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CAHIERS DE TOPOLOGIE ET Volume XL VIII-3 (2007) 
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES 

LAX KAN EXTENSIONS FOR DOUBLE CATEGORIES * 
(ON WEAK DOUBLE CATEGORIES, PART IV) 

by Mario GRANDIS and Robert PARE 

Résumé. Les extensions de Kan à droite pour les catégories doubles 
(faibles) généralisent les limites doubles et d'autres constructions, appelées 
'vertical companion' et 'vertical adjoint', que nous avons étudiées dans des 
articles précédents. Nous prouvons ici que ces cas particuliers sont 
suffisants pour construire toutes les extensions de Kan à droite ponctuelles, 
le long de foncteurs lax doubles satisfaisant une condition 'de Conduché'. 
Les catégories doubles 'basées sur les profoncteurs' sont complètes, dans le 
sens qu'elles admettent toutes ces constructions, tandis que la catégorie 
double des carrés commutatifs d'une catégorie complète ne l'est pas, en 
général. 

Introduction 

This is a sequel to three papers on the gênerai theory of weak (or pseudo) double 
catégories, 'Limits in double catégories' [GP1], 'Adjoint for double catégories' 
[GP2], and 'Kan extensions in double catégories' [GP3], which will be referred to as 
Part I, II and III, respectively. 

In Part I, it vvas proved that, in a pseudo double category A, ail (small) double 
limits can be constructed from (small) products, equalisers and tabulators, the latter 
being the double limit of a vertical arrow. Part II deals vvith the natural notion of 
adjunction for weak double catégories, a colaxllax adjunction G —• R, where G is 
a colax double functor, while R is lax; this is also viewed as an internai Kan 
extension in the strict double category Obi of weak double catégories, lax double 
functors (as horizontal arrows), colax double functors (as vertical arrows) and 
suitable cells - as recalled hère, in 1.2. 

Finally, Part III introduces internai Kan extensions, in a weak double category D, 
and begins to consider Kan extensions for weak double catégories, choosing D to 
be a double category of weak double catégories: namely, the 'settings' Dbl, Dblu, 

(*) Work partially supported by MIUR, INDAM (Italy) and NSERC (Canada). 
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LxDblu listed in its Section 6. 

The first case yields colax right Kan extensions along lax double functors. 
Applying a gênerai resuit of Part III (Thm. 2.4) which relates absolute Kan 
extensions in a double category with orthogonal adjunctions therein, we hâve shown 
that absolute colax right Kan extensions of the identity along lax double functors 
amount to the colax/lax adjunctions of Part II, mentioned above. 

The second setting is a restriction of Dbl to the double subcategory Dblu where 
the vertical arrows are unitary colax double functors. It yields unitary colax right 
Kan extensions along lax double functors; the interest of the restriction was shown 
by some examples, in Section 7 of Part III. 

Hère we focus on the third setting, unitary lax right Kan extensions along lax 
double functors, based on another double category of double catégories, LxDblu, 
where ail arrows are lax double functors, but the vertical ones are required to be 
unitary. This notion goes well with limits and completeness; most of the présent 
paper is devoted to studying pointwise extensions ofthis kind. 

Explicitly, the unitary lax right Kan extension of a lax double functor S: I —• A 
along a lax double functor R: I —• J (2.1) 

I > J = J 

d) Il V iG \- îG' 
i / 

i 

is a unitary lax double functor G equipped with a horizontal transformation x: 
GR —• S such that any similar pair (G', x') factors through x, by a unique 
horizontal transformation x: G' —• G. 

After a first section on the diagrammatic properties of comma double catégories, 
Section 2 begins the study of pointwise extensions of this type. The Réduction 
Theorem 2.3 shows that the pointwise property needs only to be checked on the 
three vertical ordinals 1, 2, 3 (2.2): the singleton, the vertical arrow and the 
vertical composite; furthermore, the latter can also be omitted, in some important 
cases (Thm. 2.4). 

Then, Sections 3 and 4 show that pointwise unitary lax right Kan extensions in a 
pseudo double category A (the codomain of the extension) extend lax functorial 
double limits, orthogonal companions and orthogonal adjoints in A (defined in the 
previous parts and recalled in 3.1, 4.1). Conversely, our main resuit (Theorem 5.2), 
in the last section, proves that ail pointwise unitary lax right Kan extensions in A, 
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along any small lax double functor R which satisfies a suitable Conduché 
condition, can be constructed from thèse elementary cases. It would be interesting to 
prove a similar resuit for the colax case. 

We say that the pseudo double category A is complète (5.3) when ail the above 
pointwise extensions exist; or, equivalently, when A has lax functorial limits, vertical 
companions and vertical adjoints. This is the case for ail of our profunctor-based 
examples of Part I, related to the pseudo double category Cat of small catégories, 
functors and profunctors (see 1.1). Finite completeness is a first-order property 
(5.3). On the other hand, a double category QA of quintets on a 2-complete 2-
category A has ail double limits and vertical companions, but generally lacks 
vertical adjoints. Thus, QCat is not complète: the important, natural double 
structure of catégories is Cat. 

We end with an example showing the rôle of the Conduché condition (5.4). 

Double catégories where introduced by C. Ehresmann [El, E2]. Other 
contributions on double catégories, weak or strict, are referred to in the previous 
Parts. Many more récent références can be found in the paper [DPP]. 

Size aspects (for double catégories of double catégories, for instance) can be 
easily settled working with suitable universes. A référence 1.2 or 1.2.3, relates to Part 
I, namely its Section 2 or Subsection 2.3. Similarly for Parts II and III. 

1. Diagrammatic lemmas for double commas 

We show that double commas FUR, constructed in Part II, are comma objects in 
Dbl, with respect to a gênerai définition by universal properties (III.3.2). We end with 
some diagrammatic lemmas for them. 

1.1. Terminology. For double catégories, we use the same terminology and 
notation as in the previous Parts. 

The composite of two horizontal arrows f: A —»• A', g: A' —• A" is written gf, 
while for vertical arrows u: A -* B, v: B -** C we write u0v or vu , orjust vu 
(note the switch). The boundary of a double cell a, consisting of two horizontal 
arrows and two vertical ones, as in the left diagram 
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A • A A = A 

( 1 ) u | a | v u | a iv 

B • B* B = B 
g 

f 
is displayed as a: (u v) or a: u -> v; it is a spécial cell when the horizontal 

arrows are identities (as at the right). The horizontal and vertical compositions of 

cells are written as (a I p) and (^-); or also y\y and y®® The symbols 1A, 1U 

(resp. \'A, 1J) dénote horizontal (resp. vertical) identities. 

We generally work with pseudo double catégories (1.7.1), also called weak 
double catégories, where the horizontal structure behaves categorically, while the 
composition of vertical arrows is associative up to comparison cells (u®v)®w —* 
u®(v®w); thèse are spécial isocells - horizontally invertible. But we always assume 
that vertical identities behave strictly, a useful simplification, easy to obtain. 

The expression 'profunctor-based examples' will refer to the following pseudo 
double catégories, treated in Part I: Cat (formed of catégories, functors and 
profunctors, 1.3.1), Set (sets, mappings and spans, 1.3.2), Pos (preordered sets, 
monotone mappings and order ideals, 1.3.3), Mtr (generalised metric spaces, weak 
contractions and metric profunctors, 1.3.3), Rel (sets, mappings and relations, 1.3.4), 
Rng (unitary rings, homomorphisms and bimodules, 1.5.3). In Cat, a profunctor 
u: A -++ B is defined as a functor u: AopxB —• Set. 

A 2-category A has an associated (Ehresmann's) double category of quintets 
QA, where a double cell ® (u v) is defined as a 2-cell ®: vf —• gu of A (see 
1.1.3). On the other hand, a weak double category A contains a bicategory VA of 
vertical arrows and spécial cells, as well as (because of unitarity) a 2-category HA 
of horizontal arrows and 'vertically spécial' cells (1.1.9). 

Now, a lax double functor R: A —• X between pseudo double catégories (II.2.1 ) 
préserves the horizontal structure in the strict sensé, and the vertical one up to laxity 
comparisons, which are spécial cells (the identity and composition comparison) 

(2) R[A]: 1£A — R(l£): RA — RA, R[u, v]: Ru®Rv -* R(u®v): RA — RC, 

for A and u®v: A -++ B -* C in A; ail this has to satisfy naturality and cohérence 
axioms. (To remember the direction of thèse cells, one can think of a vertical monad 
in A as a lax double functor 1 —• A, defined on the singleton double category.) 

This lax R is unitary if, for every A in A, the spécial cell R[A]: 1£A —• R1A 
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is an identity; then, by cohérence, also the following cells are (for u: B -*+ A and v: 
A — C) 

(3) R[u, i ; ] : Ru®Ri; — Ru, R[l^,v]: Ri;®Rv-> Rv. 

As a conséquence, which will be relevant hère, a unitary lax double functor 
defined on a weak double category where ail vertical compositions are trivial (i.e., ail 
consécutive pairs of vertical arrows contain a vertical identity) is necessarily strict. 

By horizontal duality, a colax double functor F: A -+ X has comparison cells in 
the opposite direction 

(4) [FA]: F(i ; ) — lpA, F[u, v]: F(u®v) — Fu®Fv. 

A pseudo (resp. strict) double functor is a lax one, whose comparison cells are 
horizontally invertible (resp. identities); or, equivalently, a colax one satisfying the 
same condition. A pseudo double functor can always be made unitary. 

A lax or colax double functor I —• A is said to be small if I is. 

1.2. A double category of double catégories. Lax and colax double functors do 
not compose well. But they can be organised in a strict double category Obi, 
introduced in II.2.2 and also recalled in III. 1.4. Hère, we will briefly sketch its 
définition. 

Its objects are pseudo double catégories A, B,...; its horizontal arrows are the lax 
double functors R, S... between them; its vertical arrows are colax double functors 
F, G... (II.2.1). A cell a, as in the left diagram below, is - loosely speaking - a 
'horizontal transformation' a: GR - • SF (as stressed by the arrow we are placing 
in the square) 

R aA 
A > B GRA > SFA 

(1) Fj y ïG GRU I «u i S F u 

C • D GRA' > SFA' 
S aA1 

More precisely, since thèse composites GR, SF are neither lax nor colax (just 
morphisms of double graphs, respecting the horizontal structure), the cell a 
consists of: 

- the lax double functors R, S; the colax double functors F, G; 

- maps aA: GR(A) — SF(A) and cells au in D (for A and u: A -* A' in A), 
as in the right diagram above, satisfying two naturality conditions (cO), (cl) and two 
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cohérence conditions (c2), (c3) based on the comparison cells of the four 'functors' 
(see Part II or III). 

We dénote by Dblu the cell-wise full double subcategory of Dbl where the 
vertical arrows are unitary colax double functors, while the horizontal ones are 
gênerai. Similarly, Dblp has unitary pseudo double functors as vertical arrows. 

1.3. Double commas. We recall now another main tool inherited from Part II, 
where one can find the (non obvious) proof of the cohérence properties (in II.2.5). 

A colax double functor F and a lax double functor R with the same codomain 
hâve a comma pseudo double category FUR, forming a cell œ in Dbl 

FUR 

(i) QJ < y i F 

whose universal properties will be examined below, in 1.5; the projections P and Q 
are strict double functors. 

First, an object of FUR is a triple (A, X; c: FA —• RX). Second, a horizontal 
map (a, x): (A,X;c) —*• (A', X'; c') cornes from a commutative square of C, as in 
the left diagram below 

(2) 

FA 

FA' 

-* RX 

Rx 

-»• RX' 

FA 

FB 

RX 

RY 

Composition is obvious. Third, a vertical arrow (u, v; y): (A, X; c) -* (B, Y; d) 
cornes from a cell y. (Fu c

d Rv) in C , as in the right diagram above. The 
composition of vertical arrows is displayed below 

*i 
(3) F(u0u') F[u, u'] 

Fu' 

Rv 

R[v, v'] R(v0v') 

| R v ' 
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It is constructed with the colaxity cell of F and the laxity cell of R (note the 
'necessity' of this direction of comparisons). 

Fourth, a cell (a, Ç) is a pair of cells Ç:(u^u') , £: (v * v') in A and X , 
respectively, such that F? and R§ are cohérent with y, Y' in C 

(a. x) 
(A,X;c) > (A',X';c') 

(4) (u ,v ; Y ) j ( Y , Y ) | (u\V;Y') (FY I / ) = (Y ' «Y). 

(B,Y;d) > (B,Y;d') 
(b .y ) 

Their horizontal and vertical compositions are obvious. 

The associativity isocell for three consécutive vertical arrows (u, v; y), (u', v'; ô), 
(u",v";e) is the pair (e(u), e(v)) of associativity isocells of A, X for the triples u 
= (u,u',u"), v = (v,v',v") 

(5) (eu,ev): ((u, v; E)®(U', V'; (E))0(U", V"; 0 -+ (u, v; 0®((u\ v'; 00(u", v"; 0). 

Finally, P and Q are projections and the components of to on objects and 
vertical arrows are: 

(6) a)(A, X; c) = c: FA — RX, co(u, v; to) = CJ (Fu ^ ' * ; ^ Rv). 

1.4. Cells and commutative cells. Let us corne back to examining the cells of 
Dbl. The set of cells to with a specified boundary, as in the left diagram below, can 
be denoted as [F s G]; but we shall also write [GR, SF], following the previous 
abuse of notation to: GR —• SF (in 1.2) 

(D
 F l y ! c F l V/ I 

Note that, when F, G are pseudo, their colaxity cells hâve horizontal inverses 
which are laxity cells. Thus, the composites GR, SF are lax and the set [GR, SF] 
coïncides with the set of ordinary horizontal transformations k: GR —»• SF (as 
évident from the cohérence conditions (c2)-(c3), in 1.2). 

If, moreover, it happens that GR = SF (including the laxity cells!), the horizontal 
identity 1: GR —• SF yields a cell X, represented in the right diagram above. It 
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will be called a commutative cell, and written as X: (GR = SF). Similar facts hold 
when R, S are pseudo, and hence the composites GR, SF are colax. 

Ail this agrées with a gênerai définition of commutative cells in a weak double 
category, given in III.3.1 (and based on orthogonal companions, see 4.1). In fact, a 
pseudo double functor A —• B is a strong arrow in Dbl, with a 'horizontal 
version' A —• B (with invertible laxity cells) and a 'vertical version' A -++ B (with 
invertible colaxity cells). 

Composing a cell a with a commutative one can often be reduced to a 
'whiskering opération' with a lax or colax double functor, with an évident meaning on 
Computing components. There are four cases 

RM 
• > • 

M i % L'G 
- R ^ 

(2) ' J v/ F1 y \Q *// \ 
C > C - s - > 

FL M 

*V/ 1M' 
M'S 

(a) If F is pseudo, one can define the whiskering aL with any lax double functor 
L of codomain A, as aL = (a I a), where a: (FL = FL). On components, the 
notation aL is fully justified, because (aL)(X) = a(LX). 

(b) If G is pseudo, one can define the whiskering L'a, with any lax double functor 
L' of domain D, as L'a = (a la) . On components, (L'a)(A) = L'(aA). 

(c) Similarly, if R (resp. S) is pseudo one can define the whiskering aM = \i®® 
(resp. M'0=(g®n'), with a colax double functor M (resp. M'). 

1.5. Universal properties of comma squares. Comma squares satisfy the three 
universal properties of comma objects in the double category Dbl (III.3.2). 
Moreover, restricting ail vertical arrows, they also work in Dblu and Dblp (1.2). 

The first two properties hâve already been proved, in Thm. II.2.6. The horizontal 
universal property says that 
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U > A U _L-> F U R - P + A 

u —> x ^ c u —> x —• c 
T R T R 

(a) for every pair of lax double functors S,T and every cell a)-.(lRTF) (in Dbl) 
there is a unique lax double functor L: U -* FU R such that S = PL , T = QL and 
a, = o)L = (co I œ) where co: (QL = T) is the commutative cell defined by a 
horizontal identity of lax double functors (and the whiskering wL is defined in 
1.4). Moreover, L is unitary (or pseudo, or strict) if and only if both S and T are. 

Similarly, we hâve a vertical universal property (proved in II.2.6(b)), displayed in 
the left diagram below: 

(b) for every pair of colax double functors G, H and every cell p: (G R FH) there is 
a unique colax double functor M such that G = QM , H = PM and p = pM = 
\i®® where \x: (H = PM) is a commutative cell. Moreover, M is pseudo if and 
only if both G and H are. 

(2) 
iM V/ iH 

FUR - P-> A 
1
 JQ ®/ Ï 

M \ V/ II 
FUR - P -* A 

c X = x > c 

Thèse first two properties reduce, for pseudo double functors, to a symmetric 
universal property, (displayed in the right diagram above) which détermines the 
solution up to isomorphism in a clearer way 

(c) for every pair of double functors P', Q' and every cell <gx FP' -* RQ' (in Dbl) 
there is a unique double functor L such that P' = PL , Q' = QL and ®= ®L = (®l 
®) = (A®®, for the commutative cells ® (QL = Q') and \i\ (F = PL). 

Finally, there is also a (quite strong) global universal property, III.3.2(c), which 
will not be used hère (but replaced with direct computations). Its vérification in Dbl 
is easy, as in III.3.4 for QCat. 

1.6. Pasting Lemma. In Dbl, consider the pasting of two double commas, 
displayed in the left diagram, and the comma ®" of the vertical composite, 
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displayed in the middle diagram 

p P" 
F'UP 

Q'I Y iF 

(1) FUR -P-> A 
Q1 Y iF 

(FF)UR 

Q" FF' 

C c 

= F'UP > 

(FF')UR -P'-> 

= F'UP 
p1 

77zert f/ze double functor P" fa projection ofthe comma ofthe composite) is a 
vertical déformation retract of ?' (a projection ofthe iterated comma), in the strong 
sensé of III. 1.6: there are arrows M, L as above, commutative cells X, \x and a 
comparison cell X: LM —• 1', as displayed in the right diagram above, satisfying: 

(2) ML = 1 , XL = 1L, MX = 1 M-

Proof. This lemma is a particular case of a gênerai Pasting Theorem, holding for 
internai comma objects in a double category D (III.5.2). In the présent case, i.e. for 
D = Dbl, we prefer to give a direct, constructive proof, which is much simpler and 
shorter than the abstract one. 

First, consider the natural comparison M: F'UP —• (FF')UR, from the pasting of 
commas X'®® to the comma ®" of the composite FF', by the symmetric 
universal property of ®" (1.5(c)) 

(3) P"M = P*, Q"M = QQ', ®"M = ®'®®. 

This forms a commutative cell • = 1: P' —• P"M. To define the second 
comparison L, we begin by constructing a colax N: (FF')UR -+ FUR, using the 
vertical universal property of FUR (1.5(b)) 

(4) PN = F'P", QN = Q", ®N = ®", 

and then a colax L: (FF')UR -* F'UP, by the vertical universal property of F'UP 

(5) P'L = P", Q'L = N, ®*L = 1: F'P" — PN. 

The equality ML = 1 is then detected by the universal property of (FF')UR 

(6) P"ML = PL = P", Q"ML = QQ'L = QN = Q", 

®"ML = (®'®®)L = (®'L)®® = 1PN®® = ®N = ®". 

It can also be proved by direct computation. On objects, we hâve: 
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(7) M(B, A, X; c: FA — RX; a: FB — A) = (B, X; c.Fa: FF'B — RX), 

L(B, X; c: FF'B — RX) = (B, F'B, X; c: FF'B — RX; 1: F'B — F'B). 

ML(B, X; c: FF'B — RX) = (B,X;c.Fl). 

Finally, we hâve a cell q> with cpL = 1, Mq> = 1 (in the abstract case, one has to 
use the global universal property of comma objects to construct q>, and again to 
verify the previous équations) 

(8) <p:LM -»• 1, 

«p(B, A, X; c, a) = (1„, a, lx): (B, F'B, X; c.Fa, 1FB) — (B, A, X; c, a), 

<pL(B, X; c: FF'B — RX) = <p(B, F'B, X; c: FF'B — RX; 1PB) 

= (1B,1PB,1X) = id(L(B,X,c)), 

Mcp(B, A, X; c, a) = M( 1B, a, lx) = (1B , lx) = id(M(B, A, X; c, a)). a 

1.7. Spécial Pasting Lemma. In Dbl, consider the pasting, in the left diagram, of 
a comma w and a commutative cell k whose boundary is formed of four strict 
double functors. Then k®® is a comma square if and only if ® is a pullback (in 
the category ofweak double catégories and strict double functors) 

Y » 
G l ®// 

(1) FUR -P-* 
Q l V 

P" 

1" 
A 

l 
Y — 

0 e i aa a / j F P 

-» C 

// 

G l 
FUR 

V/\ 

Proof. First, if a is a pullback, given a cell a: FF'P" -* RH as in the middle 
diagram above (with strict P", H), by the symmetric universal property of a there 
is one double functor K: Z —• FUR such that 

(2) QK = H, PK = F'P", aK = 

Then, by the universal property of a there is one double functor K': Z —• Y 
such that 

(3) P'K' = P", GK' = K. 

This K' is also the unique double functor satisfying: 

(4) P'K' = P", QGK' = H, (aaa)K = a. 
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Conversely, suppose that ^®® is a comma square, and take a commutative cell 
<3: (F'P" = PH), as in the right diagram (1). Then, there is a unique double functor 
K: Z — Y such that 

(5) P'K = P", QGK = QH, (œ®)K = (g®®: FF'P" — RQH, 

and then GK = H, as detected by the original comma square ® 

(6) P(GK) = F'P'K = F'P" = PH, QGK = QH, 

®(GK) = (@g>®)K = (g)®® = ®H. 

We hâve thus found a double functor K such that P'K = P" and GK = H; its 
uniqueness is similarly proved. • 

1.8. Pullback Lemma. Let us suppose that F, R are strict double functors. 

(i) The double comma FUR is linked to the corresponding pullback A xCX (with 
projections P', Q') by a comparison strict double functor L and a commutative 
cell ® (P = PL) 

P' 
AxCX > A 
L ï ®// || PL = P, QL = Q', 

(1) FUR -P-> A ®L = 1:FP — RQ', 

Q j Y i F L(A,X) = (A,X, 1:FA = RX). 

-> C 

(ii) if C is horizontally discrète (i.e., ail horizontal maps and ail cells are 
horizontal identities), then L is an isomorphism: FUR 'coïncides' with the 
pullback AXQX, SO that P' is a vertical déformation retract of P (111.1.6) and 
conversely. 

Proof. Obvious. • 

2. Pointwise unitary lax right Kan extensions and their models 

We focus now on unitary lax right Kan extensions, according to the third setting 
for external Kan extensions considered in III.6. 

2.1. Unitary lax right Kan extensions. Let us recall some définitions on the 'kind' 
of Kan extensions which will be studied hère (as introduced in III.6.4). 
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The gênerai setting will be LxOblu, the double category of weak double 
catégories, lax double functors (horizontally) and unitary lax double functors 
(vertically); a cell a: GR —• SF, as in the left diagram below, simply is a horizontal 
transformation between the composed lax double functors GR, SF 

R R 
A > B I > S = J 

(D F | y 1G II y iG y ïG 

C > D I > A ===== A 

Working in this setting. the unitary lax right Kan extension of a lax double 
functor S: I —• A along a lax double functor R: I —• J , as in the right diagram 
above, is a unitary lax double functor G equipped with a cell x, such that any 
similar data (G', x') factors through x, by a unique spécial cell, consisting of a 
horizontal transformation x: G' —* G. We write G = RanR(S), with a notation 
adapted to the présent case. (According to the gênerai définitions of Part III, we 
should rather write RanRs(idiï), and speak of an extension of ïdl along R, S). 

Now, LxDblu does not hâve ail comma objects, but its double subcategory 
LxDblp = Dblp (with unitary pseudo double functors as vertical arrows) plainly 
does: just the double commas FUR of the previous section, where F is so 
restricted (as already noted in 1.5). And the diagrammatic lemmas ofthe previous 
section also hold with this restriction, for ail vertical arrows. 

Therefore, speaking of pointwise Kan extensions in the présent setting we will 
always mean pointwise on unitary pseudo double functors, as defined in III.4.1 (b): 
G is the pointwise unitary lax right Kan extension of S along R (both lax) if for 
every unitary pseudo double functor H: J ' -^ JJ, we hâve GH = Ranp(SQ), via 
u)®® (where ® is the comma cell of HUR) 

HUR-P+ JJ' 

Q| Y iH 

(2) I -R-» J 

Il y ic 

I -s-> A 

Then, G is indeed a Kan extension, as proved in III.4.2. 

This framework is adéquate for studying pointwise extensions and their 
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relationship with limits, and will be the main object ofthe rest of this paper. 

2.2. Vertical models. Three elementary (strict) double catégories, the vertical 
models 1, 2, 3, will play a relevant rôle - in detecting objects, vertical arrows and 
their composition. The formai object 1, or singleton, is the trivial double category 
on one object 0. The formai vertical arrow 2 has one vertical arrow 0 -++ 1 (and 
is otherwise trivial). The formai vertical composite 3 is the double category 
spanned by two vertical arrows 0 -** 1 -** 2. 

A strict double functor a: 1 —• A amounts to an object A = a(0) of A; 
however, it is often better to distinguish between a and A (as we show at the end 
of this subsection). Similarly, a strict u: 2 —• A amounts to a vertical arrow u and 
a strict W: 3 —• A to a vertical composition w = u®v (of vertical arrows). 

Our models are linked by some canonical double functors, which will also be 
useful to detect the structure of double catégories 

(1) 1 ^ 2 3 3 

namely, two faces do,d\:\-+2, the degeneracy e: 2 —• 1, and three embeddings 
2 —• 2. In particular 

(2) c:2 — 3 , c(0 — 1) = 0 — 2, 

will be called the precomposition; in fact, on a strict W: 3 -* A as above, it gives 
Wc = w: 2 — A. 

On the other hand, a lax double functor T: 1 —• A amounts to a vertical monad 
in A 

(3) A = T(0), t = T1J:A — A, 

n = T [ 0 ] : i ; - t , ix = T[18, lg] : t r , t - t , 

formed of an object A, a vertical endoarrow t and two spécial cells r\,\x satisfying 
the usual axioms, because of the cohérence conditions on T. A colax double 
functor 1 —• A gives a vertical comonad. 

Corning back to the need to distinguish the double functor a from the object A 
= a(0), consider the following compositions 

R a S 
(4) I > 1 > A > B 

At the left hand, the composite aR: I —• A is a constant double functor, and can 
be written as AR without ambiguity. But, at the right, the lax double functor S: 
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A -> B yields a vertical monad Sa in B, which cannot be reduced to its support, 
the object S(A). 

2.3. Réduction Theorem I [Models for pointwise extensions]. Let e: GR —• S be 
a cell in the double category LxDblu, as in 2.1.1. 

Then G: J -^ A is the pointwise unitary lax Ran via e if (and only if) it 
satisfies the pointwise property for strict double functors defined on the models K 
= 1, 2, 3 considered above (2.2). In other words, if and only it satisfies the 
following condition, with n = i , 2, 3 

(a) for every strict double functor J: n -*• J , we hâve GJ = Ranpj(SQj) via the 
vertical pasting a)j®®/>/ D (where ®j is the cell of the double comma JUR). 

Note. This theorem also holds in the unitary colax case, as defined in III.6.3. 

Proof. Assume that G satisfies the condition (a). Let us fix a unitary pseudo 
double functor H: K -* J, a unitary lax G': K -~ A and a cell a: G'P — SQ. 
We hâve to prove that there is precisely one cell x: G' —• GH such that (xx x I x) = 
x. The main argument below shows the existence, while the simpler argument for 
uniqueness is given in brackets. 

(A) Définition on objects. Take first an object k in K, as a strict double functor k: 
1 —• K, and complète the following diagram with the upper pullback X*, so that 
Xk = XkXX provides HkllR (Spécial Pasting Lemma, 1.7) 

Pk 
HkUR • 1 === 1 

(1) HUR -P-> K *k ' K 

Applying the hypothesis on J = Hk, we get G.Hk = Ranpj(SQQk) via 
XkXXXX, so that the cell XQk = XkXX: G'kPk — SQQk factors through XkXXXX 
via a unique cell Xk, forming a horizontal transformation of unitary lax double 
functors 

(2) Xk: G'k — GHk: 1 -*• A, (XkXXXXI Xk) = XkXX. 

This defines, in A, a horizontal morphism Xk = (Xk)(0): G'(k) -*• GH(k) and a 
cell XI" 
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xk 

G'k > GHk 

(3) G'(l-) [ xl- | GH(l-) xl- = (xk)(l-). 

G'k > GHk 
xk 

The latter coincides with 1 *k, by cohérence with the laxity cells of the (unitary!) 
vertical functors GH and G', on the object k 

(4) (G'[k]lxl-) = ( i ; k l (GH)[k]) . 

(On the other hand, if we are given a cell x: G' —• GH such that (a)®e I e) = a, 
then the composite ok is uniquely determined as above: (XkXXXXl Xk) = XkX(XXX 
\X) = XkXX.) 

(B) Naturality on objects. Now, given a horizontal map f: k —• k' in K, let us 
verify that 

(5) Xk'.G'f = GHf.Xk: G'k — GHk*, 

viewing f as a horizontal transformation f: k -* k': 1 —• K. First, we link the 
pullbacks Xk and Xk- with the double functor f*: Hk'UR —>- HkUR such that 

(6) Pkf* = Pk., Qkf* = Qk-, (Xkf* = (Xk. I f)). 

This gives a commutative cell Xf: P̂ - —»• P f̂* such that X.fXXk = Xkf* = (Xk-1 f). 
Now, it suffices to cancel (XkXXXX I - ) in the first terms of the following 
équations 

(7) (X,k.XXXMXk'IG'f) = (X.kXXlG'f) = (Xk.|f)XX, 

(xk.xxxxl GHf I xk) = ((xk'l f)xxxxlxk) = (xfxxkxxxxl xk) 

= xfx(xkx.xxxlxk) = xfxxkxx = (xk. lf)XX, 

Pk' 

H k ' U R > 1 = = = 1 

**! V? // ï 
HkUR -Pk-> 1 = = 1 Hk'UR • 1 = = 1 

M V lk ik M K// lk' y lk 

HUR -P-> K *k / K = HkUR - P + K = = = K 

QJ kKy iGH * ïG QJ Y ÏG 

X -S-> A A X -S-> A A 
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(C) Définition and naturality on vertical arrows. We hâve to define the component 
of x on a vertical arrow u: k -** k' in K, which will be viewed as a strict double 
functor u: 2 —• K. Proceeding as above on the diagram below, we find a unique 
cell xu between lax double functors (and again, if x is given, the composite xu is 
necessarily so determined) 

(8) xu: G'u — GHu, (Xu®cocoe I eu) = e ue a, 

HullR - P u + 2 = = = 2 

Qui Y i« 1» 
HUR - P - > K ™ ' K 

Q{ ««« / iGH 1G' 
X - s - > A = = = A 

This defines a cell cu = (cu) (0 -* 1) in A, whose naturality is proved as above, 

in point (B) 

G'k • GHk 

(9) Gu{ «u JGHu 

G'k' • GHk' 

(D) Consistence of définitions. First, we verify that the upper horizontal map of ou, 

in (9), does coïncide with ok (similarly, the second coincides with ck1). This is 

proved by cancelling ( a k a a a a l - ) in the following équation, where a is the 

commutative cell produced by the first face do: 1 —• 2, so that dd du = dk 

(10) (dkdddd\(du)d0) = (dddudddd\(du)d0) = dd(dudddd\du) 

= dd dud d = dkd a = (dkd a d d I dk), 

HkUR -Pk-> 1 = = 1 

I Y if''° // ia° 

HulIR - P U + 2 = 2 

HUR -P-> K Bu , K Qj * * ; / | G H | G ' 

s-> 
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Second, we show that, for a vertical identity u = lk, the présent définition of xu 
coïncides with xlk = (xk)(lj), as found above, in (3). This is proved by cancelling 
(X.U®O)Q)E I-) in the équation (12), where e is the commutative cell produced by the 
degeneracy e: 2 —• 1, so that EE ek = eu 

(12) (E U EEEEIEU) = EUE ex = a a q a a = aa (a k aaaa l ok) 

= (aaa k aaaa l (ok)e), 

HulIR - P U + 2 = 2 

ï V/V // Ie 

HkUR - P k + 1 ===== 1 

HUR - P - > K «k ' K 

QJ a a Y 1GH * iG' 
- s-> 

(E) Cohérence. Taking into account the last resuit, the condition (c2) on ce 
G' —• GH has already been verified in (4), and we are left with proving (c3). Take a 
vertical composite w = uav in K, amounting to a strict K: 3 -* K; we hâve to 
prove that 

(13) (G'[u, v] I CAV) = (cuacxv I (GH)[u, v]). 

By the pointwise condition on 3, GHK = RanpK(SQQK), via the cell CXK = 
aKaa (see the diagram (15)). This provides one horizontal transformation of lax 
double functors cxK: G'K —• GHK such that (aKacmal cxK) = aKa(aK). By 
precomposing with the three embeddings 2 —• 3, we can show (see below) that 

(14) oK(0 — 1) = eu, cK(l -^ 2) = cxv, oK(0 — 2) = CAV, 

so that the cohérence condition (c3) on the cell aK, taking into account the 
strietnessof K, gives precisely the thesis, équation (13). 

As to (14), its last équation, for instance, is proved by cancelling (cxwaacml -) 
in the équation below, where c: 2 —• 3 is the precomposition (2.2.2) and a is the 
commutative cell produced by the former, so that oK(0 —»• 2) = (oK)c and OCXCCK = 
avv 

(15) (awcxaaal cxw) = a w aa = a a a K a a = CLOL(akaaaal oK) 

= (cxaaKacxaal (cxK)c) = (a w aaaal (oK)c), 
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HwUR - P W - > 2 = 2 

I ^// V // Ie 

HKUR - P K - > 3 = = 3 

QK| Y iK iK 

HUR -P-> K TK / K 

Q | 0)®E / | GH | G' 

X -s-> A === A n 

2.4. Réduction Theorem II [The vertically trivial case]. Let again E: GR —• S be 
a cell in LxDblu, as in 2.1.1. If in J ail the vertical compositions UEV are trivial 
(i.e., u or v /5 an identity) and ail its spécial cells are horizontal identities, then in 
condition 2.3(a) it is sufficient to take n = 1,2-

Note 1. If R is an ordinary functor, viewed as a double functor between the 
associated 'horizontal' double catégories, the problem we are considering amounts to 
the one which led to formulating the Conduché condition for R (cf. 5.1 ). 

Note 2. Taking n = 1 in condition 2.3(a) is not sufficient, even when ail vertical 
arrows are trivial and ail cells are horizontal identities, as is the case with J = 1 (cf. 
Section 3). 

Proof. It suffices to prove that, in the présent case, point (E) ofthe previous proof 
(i.e., verifying condition (c3) on E) can be proved by means of the pointwise 
properties on 1, 2. 

Take a vertical composition w = UE V: k -* k' -+ k" in K. One at least of Hu 
and Hv is a vertical identity; let us choose Hv = l^k,; moreover, the spécial cell 
H[u, v]: Hw -* HUE HV = HU is a horizontal identity, which implies that Hw = Hu; 
since G is unitary lax, also the following comparison cell is trivial 

(1) (GH)[u,v] = G[Hu,l-k.] = IGHU-

Our thesis amounts thus to proving that 

(2) (G' [u , v] I EW) = EUE EV. 

Corning back to the définition of GHu and EU in Point (C) of the previous 
proof, via a right Kan extension along Pu: HullR —* 2, we hâve a universal cône n 
= jtujijtjijt: GHuPu —• SQQU indexed on HullR 
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Jt(i.h) 

GHk • Si 

(3) GHu{ m ) | St 

GHk" 

G'k 

-»• Si ' 
Ji(i'.h') 

t: i — i' in I , 

j:(HuJJ.Rt) in J, 

-> GHk -» Si 
(4) G-uJ tu JGHu T(t,j) J. St = 

G'k' • GHk' • Si' 

G'k > Si 

G'u { «(u.t.j) { St 

G'k' • Si' 

Equation (2) comes from cancelling the projections a(t, j) in the following 

(5) (eu ® ®/1 <§(t, j)) = ®(u, t, j) ® ®(v, 1M *) = (G'[u, v] I <g(w, t, j)) 

= (G'[u,v]l ®vl<S(t,j)), 

where the first equality follows form the cohérence of ® with the laxity cells of G': 

G'k GHk 
G'u | 0 , GHu | 

(6) G'k' > GHk' 

GV{ a, r | 

G'k" • GHk' 

• Si 

GHw <gj(t.j) St 

• Si ' 

Si G'k • GHk — 

G'u j o, | GHu <atj) | St 

G'k' • GHk' • Si' 

G'vj ®, J,- 1- j , -

G'k" > GHk' • Si' 

G'k • Si 

G'u j ®(u.t.j) { St 

G'k' • Si' 

G'V| «av.r.i*) | i * 

G'k" > Si' 

3. Right Kan extensions on the singleton 

Pointwise unitary lax right Kan extensions on the singleton 1 amount to double 
limits, as studied in Part I. 

3.1. Reviewing double limits. In this section we study right Kan extensions on J 
= 1. Note that a comma with a double functor K -»• 1 is the same as the 
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corresponding pullback, i.e. the product -xK (a trivial fact, and an instance ofthe 
Pullback Lemma,1.8(ii)). Recall also that a unitary lax double functor A: 1 — A 
amounts to an object of A (and is strict). 

Let us begin by rewriting the définition of the double limit of a lax double 
functor S: I -»• A (1.4), with the présent terminology. 

A horizontal cône for S (as defined in 1.4.1), is a pair (A, x), where A is an 
object of A and x: AR -* S is a horizontal transformation defined on the double 
functor AR, constant at A (and a cell in LxDblu) 

R 

I • 1 

(D »1 y |A 

- > • 

Explicitly, the horizontal transformation x amounts to the following data (a), (b), 
subject to the axioms (hc.0-3) (where (hc.O), in fact, follows from (hc. 1 )): 

(a) horizontal maps xi: A -+ Si. for i in I, 

(b) cells xu: (1^ *j Su), for u: i -* j in E, 

(hc.O) Sf.xi = xi', for f: i — i' in I, 

(hc.l) (xulSa) = xv, for a:(u^v) in I, 

(hc.2) (x(l-) IScpi) = (IV I S[i]): ( i ; x
x| 1-.), for i in I, 

(hc.3) (x(u0v) I S<g(u, v)) = (xu®xv I S[u, v]), for u, v vertical in I. 

The cône (A, x) is said to be the 1-dimensional double limit of S (1.4.2) if: 

(dl.l) for every A' in A, the mapping [A', A] — [A'R, S], t — (x I t) is 
bijective; in other words, for every cône (A', x': A'R - • S) there is precisely one 
horizontal map t: A' — A in A such that (x 11) = x'. 

R R 
I > 1 = 1 I > 1 

(2) ]ï y lA y \K = ]ï Y ^A' 
I y A = A I —-> A 

Furthermore, (A, x) is a double limit (in the full 2-dimensional sensé) if it 
satisfies the following stronger property (written in the présent notation) 

•183-



GRANDIS & PARE - LAX KAN EXTENSIONS FOR DOUBLE CATEGORIES 

(dl.2) for every vertical arrow v: A' —* A" in A, the mapping [v, AH] 
[vP, SQ], x >-• (X®\ I (¾ (as in the following diagram) is bijective 

p 
2x1 > 2 = 2 

« 1 ®// l H 

(3) I - R - > 1 ® ' 

4 y ïA" 
I • A = 

In other words, we are saying that AH = Ranp(SQ). Applying the second 
Réduction Theorem (2.4), this is clearly équivalent to the complète pointwise 
condition for RanR(S). 

We hâve thus proved the following characterisation. 

3.2. Theorem [Double limits as Kan extensions]. Given a lax double functor S: 
I —• A, its 1 -dimensional double limit (A, x) amounts to the unitary lax right Kan 
extension RanR(S) along the projection R: I —*• 1. The cône (A, x) is the (2-
dimensional) double limit if and only if this extension is pointwise. 

Proof. Already given above. ° 

3.3. Theorem [The construction theorem for double limits, Part I]. The double limit 
of a lax double functor S: I —• A defined on a small pseudo double category I 
can be constructed with the 'basic' double limits in A, considered in Part I: small 
double products, double equalisers (of horizontal arrows) and tabulators (the latter 
being the double limit ofa vertical arrow). 

Proof. See 1.5.5-5.7. • 

3.4. Lemma [Computing pointwise extensions]. Let G = RanR(S) be a gênerai 
pointwise unitary lax right Kan extension, via x: GR —• S (as in 2.1.1). Then, its 
1-dimensional horizontal entries, for an object j and an arrow f: j —»• j ' in J , 
can be computed as the following double limits (2-dimensional) 

(1) G(j) = Hm(SQj), SQJ: (jUR) - I - A, 

p(i, h) = x(i)°Gh: G(j) -+ G(Ri) -* Si (h: j — Ri in JJ), 
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(2) G(f): GG) - G(j'), 

p(i,h>G(f) = p(i,h'f): G(j) — Si' (h':j' -> Ri in J) . 

Proof. For j in JJ, apply the pointwise property along H = j : 1 -+ JJ, as in the 
following diagram 

jUR > 1 

9i i Y ^ j Qj(i, h: j — Ri) = i, 

(3) l -R-> J io(i,h) = h:j — Ri, 

i l Y ÏG (a)0x)(i,h) = xi°Gh: Gj — GRi -> Si. 

I > A 

By Pointwise Stability (III.5.3), G(j) = Ranp(SQj) is still a pointwise extension, 
so that, by Thm. 3.2, G(j) is the 2-dimensional double limit of SQj, viathepasted 
cell p = 00x. It follows that, on a horizontal arrow f:j—*-j' in J , G(f) is deter-
mined as above, for h': j ' —• Ri 

(4) p(i, h')-G(f) = x(i)°G(h'f) = p(i, h'f). • 

4. Kan extensions on the vertical arrow 

Pointwise unitary lax right Kan extensions for JJ = 2. provide: orthogonal 
companions, orthogonal adjoints (4.3) and limits of 'extended' vertical transforma
tions (4.4). Conversely, they can be constructed from thèse instances (4.6). 

4.1. Orthogonal companions and adjoints. Let us recall a few notions, from 
II. 1.2-1.3. First, the horizontal morphism f : A -* B and the vertical morphism u: 
A —* B (in the pseudo double category A) are made orthogonal companions by 
assigning a pair (ri, E) of cells as below, called the unit and counit, satisfying the 
identities (e I e) = 1 J, e e e = 1 u 

A = A A • B 

(D 'I E l u u l 8 l1 

A > B B = B 
f 

Given f, this is équivalent (by unitarity of A, see 1.1) to saying that the pair 
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(u,e) satisfies the following horizontal universal property: 
f A 

(a) for every cell e': (u' B) there is a unique cell X: (u' u) such that X! = (X I X) 

A > B A = A —!-> B 

(2) "J K Ji = "'| X Ju X Ji 

A > B A • B = B 
g g 

(There are of course dual characterizations, see II.l(b).) Therefore, if f has a 
vertical companion, this is determined up to a unique spécial isocell, and will often be 
written f*. Companions compose in the obvious (covariant) way: if g: B —• C 
also has a companion, then g*f*: A -+ C is companion to gf: A —• C. Compan-
ionship is preserved by unitary lax or colax double functors. 

We say that A has vertical companions if every horizontal arrow has a vertical 
companion. Ail our profunctor-based pseudo double catégories (cf. Introduction) 
hâve vertical companions, given by the obvious embedding of horizontal arrows into 
the vertical ones. For instance, in Cat, the vertical companion of a functor f: 
A —• B is the associated profunctor f*: A -^ B, f*(a, b) = B(f(a), b). Secondly, 
transforming companionship by vertical (or horizontal) duality, the arrows f: A —• B 
and v: B -++ A are made orthogonal adjoints by a pair (a, p) of cells as below 

A -^-> B B = B 

(3) ' | P Jv vj p { . 
A = A A > B 

f 

with (p I p) = 1J and P00 = lv. Then, f is the horizontal adjoint and v the 
vertical one. Again, given f, thèse relations can be described by universal properties 
for ( v , 0 or (v,0) (cf. II. 1.3). 

The vertical adjoint of f is determined up to a spécial isocell and will often be 
written f*: vertical adjoints compose, contravariantly, letting (gf)* = f*g*. 

A is said to hâve vertical (orthogonal) adjoints if every horizontal arrow has a 
vertical adjoint. Ail of our profunctor-based examples satisfy this condition. For 
instance, in Cat, the vertical adjoint to a functor f : A —* B is the associated 
profunctor f*: B -*> A, f*(b, a) = B(b, f(a)); in Rel, the vertical adjoint of a 
function f : A —• B is the opposite relation f*: B -+*• A, with ® 1 =£ f*f, <: ff* <, 1. 

On the other hand, a double category of quintets QA, generally, does not hâve 
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(ail) vertical adjoints, since our data amount to an adjunction in the 2-category A, v 
—• f, with a: vf -* 1, p: 1 -+ fv. 

A more gênerai condition will also be of interest: A is horizontally invariant 
(II. 1.5) if every horizontal isomorphism in A has a vertical companion (or, equiva-
lently, a vertical adjoint). 

4.2. Compléments. We want to recall a procédure, called orthogonal flipping 
(II. 1.6), which is made possible by the existence, in our pseudo double category D, 
of vertical companions or adjoints. 

If the horizontal map f : A — B has a vertical companion f*: A -~ B, there is a 
bijective correspondence between cells cpi and cells ip|, as below, whose bound-
aries are obtained by 'flipping' f to f* or vice versa 

(D | 
A - B 

I 
A 

V2 

B 

A 

! 

B -

* 3 I I î 
B 

(2) 

>• A • -

i ' . I 
H>| B A Hh 

ï '*! 
• . B * 

B - — • 

A «P3 

I 

! 

> A 

By horizontal and vertical duality, the previous statement has three other forms, 
which establish a bijective correspondence between cells ipj and ipj as above (in the 
last two cases, flipping f to its vertical adjoint f*). Starting from a given cell, and 
applying the flipping process to various arrows, successively, one can often show 
that the final resuit does not dépend on the order of such steps (cf. II. 1.6 and III.3). 

Hère, vertical companions and adjoints will be viewed as Kan extensions, based 
on the (strict) double category L represented below, together with its horizontal and 
vertical opposites 

0 

(3) 

0 0' 0 

{ I 
0 ^ 0 ' 

I 

L Lh Lv Lh v 
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Note that a unitary lax (or colax) double functor defined on one of thèse is 
necessarily strict (1.1). 

4.3. Theorem [Companions and adjoints as Kan extensions]. Let f : A —• B be a 
horizontal map of A. For each ofthe double catégories L1 listed above (4.2.3), 
we hâve an obvious projection R: L1 —* 2 and a strict double functor S: L1 —»• A 
sending the horizontal arrow to f and the vertical arrow to the appropriate verti
cal identity. Then: 

(a) if the vertical companion of f exists, it is the pointwise unitary lax Ran of S: 
Lhv — A along R; 

(b) if the vertical adjoint of f exists, it is the pointwise unitary lax Ran of S: Lh —• 
A along R. 

Conversely, provided that A is horizontally invariant (4.1): 

(a') if the pointwise unitary lax Ran of S: Lhv —• A along R exists, it can be 
realised as the vertical companion of f; 

(b') if the pointwise unitary lax Ran of S: Lh —• A along R exists, it can be 
realised as the vertical adjoint of f. 

Proof. It is sufficient to prove (a) and (a'). But let us begin by showing the rôle of 
horizontal invariance, for (a!). Take the double category A formed of a horizontal 
isomorphism f : A —• B between two distinct objects (plus the identities). Then the 
right Kan extension G: 2 —• A can only be realised as the vertical identity of A or 
B, and cannot provide a vertical companion to f - which does not exist. 

(a) Let f : A —• B hâve a vertical companion f*. Then the associated functor S: 
Lhv — A has a right Kan extension G: 2 — A along R: Lhv — 2 

L h V y 2 

d) X l " iG 

which sends the vertical arrow to f*: A -+ B, with cell a = (1A, e): GR —• S: 
Lhv —• A produced by the counit of companionship e: (f* B B), as in the left-hand 
diagram (a commutative cell of A, in the sensé of III.3.1 ) 
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f 
A > B 

1 71 f / f 

-> B 

(2) A 

fh 

1 

B 

B 

A = A 

B' 

B 

S (as above, at the right hand) factors 
A and the cell (u k f*) obtained by flipping f 

In fact, a Kan cône (h, e'): G'R 
uniquely through G, by h: A' 
to f* in E' (4.2). 

As to the pointwise property, the second Réduction Theorem (2.4) shows that we 
only need to consider the stability ofthe extension with respect to the faces do,d\: 
1 -+ 2. But this simply means that the values of G on the objects 0, 1 of 2 
coincide with the limit of the restrictions of S to the pullback of R: Lhv —• 2 
along do or d\, respectively, which is true. 

(a') Conversely, assume that A is horizontally invariant. Following backwards the 
previous argument, the right Kan extension G: 2 —• A yields a vertical arrow u: 
A' -** B' and a universal cône (h, d'): GR — S, as in the right-hand diagram (2). 
Moreover, the pointwise condition says that h, k are horizontal isomorphisms. 

Now, another characterisation of horizontal invariance (again in II. 1.5) says that 
there exists a vertical arrow f*: A -++ B and a horizontally invertible cell X 

(3) 

A 

B* 

* A 

-+ B 

Using X, we can modify the right Kan extension as in the left diagram (2); and 
f* is a vertical companion of f. n 

4.4. Limits of lax vertical transformations. A lax vertical transformation V: 
S0 ^ Si: I ^ A will be a lax double functor V: 2x1 -> A, where St = V.\xl: 
I —• 2x1 —• X (t = 0, 1); this extends the strong vertical transformations of lax 
double functors used in Part I. 

The limit v: 2 —• A of V: So -++ S\ will be the pointwise unitary lax right Kan 
extension of V along the projection R: 2x1 —• 2. By the second Réduction 
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Theorem (2.4), this amounts to a unitary lax right Kan extension stable under 
comma with the injections dt: 1 —• 2. 

Thus, v: Ao -++ A\ is a vertical arrow in A, equipped with a universal family of 
cells 

(1) x(e,i):(v x ( l j ) S(e,.)), 

and the stability condition means that, for t = 0, 1 : 

(a) At is the 1-dimensional double limit of St: I -> A, with cône x(t, i): At -> 
St(i). 

Extending 1.4.4, we will say that A has a lax functorial choice L of I-limits if 
we can choose: 

- the 1-dimensional double limit L(S) of every lax double functor S: I -+ A, 

- the limit L(V): L(S0) -~ L(Si), for every lax vertical transformation V: S0 -* Si: 
I —• A, so that vertical identities are preserved (Ll^= 1[A 

If this holds, ail double limits indexed by I are 2-dimensional, i.e. pointwise 
extensions. In fact, the last condition amounts to requiring that the limit L(S) of a 
lax double functor be stable under the projection 2 -+ J_, i.e. 2-dimensional (by the 
second Réduction Theorem, 2.4). 

If A is horizontally invariant (as is always the case if it has vertical companions 
or vertical adjoints, see 4.1), then one can modify the limit of St: I -+ A up to 
horizontal isomorphism (as in 1.4.6). 

4.5. Proposition (1.5.5). / / A has a lax functorial choice ofproducts, equalisers 
and tabulators then it has a lax functorial choice ofl-Umits, for every small l. n 

4.6. Theorem [The construction of pointwise Kan extensions on the vertical arrow]. 
The following conditions for a pseudo double categoiy A are équivalent: 

(i) A is horizontally invariant and has ail pointwise unitary lax right Kan exten
sions oflax double functors S: I -»• A , along every small R: I -* 2 (which 
means that 1 is small); 

(ii) A has vertical companions, vertical adjoints and a lax functorial choice of 
double I-limits, for ail small weak double catégories ï. 

When thèse conditions hold, A has also ail pointwise unitary lax right Kan 
extensions along every small R: I —• J_. 

Proof. It will be sufficient to prove that (ii) implies (i), since the converse follows 
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immediately from the previous results, 4.3 and 4.4, and the last assertion from 
Section 3. We write v: 0 -++ 1 the non-trivial arrow of 2. 

For t = 0 ,1 , let Ht be the weak double subcategory of I which R projects to 
t and its identities, and let St be the restriction of S to this substructure. Define 

(1) G(t) = lim(St:Et — A) (t = 0, 1), 

with universal cônes pi: G(0) — Si, qi':G(l) -* Si' (for i in K0 and i' in l\). 

Further, let ïïv be the following vertically discrète double category. An object is 
a vertical arrow u: i -++ i' in I such that R(u) = v, and a horizontal arrow is an I-
cell a: u — u' such that R(a) = lv,; vertical arrows and cells are trivial. Take now 
the (strict) double category 2*1 v* where a cell is either a vertical identity or ofthe 
following type 

(0,a) 

(0,11) > (0,u') 

(2) <v.u) j ( i v , a ) [ (v.u-) ( a :u — u' in E). 

d ,u ) — - > d,u') 
(La) 

(The formai vertical identity 1* is written as u, and similarly for a.) 

We hâve a commutative diagram, at the left, with strict double functors P (first 
projection) and Q 

2-I v I< 

(3) Q j \ P J. I 

I — ^ 2 2 - I v — T It > W 

(4) Q(v,u) = u, Q(lv,a) = a, 

sothat Q(0, u) is the domain of u (and belongs to R_1(0)), while Q(0, a) is the 
vertical domain ofthe cell a. Then, we form the right diagram above (with t = 0 or 
1), letting Jt be the embedding as t-basis of the cylinder and defining Pt by 
vertical domain (Do) and codomain (D|) 

(5) Pt(v,u) = Dt(u), PtOv,a) = Dt(a). 

Now, SQ: 2#EV ~^ A is a vertical transformation between the lax double 
functors SQJt: Iv -^ A. Its limit is a vertical arrow w: A -** B, with a universal 
cône consisting of cells in A 
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pu 

A > SD0(u) 

(6) wj „u jsu 

B > SDi(u) 
qu 

whose vertices are linked with G(0), G( 1 ) by canonical horizontal maps f, g 

G(0) f - -> A — P" — • Si p U o f _ pj ? 

(7) G(v) j y |w yu j Su 

g - -> B — qu —> Si' qu°g = qi. 
G(l) 

The vertical companion of f and the vertical adjoint of g yield a vertical arrow 
G(v), together with a cell y 

(8) G(v) = f, 0 (w 0 g*): G(0) - G( 1 ), ® (Gv f
g w), 

associated to the horizontal identity 1: G(v) —• f* 0 (w 0 g*) (flipping back g* 
and then f*, cf. 4.2). The cell 0 is determined by the fact that each (0l 0i) is the 
cell associated to the composite M.(uMu), where the cells 

* (f* P
p: i»). - : (g* q

q" !*•)> 

are obtained by flipping, in A, the identities pu°f=pi, qu°g = qi of(7). 

Finally, we hâve defined a strict double functor G: 2 —• A, with a universal cône 

(9) eu = (eleu):G(v) -> Su (R(u) = v). • 

5. The construction of lax right Kan extensions 

Pointwise unitary lax right Kan extensions with values in the weak double category 
A, along a small lax double functor satisfying a suitable Conduché property, can be 
constructed from small double limits, vertical companions and vertical adjoints in A 
(Thm. 5.2). We say that A is complète when ail thèse exist. 

5.1. Reflection properties. Let R: I —• J be a lax double functor between pseudo 
double catégories. As in 1.1.3, we write horil the 1-category of vertical arrows (as 
objects) and cells of I (as morphisms), with horizontal composition, and Ri = 
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horjR: horjl —• horjj the induced functor. 

We say that R satisfies the right Conduché condition if 

(i) Every cell b: v'0v" -^ Ru in Jf (with u in I) can be factored as below 

(D 

jo > Rio 

j . b 

J2 > R»2 

Ru 

Jo > • — 

v 1 b' |Ru' 
j , > . R[u',u"] 

v i b- |RU-

J2 - r • = 

Rh 
> 

Ra 

R(u'0u") 

Rio 

Ru 

Rk 
Ri2 

by means of two objects (u'. b') in v'iR] and (u", b") in v"iRi, ofthe laxity cell 
R[u',u"] and of a cell a:u'lu" —• u in I. 

(ii) This factorisation is unique up to the équivalence relation generated by the 
existence of a morphism between two factorisations 

(2) (a',a"):(u',b',u",b",a) — (u',b ,,uM,b", a), 

which obviously consists of two cells a': u' — û', a": u" -* u" of I cohérent with 
the other data: 

(3) (b' I Ra') = b', (b-IRa") = b", 

> io 

• > • 

(a'-a" la) = a, 

"̂  io 

(Cohérence with the laxity cells of R necessarily holds, cf. II.2.1(ii).) 

The horizontal dual, of interest for left Kan extensions and colimits, will be called 
the left Conduché condition. 

5.2. Main Theorem [The construction of pointwise lax Kan extensions]. The 
following conditions for a horizontally invariant (4.1) pseudo double category A 
are équivalent: 

(i) A has ail pointwise unitary lax right Kan extensions oflax double functor S: 
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I —*• A, along every small lax R: E —• J which satisfies the right Conduché condi
tion (5.1); 

(ii) A satisfies the same condition for J = 1,2; 

(iii) A satisfies the same condition for J = 2; 

(iv) A has vertical companions and vertical adjoints (hence, it is horizontally 
invariant) and has lax functorial double limits. 

By horizontal duality, the existence of ail pointwise unitary colax left Kan 
extensions in A (horizontally invariant), along every small colax double functor 
which satisfies the left Conduché condition, amounts to the existence of colax 
functorial double colimits, vertical companions and vertical adjoints. 

Proof. It will be sufficient to prove that (ii) implies (i), since the converse is obvious, 
and the équivalence of (ii), (iii), (iv) has been proved in 4.6. (For the horizontally 
dual case, see III.6). 

(A) First, the 1-dimensional horizontal part of G: J —• A is defined in the usual 
way (3.4.1-2; and just needs the existence of 1-dimensional double limits in A). 
For an object j and a horizontal map f:j —• j ' in JJ, we let G(j) = Ranp.(SQj) via 
PJ: G(j).Pj —• SQj, and define G(f) accordingly: 

(1) SQJ: (jUR) - I - A, GO") = Ranp.(SQj), 

GO) = limSQj, pj(i,h):G(j) — Si (i in I; h:j — Ri in J), 

G(f): GO) - GO'), Pj<i, h').G(f) = Pj(i, h'f): G(j) - Si' (h1: j ' - Ri in J) . 

This also gives the value of e on the object i: 

(2) Ei = PRi(i, lRi):GRi - Si. 

(B) Similarly, to define G on a vertical arrow v: j -++ j ' , viewed as a double functor 
v: 2 —* J, we use the right Kan extension Gv = Ranpv(SQv) via JIV: Gv.Pv —• SQV 

(3) SQV: (vlIR) - I - A, G(v) = RanPv(SQv), 

jiv(u,b): (Gv ^ (
(!;^ Su) (u: i -> i' in I; b: (v {, Ru) in J), 

Pj(i.h) 

G(j) > Si 

(3) G(v) i jrv(u,b) | Su m = ^R u(u , lRu) : GRu — Su. 

G(j') —77^» Si' 
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In particular, G(T) = 1̂ - by the 2-dimensional universal property of G(j) = lim 
SQj (3.1). 

ç 
(C) Take now a cell c: (v v') in JJ, and define G(c) by means ofthe universal 
property of G(v') 

Gf Pj(i.h) 

(4) Gv | Gc Gv' | jiv.(u,b') l Su = ^ ( u , (c I b*)) 

P ^ h , ) ( b ' : ( v ^ R u ) i n J ) . 

Its horizontal arrows are indeed as claimed above, as detected by the projections 
Pj(i, h'), Pj<i,k'). Plainly, G préserves horizontal composition. 

(D) Hère begins the crucial point of the proof. We already know that G is unitary. 
To make it a lax double functor, let us start from a vertical composition v = v'0v": 
jo -** ji "^ J2 in J- We want to define the laxity cell 

(5) y = G[v\v"]: GV'YGV" — GV. 

Using the universal property of Gv, this amounts to defining a horizontal 
transformation p 

Pv Pv 

vllR • 2 = 2 vliR > 2 
(6) Q v j P v / JGv p , JGv'pGv" = Q v | p / JGv'pGv" 

I > A = A I > A 
s s 

on the objects and vertical arrows of vllR. On objects, we use the previous 
projections, of ( 1 ) 

(7) p(it, ht: j t - Rit) = pjt(it, ht): G(jt) - Si, (t = 0, 2). 

Vertical arrows belong to three types, corresponding to the three vertical arrows 
of 2, namely the vertical identities of J0J2 and v: j 0 —* J2. For the first type, a 
vertical arrow (UQ, bo): (io, ho) -* (io^hg) (with bo: 1* —* Ruo) also belongs to 
v'HR, and we can take a projection of (3) 

(8) p(u0, b0) = pv'(u0, bo): GT -* Su0. 

Similarly for the second type. For the third, we need a new procédure because we 
want a cell starting from Gv'p Gv", rather than from Gv. 
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Take then a vertical arrow (u, b): (io, h0) -++ (i2, h2), where b: v — Ru is a cell 
in J. By the Conduché condition on R, we can factor it as below 

jo • Rio 

(9) Ji Ru 

J2 - ^ Ri2 

Jo > • = 

V | b' i Ru' 

j , • • R[u',u"] 
V" | b" | Ru" 

J2 » • = 

•* Rio 

Ra 

R(u'®u") Ru 

Ri2 

and we define p(u,b) by the following pasting (using the cells itv of(3)) 

Gjo > • = 

GV | nv(u', b') { Su' 

(10) Gji • • S[u',u"] 

Gv" { nv(u",b") JSU" 

Gj2 > • = 

Si0 

Sa 

S(U'JTU") Su 

Si2 

To see that this is well defined, take a morphism of factorisations (5.1.2) 

(11) (a', a"): (u',b',u",b", a) -+ (ù',b',û",b",â), 

and recall that (a'- a" I â) = a, (b' I Ra*) = b*, (b" I Ra") = b". Therefore: 

(12) (-v(u' ,b')- -v(u",b") I SIu'u"] I Sa) = 

(- v(u' ,b')- ^ ( u " , ^ ) I S[u',u"] I S(a'-an) I S i ) = 

(-v(u',b')- -v(u",b") I (Sa1)-(Sa") I S[û',û"] I Sa) = 

(-vCOT.b')- -v(û' , ,b") I S fû ' ,^ ] I Sa). 

(E) One vérifies now that - is indeed a horizontal transformation, and that the laxity 
cells of G are cohérent. Thèse computations will not be written down. 

(F) Finally, G is indeed the pointwise unitary lax right Kan extension of S along 
R. 

We know that it suffices to prove the pointwise property, by III.4.2. Moreover, 
by the Réduction Theorem 2.3, it suffices to verify this property for (strict) double 
functors defined on the three vertical models; and actually on 3, since on 1 and 2 
we already know that it holds, by the previous construction. 
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Now, a double functor V: 3 —• J amounts to a vertical composition v'®v" = v, 

as considered in point (D). Let us be given a unitary lax double functor G': 3 —• A, 

and a horizontal transformation a 

Pv Pv 
VllR > 3 = 3 vllR • 3 

(13) Qv| eVfc/ |G V y l G ' = Qv| Y ^G" 
I • A = A l > A 

s s 

We want to show that it factors through the cell xy = coywtA by a unique 
horizontal transformation ai G' -*• G. Note that G' amounts to a cell Y': 

U'Y U" —• u in A (namely, its laxity cell G'[0 -~ 1,1 -^ 2] for the only non-trivial 
vertical composition in 3). 

Now, since G is pointwise on 2, we hâve a uniquely determined triple of A-

cells, cohérent with the gênerai data 

(14) t' = Y(0 — 1): u' — Gv', t" = y(l — 2): u" — Gv", 

t = Y(0 -~ 2): u — Gv, 

and we hâve only to check that 

(15) ( t'y t" I G[v\ v"]) = ( / 11): u'Y U" — Gv. 

In fact, pasting both terms with the (cancellable) cell JIV, we get the following 
results (and one should not confuse cells in A, used in (14), with the corresponding 
cells in LxDbl, used below) 

Pv 

vllR > 2 = 2 = 2 

(16) QvJ \ y {^ Y ï f*?' iu'*u" = (pifpt-) 
I • A = A = A = p(0 — 1)P P(1 — 2), 

Pv 

vllR • 2 = 2 = 2 

(17) Qv| 9wy {GV y \ p^ ju 'pu" = (P(0 — 2) I p') 

I • A = A = A 
s 

which coincide, by cohérence of p. ° 
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5.3. Completeness. We say that the pseudo double category A is complète if it is 
horizontally invariant and satisfies the équivalent conditions ofthe previous theorem. 

Because of Parts I, II, we already know that this holds for ail the profunctor-
based examples of Part I, whose archétype is the pseudo double category Cat (of 
small catégories, functors and profunctors) (see 1.1). On the other hand, a double 
category QA ofquintets on a 2-complete 2-category A has ail double limits and 
vertical companions, but generally lacks vertical adjoints and is not complète, in the 
présent sensé. 

In the previous statement, the properties (i) - (iv) are also équivalent for finite 
double catégories H, JJ, and finite lax functorial double limits in A (with the same 
proof); we say then that A is finitely complète. By the construction theorem of 
double limits (1.5.5), finite completeness of double catégories is a first-order 
property, and amounts to having: vertical companions, vertical adjoints, a double 
terminal, lax functorial binary products, lax functorial equalisers, lax functorial 
tabulators. 

5.4. A pointwise unitary colax extension. We end with an example showing a 
case where R does not satisfy the Conduché condition, but there is a solution in the 
alternative setting D = Dblu (cf. III.6.3). Take R: 2 -* 3 the strict double functor 
which takes the vertical arrow 0 -*> 1 to 0 -++ 2 (and does not 'lift' the vertical 
factorisation (0 -* 2) = (0 -* 1)0(1 -> 2)) 

2 > 3 

VÏQ (D ' | 
2 

Take a strict double functor w: 2 —• A, which amounts to a vertical arrow w: 
A -* B in A. The pointwise unitary colax Kan extension of w along R is a 
unitary colax double functor G: 3 -*» A, consisting of a cell Y: W - • UY V, 
universal in the obvious sensé, yielding a universal 'colax décomposition' of w (if it 
exists in A ). 

If A has a terminal object T, vertical companions and adjoints, the Kan 
extension can be constructed as the colax double functor G = (G, Y) displayed in 
the left diagram below, using the vertical arrows t*: A -* T and t*: T -— B 
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(2) 

A 

B -> B 

X 

// ^ 
X — 

wj r z 
Y — 

B Y 

Universality is plain, from the right diagram above. 

-»• A 

- B l 

B 
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