable object of
the slice category A | K, see [11].

2.3. Example A function f: A— B in Set is
(i) finitary iff the sets A and B are finite
and
(ii) finitely presentable iff the sets B\ f[A] and kerf \ A4 are finite.
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2.4. Remark For every finitely presentable object A, the finitely pre-
sentable morphisms with domain A are precisely the finitary ones, see
[11].

2.5. Definition By a quasi-equation in a category K is meant a par-
allel pair of finitary morphisms in K. An object K satisfies the quasi-

equation
uwu:P=3Q

provided that the hom-functor X(—, K) merges that pair. That is,
h-u=~h-4 forall h: Q —K.

A full subcategory A of K is called quasi-equational if there exists a set
of quasi-equations in X satisfied by precisely those objects that lie in A.

2.6. Example Let
K =X-Alg

be the category of algebras of a given signature ¥ (finitary, one-sorted).

(i) Every equation v = v’ (between two terms) can be represented by
a parallel pair in the Gabriel-Ulmer theory

T =K%

In fact, let F,, denote a free Y-algebra on n generators. If v,v’ are
elements of F;,, consider the homomorphisms

'Uo,'Ué):.Fl = Fn

mapping the generator of F; to v and v’ respectively. This quasi-
equation (in the sense of 2.5) is satisfied by precisely those 3-
algebras which satisfy v = v’ in the classical sense.

(ii) More generally, every implication in the classical sense

(=) )A . Al=1v,) = (w=u)
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can be represented by a parallel pair of morphisms in 7. In fact,
all the terms in this implication lie in some F},, and then we have
a finitely presentable algebra

F./~

for the congruence ~ generated by v; ~ v] for i = 1,...,n. The two
elements [w], [w'] of the algebra F;,/~ define two homomorphisms

uwu: Fy 3 F,/~.

The corresponding quasi-equation is satisfied by precisely the -
algebras that satisfy the above implication.

(iii) Conversely, let
u,u': P=3Q
be any quasi-equation in Y-Alg. We can represent it by classical
implications (as observed already by B. Banaschewski and H. Her-
rlich [5]). In fact, for Q we have a congruence on a free algebra F,
generated by finitely many pairs, say (v, v}), ..., (Uk, V;) € Fn X Fp,
such that @ = F,,/~. For every x € P, choose terms w,,w., € F,
with u(z) = [w;] and (v')(z) = [w,]. Now consider all implications
(M =v)AA(k=1v) = (w,=uwl)
where x ranges through the elements of P. A Y-algebra satisfies
these implications iff it satisfies the given quasi-equation (u,u’).

2.7. Example Let
K =Gra

be the category of graphs, that is, sets with a binary relation R.
(i) Antisymmetry
R(z,y) AR(y,z) = (z=y)

gives rise to a quasi-equation: it is given by the obvious pair
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(i) All graphs without loops, with the terminal object added, form
the quasi-equational subcategory given by the formula

R(z,z) = (z=y)

or by the obvious parallel pair

u [ ]
e _ 5
u’ o)

(iii) More generally, every formula of the form
R(zi, xs) Ao A R(ziy, ) = (25 = z50)

in variables z1, ..., z, gives rise to a quasi-equation u,u’: P = @
where the graph of @ has vertices 1, ..., z, and edges x;, —
fort=1,2,...k.

(iv) Conversely, every quasi-equation can be expressed by implications
of the above form. Note that properties such as reflexivity

(x=2) = R(z,z)

do not correspond to any quasi-equation . The fact that this sub-
category is not quasi-equational will be clear from the Corollary
2.17, since the morphism e —> e (9 is a monomorphism in Gra. In
general, universal Horn sentences as above with relation symbols
on the right of the connector “=" do not define quasi-identities.

2.8. Example The smallest quasi-equational subcategory of K consists
of precisely all subterminal objects, i.e., those A’s for which there is at
most one morphism X — A for each object X. In fact, these objects
will satisfy all quasi-equations. Conversely, if A is not subterminal,
we can find a quasi-equation that A does not satisfy: choose distinct
morphisms u, v’ : K = A. The functor category K= is finitely accessible
and we can express (u,u’) as a filtered colimit of finitary parallel pairs
(ui,u;). Then A does not satisfy the quasi-equation (u;,u}) for some ¢
since u # u'.
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2.9. Remark As mentioned in the introduction, equations in General
Algebra are precisely the parallel pairs of morphisms in Lawvere theo-
ries. How does this relate to our concept of quasi-equations ?

By the Gabriel-Ulmer duality (see Section 3 below) every locally
finitely presentable category K has a theory, that is, a small category 7
with finite limits, such that K is equivalent to the category of models:

Lex T = all lex (i.e., finite limit preserving) functors from 7% to Set.

The same is true for finitely accessible categories: just drop the require-
ment of finite limits in 7 and instead of lex functors use flat ones (i.e.,
filtered colimits of representables). Analogously to General Algebra, we
can now consider parallel pairs in 7 as quasi-equations and say that a
model M : T°P—sSet satisfies the quasi-equation (u,u’) iff Mu = Mv/'.

The Gabriel-Ulmer theory 7 of a locally finitely presentable category
K is unique up to equivalence, and it is dual to the above Ky, (considered
as a full subcategory of ). Thus, parallel pairs in Ky, as in Definition
2.5, are just parallel pairs in the theory - with the arrows reverted.
Every object A of A is represented by the model

K(-,A): T —Set for T =K},

and then the definition of satisfaction in 2.5 is precisely Mu = Mu' for
M =K(—,A).

2.10. Remarks

(1) Recall that an object K is orthogonal to a morphism c if K£(—, K)
turns c into an isomorphism. If K has coequalizers, then satisfac-
tion of a quasi-equation u,u': P = @ is equivalent to orthogonal-
ity to the coequalizer ¢c: Q@ — R of u and u'.

(2) Observe that the coequalizer of a finitary pair is a finitary regular
epimorphism. The converse is less obvious, but is true in our
context, as was shown in [6] (Theorem 1.3). Actually, their proof
can be used to show more:
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2.11. Proposition If K has coequalizers, then the finitely presentable
reqular epimorphisms are precisely the coequalizers of pairs of mor-
phisms with finitely presentable domain. In particular, finitary regu-
lar epimorphisms are precisely the coequalizers of pairs of finitary mor-
phisms.

Proof. The second statement follows from the first by 2.4.

That the coequalizer of a pair of morphisms with finitely presentable
domain is necessarily a finitely presentable morphism is a straightfor-
ward verification.

The proof of the converse follows the line of the proof for the finitary
case in [6]. Given a finitely presentable morphism ¢: X — Y which is
a coequalizer of f,g: A = X, consider a colimit (a;: A; — A);es of a
filtered diagram, with the A;’s finitely presentable. Let f; = fa; and
g; = ga;, and let ¢;: X —Y; be the coequalizer of f;, g; for each i. This
induces, in the slice category X | K, morphisms r;: ¢; —c¢:

N AL
azl gi / irg
f Y
A:g;X P Y

as well as a filtered diagram (r;;: ¢; —> ¢;)i<;. It is straightforward to
show that (7;);cr is a colimit of (r4);<; in X | K. But the fact that c
is finitely presentable implies that there exist ¢ € I and s: ¢—¢; such
that r; - s = 1.. Since c is epi, this implies that 7; is an isomorphism.
Consequently, c is a coequalizer of f; and g;, as required. O

2.12. Corollary If K has coequalizers, then its quasi-equational subcat-
egories are precisely the orthogonality classes H* of sets H of finitary
reqular epimorphisms. Here H' denotes the full subcategory of all ob-
jects orthogonal to members of H. O

2.13. Theorem If K has coequalizers and is cowellpowered, then a full
subcategory of K is quasi-equational iff it is closed under filtered colimits
and monocones.

Remark. That a subcategory is closed under monocones means that
for every collectively monic cone with all codomains in the subcategory,
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the domain also lies there. The theorem follows, whenever K has regular
factorizations of sources, from Proposition 2 in [5].

Proof. Tt is clear that every quasi-equational subcategory is closed under
monocones and filtered colimits. Conversely, let A be closed under
monocones and filtered colimits in .

(1) A is a reflective subcategory of K. In order to construct a reflec-
tion of an object K we define a transfinite chain k;;: K; — K; (i <
j € Ord) as follows:

First step: Ky = K.

Isolated step: if K; € A then K;; = K; and k; ;41 = id. Else choose
a parallel pair u;,u;: X; = K; with u; # u] merged by all morphisms
in K; | A (observing that the cone of all these morphisms cannot be a
monocone), and let k; ;11: K; — K;,1 be the coequalizer of u; and u/.

Limit step: form the colimit of the previously defined chain.

This chain is clearly formed by epimorphisms, and since K is cow-
ellpowered, there exists ¢ such that k;,;; is an isomorphism (actually
the identity). This implies K; € A. We claim that kp;: K — K; is a
reflection of K in A. In fact, given a morphism f: K— A with A € A,
we get a unique cocone f;: K;— A (j € Ord) with fo = f: the limit
steps are clear, and the isolated steps follow from f; - u; = f; - u;. In
particular, f = f; - ko .

(2) The rest of the proof is completely analogous to the proof of
Proposition 2 in [5]. O

2.14. Open Problem Does 2.13 generalize to the locally finitely mul-
tipresentable categories of Y. Diers [7]?

2.15. Example of a finitely accessible category and its full subcategory
which is closed under filtered colimits and monocones, but is not quasi-
equational.
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Let K be the category given by the graph

bo

A=z B,

ul
ag ai a2
vo || vg v1 || v} v2 || vh

AO AO Al Al A2 A2

and the identities
/ !
Cn = Cn+1 - bn, Gn Uy =a,-v,, and b, v, =b, - v,

for all n € N. This category is finitely accessible with K¢, = K — {C}
since the only non-trivial filtered colimit is C = Colimen(b,). The full
subcategory A on the objects

{A} U {An}neN U {An}neN

is closed under filtered colimits (trivially) and under monocones: in
fact, for B, the cone (B, — Ai)iZn of all objects in B,, | A is not a
monocone, due to v, # v,; and for C, consider ¢y - u # ¢ - v

However, A is not quasi-equational: if a quasi-equation in Ky, is
satisfied by all objects of A, then it cannot factorize through (u,u’),
from which it follows that C also satisfies that quasi-equation (from
by, - Un = by, - v, we have ¢, - v, = ¢, - V).

2.16. Example The category Pos of posets has precisely three quasi-
equational subcategories: the smallest one (formed by the posets with at
most one element), itself, and the subcategory Set (represented by the
discrete orderings). In fact, observe that if K is not discretely ordered,
then for every finite poset P the cone Pos(P, K) is a monocone. Thus,
whenever a quasi-equational class contains a non-discrete poset, it is all
of Pos.

2.17. Corollary Quasi-equational subcategories of locally finitely pre-
sentable categories are precisely those closed under
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(i) products,
(i) subobjects, and
(i) filtered colimits.

Proof. Since a locally finitely presentable category is cocomplete and
cowellpowered, we only need to verify that (i) and (ii) imply closedness
under monocones. Let (a;: B— A;);c; be a monocone with the A;’s
in A. Then there exists a (small) set I’ C I such that (a;: B— A;)icr
is a monocone. In fact, because the finitely presentable objects form
a generator, one sees easily that (a;: B—> A;)icy with J C I, is a
monocone iff for all f,g: B’ =3 B with B’ € Ky, we have that a;f = a;g
for all ¢ € J implies f = g. Then consider all parallel pairs f;, g;: B; =
B, t e T, with B, € Ky, such that there exists i = i(t) with a; f; # a;g;.
Choose one such i(t) for each pair ¢, and take I' = {i(¢) | t € T}.

But then < a; >ie;r: B— [],cp Ai is a monomorphism, and hence
Be A O

2.18. Remark This last corollary and Proposition 2.11 imply that in
locally finitely presentable categories there is no difference between or-
thogonality classes with respect to

(a) finitary strong epimorphisms,
(b) finitary regular epimorphisms, and
(c) coequalizers of finitary parallel pairs.

In fact, from (a), the closure properties (i)-(iii) above easily follow, from
which we derive (c). Here is an explanation of this phenomenon, which
seems to be of independent interest:

2.19. Proposition In a locally finitely presentable category every
finitely presentable strong epimorphism is a composite of finitely many
finitely presentable reqular epimorphisms..

Proof. The class £ of all composites of finitely many finitely presentable
regular epimorphisms in a locally finitely presentable category K is
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closed under composition and under pushouts (see [11]). Given a finitely
presentable strong epimorphism f: A— B, we prove f € £.

Let D be the full subcategory of A | K with objects all the mor-
phisms e;: A— X; (i € I) in £ through which f factors: f = f; - ¢;
for some (necessarily unique) f;: X; — B. Note that D is small, since
A | K is locally finitely presentable. As a diagram in K, D is filtered:

(a) Given objects X; and X, of D, there is a cospan in D. In fact,
form the pushout:

€l

A—2 X,
fi' /
}
€; B hl
fi 1 k&
Ve AN
s N
X; - Y

Then h,h’ € €. Since fie; = f = fiey, there exists k: Y — B
with f; = kh and f; = kh'. Consequently, he; is a member of £
through which f factorizes: f = khe;. Then there exists 7 € I
with e; = he; and X; =Y, and we have the connecting morphisms

h: X,—>X] and h': Xil —>X]
of D.

(b) There is no parallel pair of (distinct) connecting morphisms h, k:
X; = Xy in D, as those necessarily satisfy he; = ey = ke;, hence
h=k.

Moreover, the morphisms f;: X; — B (i € I) form a colimit of D.
In fact, consider the colimit (g;: X; — Z);cr of D. The cocone of the
fi’s is compatible with D: from he; = e;, it follows that f;h = f;, since
e; is epi. The factorizing morphism m: Z — B with mg; = f; (i € I)
is a monomorphism: given

mu; = mug for u,us: Y 3 Z,

we prove u; = ug; without loss of generality, we may assume that Y is
finitely presentable (since Ky, is a generator). Since Z = ColimX; is a
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filtered colimit, the pair u;, us factorizes through the colimit morphism
g; for some ¢ € I:

From Proposition 2.11, the coequalizer ¢ of u},u5 is a finitely pre-
sentable regular epimorphism, therefore,

ce; € E.
From
f‘.ul—m. .. l_m'u _m. —m. .. I—f‘-,
it U = gi* U = 1= Ug = gi " Uy = [J; - Uy

we conclude that f; factorizes through c, thus, f factorizes through ce;.
This implies that
ce; = e; for some j € I.

We get, from g; = gjc, that

as requested.
Choose any i € I and observe that since m is a monomorphism and
f is a strong epimorphism with

f=fires=m-(g;-e),
m is an isomorphism. This proves
B = COlimiGIXi

as claimed.
Now, seeing D = (e;—>e;)r as a diagram in A | K, it is also filtered,
and it is easily seen that (f;: e;— f)s is its colimit. Since f is finitely
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presentable, the morphism id;: f — Colim;ce; factorizes through the
colimit morphism f; for some ¢ € I. That is, there exists

r: f—>¢; with fir =idy.

In particular, rf = e;, so r is epi. But also, fir = idg, so r is a split
mono, hence an isomorphism. Therefore, f = r~!e; belongs to &£, since
e; does. O

2.20. Corollary In a locally finitely presentable category, every fini-
tary strong epimorphism is a composite of finitely many finitary reqular
epimorphisms.

In fact, this follows from Proposition 2.19 and Remark 2.4.
2.21. Remark

(i) John Isbell proved in [13] that in a suitably complete category,
every strong epimorphism is a chain-composite of regular epimor-
phisms. Later, John MacDonald and Arthur Stone [17] demon-
strated that the minimum length of this chain can be an arbitrary
cardinal. Thus, the main message of Proposition 2.19 is that this
cardinal is finite in case of finitary (or even finitely presentable)
strong epimorphisms in locally finitely presentable categories.

(ii) Note that if a composite of finitely many regular epimorphisms is
finitary, this does not imply that each one is; however the proposi-
tion says that there must be a finite path for the composite, made
of finitary regular epimorphisms.

2.22. Corollary For a full subcategory A of a locally finitely presentable
category the following conditions are equivalent:

(i) A is quasi-equational
(i1) A is strongly epireflective and closed under filtered colimits
(i1i) A is closed under products, subobjects and filtered colimits
(iv) A is the orthogonality class with respect to a set of finitary regular

epimorphisms
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(v) A is the orthogonality class with respect to a set of finitary strong
epimorphisms. U

2.23. Remark Following W. Hatcher [10], call identity a parallel pair
of (arbitrary) morphisms, and quasiprimitive a full subcategory A of K
defined by any class of identities: i.e., there exists a family E of identities
such that the objects of A are precisely the objects of K which satisfy
(in the sense of Definition 2.5) all identities in E. In order to compare
with Corollary 2.22, we mention:

For a full subcategory A of a locally finitely presentable category the
following conditions are equivalent:

(i) A is quasiprimitive
(i1) A is strongly epireflective
(111) A is closed under products and subobjects

(v) A is the orthogonality class with respect to a class of finitely pre-
sentable regular epimorphisms

(v) A is the orthogonality class with respect to a class of finitely pre-
sentable strong epimorphisms

Moreover, “finitely presentable” can be left out in (iv) and (v).

In fact, the possibility of deleting "finitely presentable" is clear from
the fact that every strong epimorphism is a filtered colimit of finitely
presentable strong epimorphisms (proved as Corollary 2.10(1) of [1]).
See [10] for the equivalence of (i)’ and (iii)’. The rest follows easily.

3 Strong Quotient Functors

In the present section we give the corresponding characterization of
quasi-equations on the level of theories.

3.1. Assumption Throughout this section X denotes a locally finitely
presentable category.
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3.2. Remark Recall from [8] the Gabriel-Ulmer duality between the
2-category
LFP

of locally finitely presentable categories with

1-cells: right-adjoints preserving filtered colimits, and

2-cells: natural transformations,

and the 2-category
LEX

of (Gabriel-Ulmer) theories, that is, small categories with finite limits,
with

1-cells: lex-functors, and
2-cells: natural transformations.
We have a biequivalence
Lex: LEX” —LFP

assigning to every theory 7 the category Lex T of all lex functors from
T to Set. To every 1-cell Q: 7 — S it assigns the functor

Lex@Q: LexS—Lex7, H— H-Q.
In the opposite direction the biequivalence
GU: LFP — LEX*

assigns to every locally finitely presentable category K its Gabriel-Ulmer
theory GU(K) = K%

3.3. Example Every quasi-equational subcategory A of the locally
finitely presentable category K = Lex T is strongly epireflective and
closed under filtered colimits in K (see 2.22). Consequently, A is locally
finitely presentable by 1.46 in [4] and the embedding A4 — K is a mor-
phism of LFP, and as such has, up to natural isomorphism, the form
Lex Q) for a lex functor

Q: GU(K) — GU(A).
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3.4. Convention We call @: GU(K) — GU(A) the theory mor-
phism induced by the quasi-equational subcategory A. It is determined

uniquely up to equivalence in the sense that given equivalence functors
E:T—
GU(K) and E': GU(A) — S, then also the composite

T —E-GU(K) -2~ GU(A) 2~
is induced by A (and conversely, every induced theory morphism is of

the form E' - Q - E).

3.5. Remarks As mentioned in the Introduction, in case of Lawvere
algebraic theories, the theory morphisms

Q: L(K) — L(A)

corresponding to equational subcategories (varieties) A are precisely the
surjective functors which are the identity on objects. This does not work
for Gabriel-Ulmer theories:

3.6. Example Consider the trivial signature X of two nullary symbols
u,u’ and let A be the quasi-equational class of all algebras A with
ug = u/y. Here, GU(.A) is the dual of the category of finite pointed sets,
and GU(K) is the dual of the category of finite bipointed sets. The
induced functor ) just merges the two distinguished points to one.

Observe that @ is not surjective on hom-sets: if 1 denotes the ter-
minal object of GU(K) and 2 the initial one, then id: Q(1)—Q(2) has
no preimage in GU(K).

3.7. Definition A lex functor Q: 7 — S is called a strong quotient
provided that

(i) every object of S is isomorphic to QT for an object T of T,

and
(ii) every morphism f: @T; — QT3 of S has the form
QL —— QT
(Qm)'ll
QTy

Qg

-290 -



ADAMEK & HEBERT - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES

for some strong monomorphism m: T] —T; and some morphism
g: T —Tyof T.

3.8. Remark This definition is just a variation on the concept of quo-
tient functor introduced by M. Makkai [16], see Introduction.

3.9. Theorem The theory morphisms induced by quasi-equational sub-
categories are precisely the strong quotient functors.

3.10. Remark The proof of the theorem will be a variation of the
analogous result concerning orthogonality in [12]. Let us recall this
result first:

(1) Given a set H of finitary morphisms in K, the full subcategory
A = H* is called an w-orthogonality class. It is locally finitely pre-
sentable and the theory morphisms induced by the embeddings A — K
of w-orthogonality classes are precisely the quotient functors Q: GU(K)
—S.

(2) The following connection to the categories of fractions of Gabriel
and Zisman [9] was made explicit:

Recall that a set H of morphisms in a category K is said to admit a
left calculus of fractions provided that

(i) H contains all isomorphisms and is closed under composition,

(ii) for every span - & .2 . with h € M there exists a commutative

square
N\
vy
with h € H,
and

(iii) for every parallel pair equalized by a member of H there exists a
member of H coequalizing this pair.
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Recall further that given a set H of morphisms in a category C, the
category of fractions of H is a category C[H™!] together with a functor

Qn: C—C[H ]

which takes the members of H to isomorphisms, and is universal for this
property: every functor C — C’ taking members of H to isomorphisms
factors uniquely through Q.
The connection to w-orthogonality classes established in [12] is this:
Let H C mor Ky, admit a calculus of left fractions in K¢,. Then

Qn: Kpp— ’Cfp[H_l]

is the dual of the theory morphism induced by the embedding of the
w-orthogonality class H+ — K.

Proof of Theorem 3.9

(I) We first prove that every strong quotient Q: GU(K) — S is
induced by a quasi-equational subcategory of K (with theory S).
Let then
Q:GUIK)—S

be a strong quotient. Due to [12], for the category A = Lex S, the
functor Lex @: A— K is the embedding of the w-orthogonality class
A. It is easy to verify that the set

H ={h €Ky, | Q(h) is an isomorphism}
admits a left calculus of fractions in Ky, and that it fulfills
A=H"' and S = K;[H7Y.

If Hy denotes the set of all strong epimorphisms (of K) in H, then the
fact that @ is a strong quotient implies that every morphism h: QT; —
QT of S has the form h = Qg - (Qm)~! for m € Hy (in S, thus in Ky,).
Hence every morphism in KCg,[H '] is actually a morphism in K,[Hg '],
so that

’Cfp[Hal] = ’Cfp[Hﬁl]-
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By (2) in Remark 3.8, we have
A=Hy,

and therefore A is the orthogonality class of strong epimorphisms. It
follows from Corollary 2.22 that A is a quasi-equational subcategory.

(IT) We now show that for every quasi-equational subcategory A —
K, the induced theory morphism Q: GU(K) — GU(A) is a strong
quotient.

Let A be a quasi-equational subcategory of . By Remark 2.10, we
have a set H of finitary regular epimorphisms in X with

A=H"

The closure H of H under isomorphism, composition and pushout in
K¢p is a set of finitary strong epimorphisms with

A=H"

Moreover, H clearly admits a left calculus of fractions in K;,. By (1)
in Remark 3.10 the induced theory morphism

Q: GU(K) — GU(A)

is a quotient functor. More detailed: the following was shown in the
last part of the proof of V.2 in [12]: (i) Let

R:K—A

be a reflector of A with reflection morphisms nx: K — RK chosen
so that Rng = idrk for all K € K. We have a domain-codomain

restriction

and we can assume Ry = Q°. (ii) Given a morphism

f: RoL— RoL (L,L € K;,)

-293 -



ADAMEK & HEBERT - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES

there exist morphisms g: L—>Cj, h: L—C}, in H and ¢;: C,—> RoL
(Ch € Kyp) such that f = R(cy - g) and ¢y, - h = ng. This last equation
yields Rcy - Rh = idpg,;, thus, Rh = Ryh is invertible and

f = (Roh)™" - (Rog).

This proves that @ = R® is a strong quotient: for every morphism
f: QL—QL we have f = Qg-(Qh)~! and h is a strong monomorphism
in GU(K) = K%,. O

3.11. Remark Theorem 3.9 characterizes theory morphisms induced
by strongly epireflective subcategories closed under filtered colimits (see
2.22). Let us mention a related result of M. Makkai and A. Pitts [16]
characterizing theory morphisms induced by all full reflective subcate-
gories of K closed under filtered colimits. These are precisely the lex
functors @: S — T such that

(i) every object of S is isomorphic to QT for an object T of 7T,

and

(ii) every morphism f: QT; — QT of S has the form

QT — L - Qm,

| &

QT

for some morphism g: 7] — T5 of 7 and some morphism
S QT] —>
QT having a splitting in S:

r-s= idQTl

with Qg = f-r.

3.12. Conclusions For locally finitely presentable categories the con-
cept of equation which naturally corresponds to the classical equations
of General Algebra is that of a parallel pair of morphisms in the Gabriel-
Ulmer theory. This was studied by W. Hatcher [10] and B.Banascheski
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and H.Herrlich [5] more than 30 years ago. (In the latter work the more
general case of locally A-presentable categories was considered, where
the equations are parallel pairs of A-presentable morphisms.) We call
such parallel pairs quasi-equations.

In our paper we derived from the above earlier work that the quasi-
equational subcategories of a locally finitely presentable category are
precisely those closed under products, subobjects, and filtered colim-
its. We just used slightly less restrictive assumptions. And we charac-
terized the theory morphisms between the Gabriel-Ulmer theories that
precisely correspond to the quasi-equational classes. A generalization to
locally A-presentable categories is straightforward: the quasi-equational
classes are those full subcategories that are closed under products, sub-
objects, and A-filtered colimits. The concept of a quotient functor of
M.Makkai and A. Pitts in [16] is also clearly definable in this infini-
tary setting; again, the theory morphisms corresponding to the quasi-
equational classes are precisely the strong quotients. The proof is com-
pletely analogous to the proof of Theorem 3.9, one just works with the
theory given by the dual of the category of all A-presentable objects.

References

[1] J. Adamek, M. Hébert and L. Sousa, The orthogonal subcategory
problem and the small object argument, Appl. Categ. Struct. 17
(2009), 211-246.

[2] J. Adamek, W. Lawvere and J. Rosicky, On the duality between
varieties and algebraic theories, Alg. Universalis 49 (2003), 35-49.

[3] J. Adamek, J. Rosicky and E. Vitale, Algebraic theories: a
categorical introduction to general algebra, manuscript (2008),
www.iti.cs.tu-bs.de/~ adamek/book.pdf.

[4] J. Adamek and J. Rosicky, Locally presentable and accessible cate-
gories, Cambridge University Press, 1994.

[5] B. Banaschewski and H. Herrlich, Subcategories defined by impli-
cations, Houston J. Math 2 (1976), 149-171.

-295 -


http://www.iti.cs.tu-bs.de/~

ADAMEK & HEBERT - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES

[6] F. Borceux and J. Rosicky, On von Newmann varieties, Theory
Appl. Categ. 13 (2004), 5-26.

[7] Y. Diers, Catégories localement multiprésentables, Arch. Math. 34
(1980), 344-386.

[8] P. Gabriel and F. Ulmer, Local Prisentierbare Kategorien, Lect.
Notes in Math. 221, Springer-Verlag, Berlin 1971.

[9] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy
Theory, Springer-Verlag, Berlin 1967.

[10] W. Hatcher, Les identités dans les categories, C.R. Acad. Sc. Paris
Série A t.275 (1972), 495-496.

[11] M. Hébert, K-purity and orthogonality, Theory Appl. Categ. 12
(2004), 355-371.

[12] M. Hébert, J. Adamek and J. Rosicky, More on orthogonality in
locally presentable categories, Cahiers Topol. Géom. Differ. Cat.
62 (2001), 51-80.

[13] J. Isbell, Structure of categories, Bull. AMS 72 (1966), 619-655.

[14] C. Lair, Catégories modelables et catégories esquissables, Dia-
grammes 6 (1981).

[15] M. Makkai and R. Paré, Accessible categories: The foundation of
categorical model theory, Cont. Math. 104, Amer. Math. Soc., Prov-
idence 1989.

[16] M. Makkai and A. Pitts, Some remarks on locally finitely pre-
sentable categories, Trans. Amer. Math. Soc. 299 (1987), 473-496.

[17] J. MacDonald and A. Stone, The tower and regular decomposition,
Cahiers Topol. Géom. Diff. 23 (1982), 197-213.

Jiti Adamek, Institute of Theoretical Computer Science, Technical

University of Braunschweig, Braunschweig, Germany
E-mail: adamek@iti.cs.tu-bs.de

-296 -


mailto:adamek@iti.cs.tu-bs.de

ADAMEK & HEBERT - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES

Michel Hébert, Mathematics Department, The American Univer-
sity in Cairo, Cairo, Egypt
Email: mhebert@aucegypt.edu

-297 -



