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ADJOINT FOR DOUBLE CATEGORIES (*)
by Marco GRANDIS and Robert PARE

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL V-3 (2004)

RESUME. Cet article poursuit notre etude de la th6orie gdn6rale des
categories doubles faibles, en traitant des adjonctions et des monades.
Une adjonction double g6n6rale, telle qu’elle apparait dans des situations
concr6tes, pr6sente un foncteur double colax adjoint a gauche d’un
foncteur double lax. Ce couple ne peut pas 8tre vu comme une adjonction
dans une bicat6gorie, car les morphismes lax et colax n’en forment pas
une. Mais ces adjonctions peuvent 6tre fonnalis6es dans une cat6gorie
double int6ressante, fonn6e des categories doubles faibles, avec les
foncteurs doubles lax et colax comme fl6ches horizontales et verticales, et
avec des cellules doubles convenables.

Introduction

This is a sequel to a paper on ’Limits in double categories’ [GP], referred to
as Part I. It was proved there that, in a double category A, all (double) limits can
be constructed from (double) products, equalisers and tabulators, the latter being the
double limit of a vertical arrow. The reference I.1 (or L 1.2) applies to Section 1 of
Part I (or its Subsection 1.2).

Here we study adjoints for (weak, or pseudo) double categories. The general
situation, defined in 3.1, is a colaxllax adjunction F -&#x3E; R, where F is a colax

double functor while R is lax. (See Kelly [Ke], dealing with adjunctions between
op-D- functors and D-functors, in the context of algebras for a doctrine D.)

Interesting examples of this type are provided by extending an ordinary adjunc-
tion F -| R between abelian categories to their double categories of morphisms,
relations and inequality cells: the right exact functor F has a colax extension, the
left exact functor R a lax extension, and we get a colax/lax adjunction, which is

(*) Work supported by C.N.R., M.LU.R. (Italy) and N.S.E.R.C. (Canada).
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pseudo/lax (resp. colaxlpseudo) when the original left (resp. right) adjoint is exact
(5.4). This and other examples are examined in Section 5.

Of course, the composition of a lax and a colax double functor has poor proper-
ties and no comparison cells for vertical composition of arrows. Thus, a colax/lax
adjunction F -| R will be defined through the interplay of the comparison cells of
F and R, instead of the lacking comparison cells of RF and FR (cf. 3.2); in
other words, it cannot be seen as an adjunction in a bicategory. Nevertheless, it has
a formal description, as an ’orthogonal adjunction’ within Dbl, a strict double

category studied in Section 2 and consisting of pseudo double categories, with lax
and colax double functors as horizontal and vertical arrows, respectively, and
suitable double cells.

More particular adjunctions, of type pseudo/lax (resp. colax/pseudo), are studied
in Section 4 and reduced to adjunctions in the 2-category LxDbl (resp. CxDbl)
of double categories, lax (resp. colax) double functors and horizontal transforma-
tions ; both of them sit inside Dbl (end of 2.2).

- Limits and colimits are well behaved with unitary adjunctions (6.2, 6.3), and a
lax functorial choice of I-limits in A (Part I) amounts to a unitary lax double
functor Al - A right adjoint to the diagonal (6.5). Finally, we study ’double
monads’. The classical 1-dimensional theory of monads, when extended to weak
double categories, splits into two ’standard’ cases, treated in Section 7: colax
monads have standard Eilenberg-Moore algebras and are linked with colaxlpseudo
adjunctions, while lax monads have standard Kleisli algebras and are linked with
pseudollax adjunctions. On the other hand, the construction of Eilenberg-Moore
algebras for a lax monad should be performed via coequalisers of free algebras,
extending a similar construction for 2-categories (cf. Guitart [Gu], Carboni-
Rosebrugh [CR]); this will not be dealt with here.

The theory of double categories, established by Ehresmann [E1, E2], has not yet
been extensively developed. The interested reader can see [BE, Da, DP1, DP2, Da,
BM], and [BMM] for applications in computer science.

Outline. The first section studies the connections between horizontal and vertical

morphisms in a double category: horizontal morphisms can have orthogonal
companions and orthogonal adjoints. Then, in Section 2, lax and colax double
functors between weak double categories are organised in the strict double category
Dbl, as horizontal and vertical arrows, respectively. The theory of adjunctions
between weak double categories, from their definition to various characterisations,
examples and relations with double limits, is dealt with in the next four sections.
We end with studying lax and colax monads, in Section 7.
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1. Orthogonal companions and adjoints

This section studies the connections between horizontal and vertical morphisms in
a double category: horizontal morphisms can have vertical companions and vertical
adjoints. Such phenomena, which are interesting in themselves and typical of double
categories, already appeared to a limited extent in Part I (cf. 1.5). A is always a
(unitary) pseudo double category.

1.1. Basics. For double categories, we generally use the same terminology and
notation as in Part I. The composite of horizontal arrows f: A - A’, g: A’ - A"

is written gf, while for vertical arrows u: A - B, v: B - C we write uov or

v-u. The boundary of a double cell a, consisting of two horizontal arrows and
two vertical ones

will be displayed as a: (u f v), or sometimes as a: u - v. If f, g are identities,

a is said to be a special cell and displayed as a: (u A v) or a: u - v. The hori-

zontal and vertical compositions of cells are written as (a |B) and (g), or more

simply as ajp and aOy. Horizontal identities, of an object or a vertical arrow, are
written as 1 A, 1 u: (u A B u); vertical identities as 1 Å’ 1°f: (A f A’).

Let us recall that, in a pseudo double category A (I.1.9; 1.7.1), or weak double
category, the horizontal structure behaves categorically, while the composition 0 of
vertical arrows is associative up to comparison cells a(u, v, w): (uov)ow 24
uo(vow); these are special cells (i.e., their horizontal arrows are identities), and
actually special isocells - horizontally invertible. On the other hand, it will be useful
to assume that vertical identities are strict, i.e. behave as strict units, a constraint
which can generally be met without complication (cf. 1.3). Thus, a weak double
category A contains a category Ao (objects, horizontal arrows, their composition)



196 -

and a category A1 1 (vertical arrows, cells, their horizontal composition), plus the
remaining structure making it a pseudo category object in Cat (cf. 1.7).

It will also be useful to recall that, in A, the existence of a special isocell X: u =
u’ yields an equivalence relation for parallel vertical arrows, consistent with vertical
composition. Similarly, the relation a = a’ (there exist two special isocells k: u =

u’, 03BC : v = v’ such that (a |03BC) = (h]a’)) is an equivalence relation for double cells
having the same horizontal arrows, consistent with vertical composition, but not
with the horizontal one (because the vertical arrows of equivalent cells are not
fixed). Therefore, the double graph A/= is just a 1-dmensional category: the
strictification of A is more complicated (1.7.5).

The expression ’profunctor-based examples’ will refer to the following pseudo
double categories, treated in Part I: C at (formed of categories, functors and
profunctors, 1.3.1), Set (sets, mappings and spans, 1.3.2), Pos (preordered sets,
monotone mappings and order ideals, 1.3.3), Mtr (generalised metric spaces, weak
contractions and metric profunctors, 1.3.3), IIBeI (sets, mappings and relations,
1.3.4), RelAb (abelian groups, homomorphisms and relations, 1.3.4; see also
5.4), Rng (unitary rings, homomorphisms and bimodules, 1.5.3). In C at, a

profunctor u: A - B is defined as a functor u: A°PXB - Set.

We also consider Ehresmann’s double category of quintets QA on a 2-category
A ([El, E2]; 1.1.3), where a double cell a : (u f v) is defined as a 2-cell a:

vf - gu of A. If A is just a category (with trivial cells), such double cells
reduce to commutative squares, and QA will be written as 0 A.

A weak double category A contains a bicategory VA of vertical arrows and
special cells, as well as (because of unitarity) a 2-category HA of horizontal

arrows and ’vertically special’ cells (I.1.9).

1.2. Orthogonal companions. In the pseudo double category A, the horizon-

tal morphism f: A - B and the vertical morphism u: A - B are made compan-
ions by assigning a pair (n, E) of cells as below, called the unit and counit, satisfy-
ing the identities n|e = 1 f, n@E = 1u
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Given f, this is equivalent (by unitarity, again) to saying that the pair (u, E)
satisfies the following universal property:

(a) for every cell e’: (u’ f B) there is a unique cell X: (u’A g u) such that E’ = h|eg g

In fact, given (11, E), we can (and must) take k = n@e’ ; on the other hand,
given (a), we define n: (A A f u) by the equation n|e = 1 f and deduce that n@e = lu
because (n®e) E = (n|e)®e = E = (lu |e). Similarly, also (u, 11) is characterised by
a universal property

(b) for every cell n’: (A g u’) there is a unique cell g: (u9u’) such that n’ = n|03BC.

Therefore, if f has a vertical companion, this is determined up to a unique
special isocell, and will often be written f.. Companions compose in the obvious

(covariant) way: if g: B - C also has a companion, then g*f*: A - C is

companion to gf: A - C, with unit (

Companionship is preserved by unitary lax or colax double functors (cf. 2.1).
We say that A has vertical companions if every horizontal arrow has a vertical

companion. All our profunctor-based pseudo double categories (1.1) have vertical
companions, given by the obvious embedding of horizontal arrows into the vertical
ones. For instance, in Cat, the vertical companion to a functor f: A -&#x3E; B is the

associated profunctor f* : A -o&#x3E; B, f*(a, b) = B(f(a), b). Also Q A (1.1) has

companions: for a map f, take the same arrow (or any 2-isomorphic one). In Rng,
f* is the bimodule B, with A-structure induced by f.

Companionship is simpler for horizontal isomorphisms. If f is one and has a

companion u, then its unit and counit are also horizontally invertible and determine
each other:

as it appears rewriting (e |1°g |n) as follows, and then applying middle-four
interchange
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Conversely, the existence of a horizontally invertible ceU’l1: (A f u) implies that
f is horizontally invertible, with companion u and counit as above.

1.3. Orthogonal adjoints. Transforming companionship by vertical (or
horizontal) duality, the arrows f: A - B and v: B - A are made orthogonal
adjoints by a pair (a, B) of cells as below

with alf3 = 1 f and B@a = lv. Then, f is the horizontal adjoint and v the vertical
one. (In the general case, there is no reason of distinguishing ’left’ and ’right’, unit
and counit; see the examples below). Again, given f, these relations can be

described by universal properties for (v, 0) or (v, a)

(a) for every cell 13’: (v’ g B) there is a unique cell X: (v’9v) such that 13’ = h|B,

(b) for every cell a’: (A f v’) there is a unique cell g: (v B g v’) such that a’ = alg.
The vertical adjoint of f is determined up to a special isocell and will often be

written f*. Vertical adjoints compose, contravariantly: f*g* gives (gf)*.
A has vertical adjoints if each horizontal arrow has a vertical adjoint. All our

profunctor-based examples are so. For instance, in Cat, the vertical adjoint to a
functor f: A - B is the associated profunctor f*: B - A, f*(b, a) = B(b, f(a));
in Rel, the vertical adjoint of a function f: A -&#x3E; B is the reversed relation f#:
B -o&#x3E; A, with a: 1  t*f, 13: ff#  1. On the other hand, QA does not have (all)
vertical adjoints, since our data amount to an adjunction in the 2-category A, v -
f, with a: vf - 1, 13: 1 - fv. In o A, this means that f is iso and v = f"l.
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1.4. Proposition. Let f: A -&#x3E; B have a vertical companion u: A - B. Then

v: B - A is vertical adjoint to f if and only if u - v in the bicategory VA (of
vertical arrows and special cells, 1.1).

Proof. Given four cells 11, E, a, J3 as above (1.2, 1.3), we have two special cells
n@a : 1* -&#x3E; uOv, B@e : u(8)v --.. 1*, which are easily seen to satisfy the triangle
identities in VA. The converse is similarly obvious. 0

1.5. Theorem (Horizontal invariance). In a pseudo double category A, the
following properties are equivalent:

(a) every horizontal iso in A has a vertical companion,

(b) every horizontal iso in A has a vertical adjoint,

(c) every horizontal iso in A is a sesqui-isomorphism (1.2.3),

(d) A is horizontally invariant (1.2.4).

(The last two definitions are recalled in the proof. Property (d) ensures that double
limits in A are ’vertically determined’, by the Invariance Theorem, 1.4.6).

Proof. First, let us recall that a map f: A - B is said to be a sesqui-isomorphism
(1.2.3) if there exist two horizontally invertible cells 11, a as in the left diagram

Then, we already know (by 1.2 and horizontal duality) that: f is a horizontal

iso; it has a vertical companion u, via 11 and E = (n-1|1°f); it has a vertical adjoint
v, via a and 0 = (a-1|1°f). Note also that, in the diagram above, u and v form
a vertical equivalence: u@v = 1 Å’ v@u = 1°B. We also know that it is equivalent to
assign 11 or e; as well as a or fl (when all of them are horizontally invertible).

Conversely, if two inverse horizontal isos f, g have companions u = f*, v =

9*, then we know that all their units and counits are horizontally invertible (1.2); f
and g are easily seen to be sesqui-isomorphisms (defining a with the unit of g).
We have thus proved that (a) and (c) are equivalent; by horizontal duality, also

(b) is equivalent to (c).
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Finally, the last property, horizontal invariance (L2.4), means that, given two
horizontal isos f, g and a vertical arrow x as below, there exists a horizontally
invertible cell A.

In fact, assuming (a) and (b), h can be obtained as a vertical composite of three

horizontally invertible cells, e: (u f B), 1u and 13: (v y Y), where u: A - B is

companion to f and v: Y - X is vertical adjoint to g. Conversely, assuming
(d), each horizontal iso has two horizontally invertible cells n : (y f B), 13: (v B B),
whence it is a sesqui-isomorphism. 0

1.6. Orthogonal flipping. Assume that the horizontal map f: A - B has a

vertical companion f*: A - B; then there is a bijective correspondence between
cells cp and cells B11, as below, whose boundaries are obtained by ’flipping’ f to

f. or vice versa 
’

The correspondence is obtained through the cells 11, E of the companions f, f.
(and bijectivity follows from the unitarity of A)

By horizontal and vertical duality, the previous statement has three other forms,
which establish a bijective correspondence between cells gi and ivi as below (in
the last two cases, flipping f to its vertical adjoint f*)
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Starting from a given cell, and applying the flipping process to various arrows,
successively, one can o, ften show that the final result does not depend on the order
of such steps, because of the normal ity of the ternary compositions involved (1.1 ).
For instance, if the maps f and g have vertical companions (resp. vertical
adjoints) in A, to assign a cell (p: (u f v) is equivalent to assigning a special cell
(ç#, its companion (resp. ç#, its adjoint)

1.7. Theorem. (a) The functor of quintets, Q: 2-Cat - Dbl (with values in the
category of double categories and strict double functors) has a right adjoint C ,
constructed with companion pairs.

(b) The functor Qv : 2-Cat - Dbl, obtained by composing Q with vertical dual-

ity of double categories, has a right adjoint A constructed with pairs of orthogonal
adjoints. 

Proof. (a) The right adjoint C associates to a double category D the 2-category
CD whose arrows are companion pairs (f, u; 1’), E): A - B in D (with composi-
tion as in 1.2), and whose cells
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consist of a double cell cp: (A f g B) or - equivalently - of its companion, the special
cell ç #: (v A B u) 

For this adjunction, the counit double functor Q CD - D is the identity on
objects; moreover, it sends a (declared) horizontal arrow (f, u, n, c): A -&#x3E; B to f,
a (declared) vertical arrow (f, u, n, c): A -o&#x3E; B to u, and a double cell of quintets

to its pre-companion o: (u h v) (as considered at the end of 1.6).

(b) Similarly, the functor A right adjoint to QV yields a 2-category A D whose

maps are pairs of orthogonal adjoints (f, u; a, 0): A - B; the counit Qv AD-&#x3E; D
sends a vertical arrow (f, u; a, (3): A -+ B to u: B -o&#x3E; A, and so on. 0

1.8. Theorem (Orthogonal completions). Let A be a 2-category.
(a) QA is the companion completion of HA, the double category with trivial verta’-
cal arrows and cells as in A. Precisely, if the pseudo double category X has verti-
cal companions and F: HA - X is a double functor, there is an essentially unique
pseudo double functor G: QA -&#x3E; X which extends F and preserves companions.

(b) By vertical dual ity, QvA is the completion of HA by vertical adjoints.

Proof. It is sufficient to prove (a). Take in X a unitary choice of vertical
companions f., with special isocells x(f, g): (gO* -+ f.0g.. To extend F, we
define G: QA - X on a (declared) vertical arrow u: A -o&#x3E; B of QA and a cell
a: (u f g v) (i.e., a: vf -&#x3E; gu: A - D in A), as
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where Ga is companion to Fa: (1° Fv.Ff Fg. Fu 18), a ’vertically special’ cell of X . G

is then a pseudo double functor, with special comparison isocells y(u, v) =
x(Fu, Fv) : G(u®v) -&#x3E; Gu0Gv. a

2. Lax and colax double functors

The strict double category Dbl is a crucial, interesting structure where our
adjunctions will live; it consists of pseudo double categories, lax and colax double
functors, with suitable cells. Comma double categories are also considered.

2.1. Lax functors. Let us recall their definition. Note that, while a pseudo
double category is always assumed to be unitary, lax double functors are not
(because there are important examples of lax right adjoints which are not unitary, cf.
5.2, 5.3b).

A lax double functor R: A - X between pseudo double categories amounts to
assigning:

(a) two functors Ri: Ai -&#x3E; Xi for i = 0, 1 (cf. 1.1 ), consistent with domain and

codomain,

(b) for any object A in A, a special cell, the identity comparison pA :

1°RA -&#x3E; R(1°A): RA - RA (also denoted R[A]),
(c) for any vertical composition uov: A - B - C in A, a special cell, the
composition comparison p(u, v): Ru@Rv -&#x3E; R(uov): RA - RC (also denoted
R[u, v]),

satisfying the following axioms:

(i) (naturality) for a horizontal map f: ,

(ii) (natural ity) for a vertical composition of cells a®b, we have (Ra Rb |p(u’, v’))
= (p(u,v) | R(a@b)) 

Rb
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(iii) (coherence laws for identities) for a vertical map u: A - B, the following
diagrams of special cells are commutative

(iv) (coherence hexagon for associativity) for consecutive u, v, w in Â, the

following diagram of special cells is commutative (a denotes the associativity
isocells, in A and X)

The lax double functor R is said to be unitary if its unit comparisons pA are
identities; then, by (iii), also the cells p(1°, u) and p(u, 1*) are.

A colax double functor F: A - X has comparison cells in the opposite direc-
tion, çA: F(1°A) -&#x3E; ’;A and cp(u, v): F(u@v) -&#x3E; FuoFv. A pseudo double
functor is a lax one, whose comparison cells are special isocells (horizontally invert-
ible) ; or, equivalently, a colax one satisfying the same condition. Note that a pseudo
double functor can always be made unitary.

2.2. The double category Dbl. Lax and colax double functors do not compose
well. But they can be organised in a strict double category Dbl, -crucial for our

study, where orthogonal adjunctions will provide our general notion of double
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adjunction (Section 3) while companion pairs amount to pseudo double functors
(Section 4).

Its objects are the pseudo double categories Â, 1m ,...; its horizontal arrows are
the lax double functors R, S...; its vertical arrows are the colax double functors F,
G... A cell a

is - roughly speaking - a ’horizontal transformation’ a: GR - SF (as stressed
by the arrow we are placing in the square). But this is an abuse of notation, since
the composites GR and SF are neither lax nor colax (just morphisms of double
graphs, respecting the horizontal structure): the coherence conditions of a will

require the individual knowledge of the four ’functors’ and their comparison cells.

Precisely, the cell a consists of the following data: two lax double functors R,
S, two colax double functors F, G

(c) maps aA: GR(A) - SF(A) and cells au in D (for A, u: A - A’ in A)

satisfying the naturality conditions (cO), (cl) (the former is redundant, being
implied by the latter) and the coherence conditions (c2), (c3)
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The horizontal and vertical composition are both defined via the horizontal
composition of D

Thus, these compositions are both strictly associative. They satisfy the middle-
four interchange law: in (3), computing (a p)0(y j 8) and (a0y) j |(pB@d) on u:

A -o&#x3E; A’, we obtain the cells



207

where the equality (H’S’au |BSFu) = (6GRu T’G’au), for the central pastings
above, amounts to the naturality of the Dbl-cell 8: (G’S’ T’ H’) on the cell au.

Finally, to show that the cells defmed in (4) are indeed coherent, let us verify the
condition (c3) for (a |B), with respect to a vertical composition w = uov in A.
Writing cells as arrows between their vertical arrows, our property amounts to the
commutativity of the outer diagram below, in D

and, indeed, the two hexagons commute by (c3), for a and 13; the upper parallel-
ogram commutes by naturality of 13; the lower one by consistency of S’ with the
cells au, av (2.1 (ii)).

Within Dbl, we have the strict 2-category LxDbl of pseudo double
categories, lax double functors and horizontal transformations: namely, LxDbl =

H(Dbl) is the restriction to trivial vertical arrows (1.1). Similarly, we have the strict
2-categories CxDbl (= H(Dblt)) and PsDbl, whose vertical arrows are the

colax or pseudo double functors, respectively. Even more interestingly, inside Dbl
we have horizontal transformations from lax to colax double functors a: R -&#x3E; F:

A - B (take G = S = idB in (1)) and their compositions; as well as from colax
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to lax ones, a: G - S: C - D (take R = S = idC in (1)). This will be of use

(for instance, in 4.2).

Viewing bicategories in LxDbl, as vertical pseudo double categories, we have
a 2-category of bicategories, lax functors and special transformations a: R -&#x3E; S,
whose components are identities and special cells

(8) aA = 1: RA - SA, au: (Ru RA RA’ Su),

which is only possible if R and S coincide on objects. Fixing the class of objects,
this is precisely the 2-category considered by Carboni and Rosebrugh to define lax
monads of bicategories ([CR], Prop. 2.1). Note, on the other hand, that lax
functors and lax transformations of bicategories (or 2-categories) do not form a
bicategory.

2.3. The double category M cat. The strict double category Dbl has a full
double subcategory Meat of monoidal categories (viewed as vertical double
categories on one formal object *, vertical arrows A: * -o&#x3E; * and cells a: A -&#x3E;

A’; the vertical composition is the tensor product).
The horizontal arrows of Meat are the monoidal functors (lax with respect to

tensor product); the vertical arrows are the comonoidal functors (which are colax).
A cell a: (F R S G) associates to every object A in A an arrow aA: GRA - SFA
in D, satisfying the naturality condition (c1) and the coherence conditions (c2, 3)
of 2.2; these amount to the commutativity of the diagrams below (where the lax
monoidal functor R has comparison arrows p = p(*): I -&#x3E; RI, p(A, A’):
RA@RA’ -&#x3E; R(A@A’), and so on; the identity of tensor products are always
written as I =1°*)
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The horizontal and vertical composition are defined as above (2.2.4)

We prove now that internal monoids provide an interesting lax double functor
from Mcat to Cat.

2.4. Theorem. There exists a lax double functor Mon: M cat -&#x3E; Cat. In this

transformation, a monoidal category V is sent to the category Mon(V) of
monoids in it, a monoidal functor R: V - W (which preserves monoids) lifts to a
functor Mon(R): Mon(V) - Mon(W), while a comonoidal functor F: V - V’
induces a profunctor Mon(F): Mon(V) -&#x3E; Mon(V’).

Proof. The beginning of the statement being obvious, let us define the associated
profunctor Mon(F): Mon(V) - Mon(V’). Given two monoids M, N in V and
V’, respectively, the set Mon(F)(M, N) consists of all morphisms f: FM - N

in V’ which make the following diagrams commute

Now, given a cell a in M cat, as in the left diagram below, we define the
corresponding cell Mon(a) between functors and profunctors
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by a natural transformation whose general component on M, N is

Finally, given a comonoidal functor F’: V’ -&#x3E; V" composable with F, one
constructs the special cell g(F, F’) in C at (the laxity comparison for vertical
composition), as the following natural transformation of profunctors

where f: FM -&#x3E; N and g: F’N - P are in V’ and V", while the class [f, g]
belongs to the composition-colimit (Mon(F)@Mon(F))(M, P). o

2.5. Commas. Given a colax double functor F and a lax double functor R with
the same codomain, we can construct the comma pseudo double category F 11 R,
where the projections P and Q are strict double functors, and n is a cell of Dbl

An object is a triple (A, X; c: FA - RX); a horizontal morphism (a, x):
(A, X; c) - (A’, X’; c’) comes from a commutative square of C, as in the left

diagram
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their composition is obvious. A vertical arrow (u, v; y): (A, X; c) -o&#x3E; (B, Y; d)
comes from a cell y: (Fu c Rv) in C, as in the right diagram above; their composi-
tion does require F colax and R lax

A cell (a, Z) is a pair of cells a:(u a b u’), Z:(v x y v’) in A and X, such that Fa
and RS are coherent with y, y’ in C

Their horizontal and vertical compositions are obvious.

The associativity isocell for three consecutive vertical arrows (u, v; y),
(u’, v’; d), (u", v"; e) is the pair (a(u), 4(v)) of associativity isocells of A, X for

the triples u = (u, u’, u"), v = (v, v’, v")

Denoting by G, (D’ the pasted cells (6), (7) of the two ternary composites, the
coherence of the preceding cell (5) is expressed by the equality (Fa(u) |G’) = (G I
R4(v)), which comes from the coherence axioms on F, R and C (write ui =

(UOU’)OU", U2 = uo(u’ou"), and similarly v1, V2)
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Finally, P and Q are projections; the components of n on objects and vertical
arrows are:

2.6. Theorem (Universal properties of commas). (a) For a pair of lax double
functors S, T and a cell a as below (in Dbl) there is a unique lax double functor
L: Z - F || R such that S = PL , T = QL and a = (B|n) where the cell 13 is

defined by 1: QL - T (a horizontal transformation of lax double functors)

Moreover, L is pseudo if and only if both S and T are.

(b) A similar property holds for a pair of colax G, H and a cell a’: (G I FH).
Proof. (a) L is defined as follows on items of Z: an object Z, a horizontal

arrow f, a vertical arrow u, a cell cp

The comparison special cells L[-], for Z and w=u0v in Z, are constructed
with the laxity cells S[-] and T[-] (and are invertible if and only if the latter are)

Here, Lu@Lv and L(u0v) are the cells below
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and the coherence condition on

follows from the coherence condition of a as a cell in Dbl

Uniqueness is obvious. 0

2.7. One-sided commas. (a) As a consequence of the previous theorem, the
double comma F || B of a colax double functor F: A -o&#x3E; B is the tabulator of F in

Dbl: it comes equipped with horizontal arrows P, Q and a cell n as below, so that
any similar cell a: (1 S T F) (with S, T lax) factors through it, by a unique lax
double functor L

Indeed, the 1-dimensional universal property of tabulators follows directly from
2.6. Then one shows that tabulators in Dbl are lax functorial (1.4.3), which
implies the 2-dimensional property.
(b) Similarly, for a lax double functor R: A -&#x3E; B, the double comma 1m URis the
tabulator of F in the transpose double category Dblt.
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3. Double adjunctions

The general case, called a ’colax/lax adjunction’, is defined as an orthogonal
adjunction in Dbl. See [Ke] for related work.

3.1. Colax/lax adjunctions. An orthogonal adjunction (F, R) in Dbl (1.3)
gives a notion of adjunction (n, E): F - R between pseudo double categories,
which occurs naturally in various situations: the left adjoint F: A - B is colax, the

right adjoint R: B - A is lax, and we have two Dbl-cells 1’), e

satisfying the triangle equalities n@e = 1F and e|n = 1;. (As in 2.2, the arrow of a
colax double functor is marked with a dot when displayed vertically, in Dbl.)

This general adjunction will be said to be of colaxllax type. We speak of a
pseudo/lax (resp. a colaxlpseudo) adjunction when the left (resp. right) adjoint is
pseudo, and of a pseudo adjunction when both adjoints are pseudo (replacing
pseudo with strict when it is the case). For instance, an ordinary adjunction between
abelian categories has a colax/lax extension to their double categories of relations,
which is pseudo/lax (resp. colax/pseudo) when the left (resp. right) adjoint is exact
(5.4). This and other examples will be examined in Section 5.

From general properties (1.3), we already know that the left adjoint of a lax
double functor R is determined up to isomorphism (a special isocell between verti-
cal arrows in Dbl) and that left adjoints compose, contravariantly. Similarly for
right adjoints. As in 2.2, we may write 11: 1 - RF, by abuse of notation; but one
should recall that the coherence condition of such a transformation works through
the interplay of the comparison cells of F and R. Similarly for E: FR - 1.

Therefore, a general colax/lax adjunction cannot be seen as an adjunction in some
bicategory; but we shall prove in the next section that this becomes legitimate in the
pseudo/lax or colaxlpseudo case.

3.2. Description. To make the previous definition explicit, a colax/lax adjunction
(n, e): F -| R between the pseudo double categories A, B consists of:
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(a) a colax double functor F: A - B, with comparison cells cpA: F(1°A) - 1 FA,
ç(u, u’): F(uou’) - FuoFu’),

(b) a lax double functor R: B -&#x3E; A, with comparison cells pB: 1°RB - R(1°B ),
p(v, v’): Rv@Rv’ -&#x3E; R(vov’)),

(c) two ordinary adjunctions at the levels i = 0, 1 (cf. 1.1 ), respecting domain and
codomain

which means that we are assigning:
- horizontal maps nA: A - RFA and cells nu: (u A, RFu) in A,

. 

nA’ RFu) .

- horizontal maps eB : FRB - B and cells sv: (FRv ’B v) in B,

satisfying the naturality conditions and the triangle identities (which we state at level
1, since this also implies level 0), on a: (u f u’) in A and b: (v91 v’) in B

(d) finally, the following conditions of coherence with the vertical operations are
required (in terms of the comparison cells of F and R):

(d1) (coherence of T1 and E with identities) for A in A and B in B

and R are unitary),
and R are unitary);

(d2’) (coherence of T1 with vertical composition) for u" = uou’ in A



216

(d2") (coherence of c with vertical composition) for v" = v(gv’ in B

3.3. Remarks. (a) In this colax/lax adjunction, the comparison cells of R,
together with the unit 11, determine the comparison cells of F. In fact, the first

equation in (dl) says that the adjoint cell of cpA, i.e. (çA)’ = (n1°A| RcpA), must be
equal to (1°nA pFA). Similarly for ç(u, u’), from (d2’).
(b) If the weak double category B is horizontally invariant (1.5), as all our
examples of real interest, Lemma 1.2.5 proves that the colax adjoint F: A - B is

also vertically determined, up to vertical equivalence, by R. In fact, a horizontal
invertible transformation cp: F -&#x3E; F’ produces a strong vertical transformation p:

F -o&#x3E; F’, whose general component pA: FA - F’A is a vertical equivalence
associated to the horizontal isomorphism cp: FA = F’A (1.2.3), and determined as
such up to a special isocell.

3.4. Theorem (Characterisation by hom-sets). An adjunction (n, c): F -| R can
equivalently be given by a colax double functor F: A - B, a lax double functor
R:B -&#x3E; A, two functorial isomorphisms Ho and Hl

whose components are consistent with domain, codomain and the vertical structure

(through the comparison cells of F and R), i.e. satisfy the following conditions
(cf. 1.1)

(ad.0) Ho has components H(A, B): Bo(FA, B) - Ao(A, RB),

(ad.1) HI has components H(u, v): B1(Fu, v) - A1(u, Rv), which take a cell
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Proof. We have only to verify the equivalence of 3.2.1-4 with the conditions
above. To show, for instance, that 3.2.3 implies the second identity of (ad.2),
consider that H is defined by the unit 11 as

whence (applying (2), 3.2.3 and 2.1 (ii)):

3.5. Corollary (Characterisation by commas). An adjunction amounts to an
isomorphism of pseudo double categories H: F || B - A || R, over A x B

Proof. It is a straightforward consequence of the previous theorem. 0

3.6. Theorem (Right adjoint by universal properties). Given a colax double
functor F: A - B, the existence (and choice) of a right adjoint lax double functor
R amounts to two conditions (rad.0-1) (including two choices):

(rad.0) for every object B in B there is a universal arrow (RB, EB : F(RB) -&#x3E; B)
from the functor Fo to the object B (and we choose one),
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- explicitly, the universal property means that, for each A in A and g: FA - B
there is a unique f: A -&#x3E; RB such that g = EBoFf: FA - F(RB) -&#x3E; B;

(rad.l) for every vertical map v: B -o&#x3E; B’ in B there is a universal arrow

(Rv, Ev) from the functor FI to the object v of B I (and we choose one); more-
over, ev: (FRV eB eB’ v),
- explicitly, for each vertical arrow u: A -- A’ in A and each cell b: (Fu 91 v) in

B, there is a unique cell a: (u f Rv) in A such that b = (Fa |ev).
The comparison cells pB: 1°RB -&#x3E; R(1°B) and p(v, v’): Rv@Rv’ -&#x3E; R(vev’) of

R are provided by the universal properties of E, as the unique solution of the
equations 3.2.2, 3.2.4, respectively; and R is pseudo if and only if all such cells
are (special) isocells.

Proof. Write the comparison cells of F as usual: cpA, cp(u, u’). The conditions
(rad.0-1 ) are plainly necessary.

Conversely, (rad-0) provides an ordinary adjunction (110, e0): Fo -| Ro for the
categories Ao, Bo, so that R, 11 and e are correctly defined - as far as objects,
horizontal arrows, their horizontal composition and horizontal identities are
concerned.

Adding (rad.1), R, 11 and E are (correctly) defined as far as objects, arrows,
cells, horizontal composition and identities are concerned. In particular, the cells
Rb, qui are defined as the unique cells of A satisfying the equations (1) and (2),
respectively

Now, define the R-comparison cells p as specified in the statement, so that the
coherence properties of c are satisfied (3.2.2, 3.2.4). One verifies easily, for such
cells, the axioms of naturality and coherence (2.1).

Finally, we have to prove that q: 1 -&#x3E; RF satisfies the coherence property
3.2.3, with respect to u0u’ in A (and similarly 3.2.1). By the universal property
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of c, it will suffice to show that (F- e(Fu@Fu’)) takes the same value on both

terms of 3.2.3. In fact, on the left-hand term (nu" I Rçp(u, u’)) we get (p(u, u’)

(3) (Fnu" FRcp(u, u’) e(Fu0Fu’)) = (Fnu" |eFu" I o(u, u’)) = (p(u, u’);

but we get the same on the right-hand term ((nu@nu’) p(Fu, Fu’)), using 3.2.4,
the naturality of ç, the middle four interchange in B and a triangle identity

3.7. Theorem (Factorisation of adjunctions). Let F -| R be a colaxJlax adjunc-
tion between A and B. Then, using the isomorphism of double categories H:
F || B -&#x3E; AUR (Corollary 3.5), we can factor it as

- a coreflective colax/strict adjunction F - P (with unit PF’ = 1),
- an isomorphism H - frl,
- a reflective strict/lax adjunction Q - R’ (with counit QR’ = 1),
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where the comma projections P and Q are strict double functors.

Proof. We defme the lax double functor R’: B - A U R by the strong universal
property of commas (2.6a), applied to R: B - A, 1: B -&#x3E; B and a = 1R, as in

the diagram below

(2) R’(B) = (RB, B; 1: RB - RB), R’(v) = (Rv, v; lRv),

Similarly, we define the colax F’: A - PUB by the dual result (2.6b)

The coreflective adjunction F’ --i P is obvious

as well as the reflective adjunction Q - R’ and the factorisation above. 0

4. Adjunctions and pseudo double functors

We consider now adjunctions where the left or right adjoint is pseudo. Adjoint
equivalences of pseudo double categories are introduced.

4.1. Double adjunctions and 2-adjunctions. Let us recall, from 3.1, that a
pseudo/lax adjunction F -| R is a colax/lax adjunction between pseudo double
categories where the left adjoint F is pseudo. Then, the comparison cells of F are
horizontally invertible and the composites RF and FR are lax double functors; it
follows (from the definition, 2.2) that the unit and counit are horizontal transforma-
tions of such functors. Therefore, a pseudollax adjunction gives an adjunction in the
2-category LxDbl of pseudo double categories, lax double functors and horizontal
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transformations (2.2); and we shall prove that these two facts are actually equivalent
(Theorem 4.3).

Dually, a colax/pseudo adjunction, where the right adjoint R is pseudo, will
amount to an adjunction within the 2-category CxDbl of pseudo double
categories, colax double functors and horizontal transformations. Finally, a pseudo
adjunction, where both F and R are pseudo, will be the same as an adjunction in
the 2-category PsDbl, whose vertical arrows are the pseudo double functors.

4.2. Theorem (Companions in Dbl). A lax double functor R has an orthogonal
companion F in Dbl if and only if it is pseudo; then one can define F = R. as the
colax double functor which coincides with R except for comparison cells ç = p-1,
horizontally inverse to the ones of R.

Proof. If R is pseudo, it is obvious that R*, as defined above, is an orthogonal
companion.

Conversely, suppose that R: A - B (lax) has an orthogonal companion F
(colax). There are thus two cells 11, E in Dbl

which satisfy the identities n|e = 1°R, n@e = 1F. This means two ’horizontal

transformations’ n : F - R, E: R - F, as defined in 2.2; for all u: A - A’ in

A, we have cells qu and eu in B which are horizontally inverse

because of the previous identities (cf. 2.2.4 for pastings)

Applying now the coherence condition (c3) (in 2.2), for the transformations t’I,
c (and w=u0v in A), we find
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Since all il-cells and E-cells are horizontally invertible, this proves that p(u, v)
has a left and right horizontal inverse: R is pseudo (and F is horizontally isomor-
phic to R*).

4.3. Theorem. (a) (Pseudo/lax adjunctions). Any adjunction F -| R in the 2-
category LxDbl has F pseudo and is a pseudollax adjunction (cf. 3.1 or 4.1).

(b) (Colax/pseudo adjunctions). Any adjunction F -| R in the 2-category CxDbl
has R pseudo and is a colaxlpseudo adjunction (3.1, 4.1).

More formally, (a) can be rewritten saying that, in Dbl, if the horizontal arrow
R has a ’horizontal left adjoint’ F (within the horizontal 2-category HDb1 =

LxDbl), then it also has an orthogonal adjoint G (colax). (Then, applying 1.4, it
would follow that F and G are companions, whence F is pseudo, by 4.2, and
isomorphic to G.)

Proof. Let the lax structures of F and R be given by the following comparison
cells, where u" = uou’ and v" = vev’ (and similarly for vertical identities)

We construct now a colax structure cp for F

and prove that cp(u, u’) and x(u, u’) are horizontally inverse:

(by naturality of c, 3.2),

(by (2) and a triangle identity);

(by naturality),

(by middle-four interchange),

(by a triangle identity and unitarity of B). 0
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4.4. Equivalences of pseudo double categories. An adjoint equivalence
between two pseudo double categories A and B will be a pseudo adjunction
(n, E): F - R where the horizontal transformations 11: 1A -&#x3E; RF and E: FR -&#x3E; 1B
are invertible.

The following properties of a pseudo double functor F: A - B will allow us to
characterise this fact in the usual way (under a mild restriction, cf. 4.5):

(a) We say that F is faithful if the ordinary functor Fl: A I - B1 (between the

categories of vertical arrows and double cells) is such: given two double cells a, a’:

u - u’ of A between the same vertical arrows, F(a) = F(a’) implies a = a’.

Plainly, this implies that also the functor Fo: Ao - Bo (between the categories of
objects and horizontal arrows) is faithful.

(b) Similarly, we say that F is full if F1: A I - B I is: for every double cell b:

F(u) - F(u’) in B, there is a cell a: u -&#x3E; u’ in A such that F(a) = b. Again, it
follows that also Fo: Ao - Bo is full: for a horizontal map g: F(A) - F(A’),
there is a cell a: 1°A -&#x3E; 1°A’, such that F(a) = 1 g and both its horizontal arrows fi:
A - A’ satisfy F(fi) = g.

(c) Finally, we say that F is representative (or essentially surjective on vertical
arrows) if FI is: for every vertical arrow v: B -- B’ in B, there is some vertical
arrow u: A -o-&#x3E; A’ in A and some cell B: F(u) = v, horizontally invertible in B.
Again, this implies that also Fo is essentially surjective on objects.

4.5. Theorem (Characterisations of equivalences). Let F: A - B be a pseudo
double functor between two horizontally invariant pseudo double categories (1.5).
The following conditions are equivalent:

(i) F: A - B is (belongs to) an equivalence of pseudo double categories;

(ii) F is faithful, full and representative (4.4);

(iii) the ordinary functor F1: A 1 -&#x3E; B1 (between the categories of vertical arrows
and double cells) is an equivalence of categories.

Proof. By our previous definitions (4.4a-c), (ii) and (iii) only concern the ordinary
functor Fl, and are well-known to be equivalent. Moreover, if F belongs to an
adjoint equivalence (n, E): F -| R, then Fl is obviously an equivalence of
categories. Conversely, let us assume that F1 is an equivalence of ordinary
categories and let us extend the pseudo double functor F to an adjoint equivalence.

First, also Fo is an equivalence of categories (by 4.4) and we begin by
constructing an adjoint quasi-inverse Ro: Bo - Ao in the usual way: choose for
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every B some R(B) and some isomorphism eB:FR(B) -&#x3E; B; then a horizontal
morphism g: B - B’ in B is sent to the unique A -map R(g): R(B) - R(B’)
coherent with the previous choices (since Fo is full and faithful), while the

isomorphism l1A: A -&#x3E; RF(A) is determined by the triangle equations.
We proceed similarly for the next level, taking care that the new choices be

consistent with the previous ones: for every v: B -o-&#x3E; B’ in B we want to choose

some R(v): R(B) - R(B’) in A and some cell ev: FR(v) = v, horizontally
invertible in B. In fact, we can choose some u: A -o-&#x3E; A’ and some B: F(u) 6 v;
but then F(A) = B = FR(B) and there is some isomorphism f: R(B) = A, as

well as g: R(B’) = A’; now, by horizontal invariance of A, we can choose a
horizontally invertible cell x as in the left square below, and we define R(v) to be
its left vertical arrow

finally, we define sv = (Fh, |B): FR(v) - v, as in the right diagram above.
Now, a cell b: v - v’ in B is sent to the unique A -cell R(b): R(v) - R(v’)

satisfying the naturality condition for e: (FRb ev’) == (EV b) (since F1 is full and

faithful), and the isocell l1u: u - RF(u) is determined by the triangle equations.
We still have to define the comparison cells p of R, for vertical identities and

composition. These are uniquely determined by their coherence conditions (3.2)

One ends by proving that R is indeed a pseudo double functor and that also e

is coherent with the comparison cells of F and R:

5. Examples

Various double adjunctions show the role and necessity of (co)lax comparisons.
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5.1. Posets and metric spaces. We know that the double category Pos = 2-

C at of preordered sets, monotone mappings and poset-profunctors has a canonical
embedding M: Pos - Mtr in the double category Mtr = R+-Cat of (generalised)
metric spaces [La], weak contractions and profunctors, identifying a preordered set
with a metric space having distance in {0, +oo) , and similarly for profunctors
(1.3.3). It is easy to show that this embedding is reflective and lax coreflective, i.e.
has a left adjoint (reflector) P and a lax right adjoint (lax coreflector) Q

In fact, the functors M, P, Q are produced by a reflective and coreflective
embedding, at the level of the bases 2 and (R+, &#x3E;), realised by strictly monoidal
functors p - m - q 

The ’functions’ M, P, Q act likewise on objects and similarly on profunctors
(whereas they ’do not modify’ the horizontal arrows)

but M and P preserve (also) the vertical composition and are double functors
(since p and m preserve colimits, hence coends), while Q is unitary lax.

5.2. Sets and categories. At the level of 1-categories, there is a chain of

ordinary adjunctions between Cat and Set

where F = Ob is the forgetful functor of objects, D and C, respectively, associ-
ate to a set X its discrete category DX (one identity arrow lx, for each xE X)
and its codiscrete category CX (having precisely one morphism x - x’ for each
pair of elements of X); no takes a category A to its set of connected components.

Extending this chain to the pseudo double categories Cat (categories, functors
and profunctors) and Set (sets, mappings and spans), we find a colax/strict
adjunction no - D and a strict/lax adjunction D - F. First - viewing a span as a
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profunctor of discrete categories - the discrete embedding D: Set - Cat is a strict

double functor.

To define its (unitary) colax left adjoint no on profunctors, the set (n0u)(a, b)
is a quotient of lu(a, b), under the equivalence relation generated by identifying a
formal arrow x: a -o-&#x3E; b of u with all composites Bha : a’ - a -o-&#x3E; b -&#x3E; b’.

Then, the lax right adjoint F = Ob: Cat - Set of D assigns to a profunctor u:

A -o-&#x3E; B its restriction Fu: ObA -o-&#x3E; ObB; F is not unitary, as the vertical unit u of
a category A is taken to the set-profunctor Fu: ObA - ObA having Fu(x, y) =
A(x, y), with a comparison cell çA: 1FA -&#x3E; F1°A, which is invertible if and only if
A is discrete. (This fact will appear, in 6.3, to be linked with the fact that D does
not preserve cotabulators: in fact, cotabulators in Set are quotients of the
corresponding ones in Cat; cf. 1.6.4). Finally, F cannot have a (lax) right adjoint
because it is not pseudo (Theorem 4.3).

5.3. Spans and cospans. (a) The pseudo double categories Set = SpSet and
C ospSet of spans and cospans over Set (or any other category with pullbacks
and pushouts) are linked by an obvious colax/lax adjunction, which is unitary

At the level 0 (of sets and mappings), everything is an identity. At the level 1 (of
vertical arrows and cells), F operates by pushout over spans and cells, and R by
pullbacks; the special cells l1U and sv are obvious:

Finally, at the level 2, it is easy to check that F is a colax double functor

(dually, R is lax), with comparison cells cp: F(u@v) -&#x3E; Fu0Fv for vertical

composition given by the natural mapping from the pushout of (u’z’, v"z"), to the
cospan Fu@Fv.

The factorisation 3.7.1 can be realised replacing the two double commas with an
(isomorphic) double category A
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whose category of objects and horizontal morphisms is Set, while a vertical arrow
is a commutative square of mappings.
(b) Now, let C be a 2-category with 2-pullbacks, 2-pushouts, comma and
cocomma squares. SpC and C ospC are defined as usual (and only depend on the
1-dimensional structure of C), but cocommas and commas provide a second
colax/lax adjunction

where neither C nor K are unitary.

5.4. Relations for abelian categories. Every (well powered) abelian category
A has a (locally ordered) 2-category of relations RelA.

A relation has binary factorisations u = ba#: A -o-&#x3E; B, where a and b are

morphisms of A. Such a factorisation will be said to be strict if the pair (a, b) is

jointly monic (corresponding to a subobject of Afl9B). Dually, there are cobinary
factorisations u = b’#a’, strict if (a’, b’) is jointly epi (corresponding to a quo-
tient of AEDB). Two cobinary factorisations yield the same relation u if and only if
they have the same pullback, which is then a strict binary factorisation of u.

This produces a (flat) double category ReIA, with A-morphisms as horizontal
arrows and A-relations as vertical ones. A cell corresponds to an inequality gu 
vf, as in the left diagram below (equivalently, fu#  v#g)

and amounts to a commutative A-diagram for strict binary factorisations (as in the
central diagram above), or equivalently, for strict cobinary ones (as at the right).
A left exact functor R: A - A’ between abelian categories preserves all pull-

backs, which become bicommutative squares in IReIA’. Therefore, we can extend
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it to relations by using, equivalently, a strict binary factorisation u = ba# or an arbi-
trary cobinary factorisation u = b#a

note that the right-hand parts above are not strict factorisations, generally. Thus, we
get a unitary lax double functor R’ = Rel(R): RelA - Re1A’. Dually, a right exact
functor F is extended - equivalently - via binary or strict cobinary factorisations,
and yields a colax double functor Re1(F). An exact functor, extended via binary or
cobinary factorisations, gives a pseudo double functor.

Now, given an arbitrary adjunction between abelian categories

we get a colax and a lax extension, respectively

forming a colax/lax adjunction (which is pseudo/lax if F is exact, and dually). The
unit qu is the pasting of two cells, depending on an arbitrary binary factorisation u
= ba#

the right one coming from the colax-property of R’ and the definition of F’

(6) w = (RFb)(RFa)#  R’((Fb)(Fa)#) = R’F’u.

The counit is defined dually; the coherence relations follow from flatness.

It is easy to exhibit an adjunction where both our extensions are not pseudo

Indeed, the canonical projection p: Z - Z/2 gives pe = 1Z/2 but Rp = 0,
while the monomorphism m = 2.-: Z - Z has m#m = lz and Fm = 0. We
have also shown that one cannot compute R’ using the binary, non-strict factorisa-
tion 1 = pp .

5.5. Monoidal closedness. We will only sketch the subject. Let us start

considering an ordinary monoidal closed category A, with endofunctors -0Y -|
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Hom(Y, -) for every object Y, and see what we get on some (pseudo) double
categories constructed on A.

(a) First, the double category A = 0 A of commutative squares of A is also

monoidal closed, in a strict sense. In fact, the endofunctors -OY, Hom(Y, -):
A - A obviously extend to strict double functors A -&#x3E; A, and the natural bijec-
tion A(X@Y, Z) -&#x3E; A(X, Hom(Y, Z)), f - f extends to a bijection between
categories of vertical arrows

since the left square commutes if and only if the right one does, by naturality.

(b) Second, if A has pullbacks, the pseudo double category A = SpA of

morphisms and spans inherits a family of colaxlpseudo adjunctions -@Y-&#x3E;

Hom(Y, -). In fact, every Hom(Y, -): A - A preserves pullbacks (by adjunc-
tion) and extends to a pseudo double endofunctor of A, while -@Y: A - A need
not preserve them and gives a colax double endofunctor. (A cartesian product
preserves pullbacks, but the tensor product of abelian groups does not.) Finally,
since a cell of spans is formed of a pair of commutative squares, the ’same’
argument as in (1) applies.

(c) Dually, if the cartesian closed category A has pushouts, then the pseudo double
category A = C ospA of morphisms and cospans has a family of pseudollax
adjunctions -0Y --i Hom(Y, -).

Now, take a pseudo double category A, equipped with a monoidal structure,
i.e. an identity object I, a colax tensor product -O-: AxA -&#x3E; A and the usual

coherence framework, formed of invertible horizontal transformations (formally, all
this is a pseudo monoid in the strict 2-category CxDbl, 2.2). We say that A is

weakly monoidal closed if each colax double functor -OY: A - A has a lax right
adjoint. (Note that, fixing one variable, we do get a colax double functor, by our
unitarity assumption on A.)

The cartesian case is necessarily simpler, since a cartesian product - as a limit -
is automatically lax as soon as it works for vertical arrows. More precisely, let A
be a pseudo double category with a lax functorial choice of binary products (1.4.3-
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4), as it happens for all of our profunctor based examples (1.6). We say that A is

lax cartesian closed if every lax double functor xY: A - A has a lax right adjoint
(-)Y: A - A, forming a pseudo/lax adjunction (-xY is automatically pseudo).

6. Limits and adjoints

We deal here with the relations between double limits and double adjoints.

6.1. The importance of unitarity. Limits and colimits are well behaved with
unitary adjunctions (Theorem 6.2). Loosely speaking, there is an evident motivation
for this: in a pseudo double category A, an object amounts to a (strict) double
functor A: 1 -&#x3E; A defined on the ’singleton’, and a vertical arrow to a double
functor u: 2 - A defined on the ’formal vertical arrow’ 0 - I (all other arrows
of 2 being identities). Now, composing with a unitary (co)lax double functor
A - B does preserve such things (while a general lax one would produce a
vertical monad, on each object); therefore, such compositions preserve cones and
their vertical transformations.
We shall see that unitarity is ’nearly’ necessary, in order that a right adjoint

preserve tabulators (6.3). And indeed, we have already encountered a strict double
functor which does not preserve cotabulators, yet has a (non-unitary) lax right
adjoint (5.2; see also 5.3b). Finally, the terminal object of a double category
amounts to a unitary right adjoint of the terminal double functor A -&#x3E; 1 (6.4), and
- at least for strict double categories - a lax functorial choice of I-limits in A
(1.4.3-4) amounts to a unitary lax double functor L: An -+ A right adjoint to the
diagonal (6.5).

Before going on, it will be useful to reformulate the definition of double limits in
terms of cells in Dbl. Given a lax double functor T: I -&#x3E; B, a cone (A, x) for it

amounts to a cell x as in the left diagram
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(i.e., a horizontal transformation x: AQ - T of lax ’functors’). Now, (A, x) is a

1-dimensional limit of T if (i) holds, and the double limit if also (ii) does:

(i) for every object A’ in A, the mapping t -&#x3E; x’ = (x I t) (a horizontal

composition of cells, in Dbl) gives a bijection between horizontal maps t: A’ - A

in A and cones (A’, x’);

(ii) for every vertical arrow u: A’ - A" in A, the mapping T - (h@X| a) gives
a bijection between A-cells T: (u X’ X" 1 Ä) and Dbl-cells whose boundary is the outer
perimeter of the right diagram above (À. being the obvious ’commutative cell’).

6.2. Theorem (Preservation of limits). Take a colaxllax adjunction (q, e): F -i
R.

(a) The lax functor R: B - A preserves all (existing) ]-dimensional double limits
of horizontal lax double functors T: M - B.

(b) If both functors are unitary, then R: B -&#x3E; A preserves all (existing) double
limits of unitary lax double functors T: I -&#x3E; B.

Proof. (a). Obvious: our limit is just an ordinary limit in the category of objects
and horizontal arrows of B.

(b). To prove that, if (B, y: BQ - T) is a limit of T, then R(B, y) = (RB, Ry)
is a limit of RT, we follow the standard procedure, for the 1-dimensional property,
as rewritten above (6.1 i); the verification of the 2-dimensional property is similar.

Given a cone (A, x: AQ -&#x3E; RT) of RT, the pasting y’ of Dbl-cells displayed
at the left (flipping R to its vertical adjoint F, in Dbl; cf. 1.6.)

n n

gives a cone (FA, y’: F(A).Q - T) of T (by the unitarity of F). Therefore,
there is a unique t’: FA - B such that y’ - (y t’): F(A).Q - T. Now, the
adjoint morphism t = Rt’.nA: A -&#x3E; RFA - RB is the unique horizontal arrow of
A such that x = (Ry j t): AQ - RT (by pasting the D blooocell n: (F1R 1) at the right
of both diagrams above, to ’flip back’ F to R). a
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6.3. Theorem (Adjoints and unitarity). Take a general colaxllax adjunction
between pseudo double categories

(1) F : A -&#x3E;- 18 : R, (11, E): F -| R.

(a) If F is pseudo unitary, then R preserves all the existing (1-dimensional) tabu-
lators of 18: given a vertical arrow v: B -o-&#x3E; B’ having tabulator 1t: (v P v), the

object RV is the tabulator object of Rv in A, via the obvious cell 
q

(2) T = (R[V] I Rn): (1°RV p q Rv).
(b) Take A in A and assume that v = F(1°A): FA -- FA has a tabulator in B,
preserved by R; then the colaxity cell cpA: F(1 °A) -&#x3E; 1 FA has a horizontal retrac-
tion ç: 1;A -&#x3E; F(1°A), giving (ç |Z) = 1.

(There are examples of right adjoints which do not preserve tabulators, cf. 5.2; as
well as of non-unitary right adjoints which do, cf. 6.4).

Proof. Write pB : 1°RB -&#x3E; R(1°B) and çA: F(1 Ä) - 1 FA the laxity and colaxity
cells of R, F.

(a) Assume that cpA has a horizontal inverse ç. We want to prove that RV is the

tabulator of Rv via ’to Take an A-cell a: (A f Rv), ’and its adjoint cell a’ =

(Fa|ev : ) (F1°Af’ g-v). There is precisely one map k: FA - V such that (k I n) =
(Z |a’) : (1°FA g’ v); its adjoint h = Rk.11A: A - RV

satisfies the condition (h |t) = a:

Conversely, if (h |t) = a, then the adjoint k = sV.Fh: FA - V has
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This means that the cell (çA lk) is uniquely determined by a. Since oA is

invertible, k is uniquely determined as well.

(b) Take any object A in A. Recall that the colaxity cell ç=çA:F(1°A) -&#x3E; 1 FA
corresponds to cp’ = (1°nA pFA) (3.3a). In the diagram (3), let B = B’ = FA and

v = F(1°A): FA -o-&#x3E; FA, with tabulator V, n: (v P v) preserved by R: thus, RV is

the tabulator of Rv via I = (pV |Rn). 
The unit of the adjunction yields a cell

whence one map h: A - RV in A such that (1°h |t) = n ( 11). The map h

corresponds to k: FA - V and it suffices to verify that the cell Z = (1°k|p) : 
1°FA - V iS a retraction of cp:

6.4. Terminal object. Let us consider the existence of a right adjoint to the
diagonal D: A - AQ = 1 (where Q is the empty double category).
A lax double functor R: 1 - A amounts to a monad in the vertical 2-category

VA: an object Z = R(0), a vertical arrow z = R(vo): Z -o-&#x3E; Z and two special cells

n:1°Z -&#x3E; z, J.1: Z@Z -&#x3E; z satisfying the monad axioms. 

According to 3.6, D has a (lax) right adjoint R if and only if

(T.1 ) there is an object Z ( = R(0)) such that, for each A in A, there is a unique
horizontal arrow t: A - Z (written also tA);

(T.2) there is a vertical arrow z: Z - Z ( = R(vo)) such that, for each vertical
arrow u: A - A’ in A, there is a unique cell T: (u f z) (written also tA).

The special cells 11 = R[o]: 1°Z -&#x3E; z and g = R[vo, vo]: Z@Z -&#x3E; z are then pro-
vided by the universal property of z, taking u equal to lg or z0z, respectively.
Note also that the 2-dimensional property (T.2) implies (T.1): apply it to 1 i -
We get a more general notion of double terminal than we used in Part I: the latter

amounts to a unitary lax right adjoint (z = 1°Z, n = 1).
In fact, there is an interesting case, the double category Rng of unitary rings,

homomorphisms and bimodules, where this generalised initial object I: 1 -+ Rng
is not unitary: the left adjoint I -| D is the ring of integers equipped with the zero
bimodule I(1°*) = 0: Z - Z. Comparing with Theorem 6.3, the right adjoint D:
Rng - 1 obviously preserves the existing tabulators, and in particular the
tabulator ZxZ of I(1°*); this agrees with the fact that the unit comparison 1(1°*) =
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0 - lI * = 1°Z has a retraction. More generally, the generalised sum in Rng of J
copies (J is a small set) of the vertical identity of the ring of integers Z: Z - Z is
the free Z-bimodule Z(J): Z - Z; this is never unital, unless J is a singleton.

Other examples come from monoidal categories. Take a monoidal category V =

(V, 0,1), consider it as a bicategory with one object, and then as a double category
V; the latter has one object *, one horizontal arrow, its vertical arrows are the
objects of V and its cells are the maps of V. Then V has a terminal object if and
only if V has, which is unitary if and only if I is terminal.

6.5. Functorial limits as unitary adjoints. Let now A and I be strict

double category, with diagonal double functor D: A - Al with values in the

double category of double functors, their horizontal and vertical transformations and
their modifications. Then, a lax (resp. pseudo, strict) functorial choice of l -limits in
A (1.4.3-4) amounts to the choice of a unitary lax (resp. pseudo, ordinary) double
functor L: AI -&#x3E; A right adjoint to D.

In fact, according to Theorem 3.6, D has a unitary lax right adjoint L precisely
when the conditions of Lemma 1.4.4 are satisfied:

(a) every double functor F: I - A has a 1-dimensional double limit (LF, EF:
DLF - F), satisfying (dl.1 ),

(b) every vertical transformation U: F -+ F has a limit

(1) LU: LF - LF’, eU: (DLU EF U).
with respect to the horizontal composition of modifications (as specified in 1.4.3),
so that L1°F = 1°LF.

If this is the case, every composite U" = U@U’: F - F - F" of vertical

transformations gives a comparison special cell, determined by the universal
property of (L, E)

(2) L[U, U’]: LU®LU’ -&#x3E; LU", (DL[U, U’] lEU") = FUoeU’,
and our choice L is pseudo (or strict) if and only if all such special cells are
horizontally invertible (or identities, respectively).

7. Double monads

We only treat here the ’standard’ cases: colax monads (in CxDbl) have Eilenberg-
Moore algebras and are linked with colaxlpseudo adjunctions, while lax monads (in
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LxDbl) have Kleisli algebras and are linked with pseudollax adjunctions. X is always
a unitary pseudo double category.

7.1. Colax monads and their algebras. A colax monad T = (T, n, 03BC) (on
X) will be a monad in the 2-category CxDbl (2.2). Thus, T: X - X is a colax

double endofunctor (with comparison cells T[X]:T1°X -&#x3E; 1°TX, T[r, s]: T(r®s) -&#x3E;
Tr®Ts) and 11: 1 -&#x3E; T, y: T2 - T are horizontal transformations (1.7.3) satisfy-
ing the usual unit and associativity axioms: J.l.l1T = 1 = g.Tn, 03BC.03BCT = J..l.TJ.1.

For instance, any colaxlpseudo adjunction F - U, being precisely an adjunc-
tion in CxDbl, produces a colax monad T = UF on the domain of F.

Given T, one can construct the pseudo double category XT of (Eilenberg-
Moore) T-algebras:
- the 1-dimensional horizontal part is as usual; a morphism will be written as
(X, x: TX - X), f: (X, x) - (X’, x’);
- an algebraic arrow (r, p): (X, x) -o-&#x3E; (Y, y) is a vertical arrow r: X -o-&#x3E; Y in X

together with a structure p: (Tr y r) satisfying the axioms (nr |p) = 1: r - r and
(03BCr |p) = (Tp I P) : T2r -&#x3E; r; 

y

- its vertical composition with (s, a): (Y, y) -o-&#x3E; (Z, z) is (rOs, (T[r, s] I p@o-)),
where the composite pea is ’corrected’ by the comparison cell T[r, s], as in the

left diagram below

similarly, the vertical identity of (X, x) is (1°X, (T[X] 1°X));
- a cell Z with the boundary displayed at the left
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comes from a cell 1;: (r 9 f r’) of X such that (p |E)= (TE p’).
The horizontal and vertical composition of cells are defined by the same

operations in X. It will be useful to note that the cell above, in (2), is horizontally
invertible in XT if and only if its underlying cell Z is so in X. In fact, in this case,
(P’|Z-1) = (TZ-1| p).

7.2. Colax monads and colax adjunctions. We have already noted that a
colax/pseudo adjunction produces a colax monad, in the usual way.

On the other hand, a colax monad T = (T, n, 03BC) (on X) produces a colax/strict
adjunction

by extending the usual procedure to the vertical structure. UT is the obvious

projection, UT(X, x) = X etc. (a strict double functor). FT is extended to vertical

arrows by the cells 03BC(r), while its colaxity cells FT[r, s] come from the ones of T
(the cells FT[X] are not written down)

The unlit 11: 1 - UTFT = T coincides with the unit of T; the counit e:

FTUT -&#x3E; 1 is defined as usual on objects, and similarly on (r, p): (X, x) -o-&#x3E; (Y, y)

Now, given a colax/pseudo adjunction F -| U, the associated colax monad T
= UP and its pseudo double category of algebras, the comparison K: A - XT is

defined in the usual way on objects and horizontal arrows, and extended to the
vertical structure. We obtain a pseudo double functor, with comparison isocells
defined by the ones of U (again, K[A] is understood)
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The comparison K[u, v] is horizontally invertible, by the last remark in 7.1.

Say that the pseudo double functor U: A - X is monadic, or algebraic, if K
is an equivalence of pseudo double categories (4.4-4.5): this implies that the under-
lying horizontal category A = HA is monadic over X = HX .

In the monoidal case, given a strong monoidal functor U: A - X having a left
adjoint F (automatically comonoidal), the comparison K: A - XT is necessarily
strong. Therefore, A is ’monoidally monadic’ on X if and only if it is so in the
ordinary sense (of the underlying categories, which sit vertically in the associated
pseudo double categories).

7.3. Elementary examples. (a) (Adjunctions and products) The standard
adjunction F: Set # Ab: U is colax/pseudo monoidal with respect to cartesian
product (written x and fl3, respectively): the product is preserved by U, while F
has an obvious comparison F(XXY) - FX@FY, corresponding to nXxnY :
XXY - UFXxUFY = U{FX®FY). Thus the well-known monad T = UF, which
describes abelian groups on Set, is colax with respect to cartesian product, and the
comparison

preserves it (which is trivial, since K is an isomorphism). Similar facts hold for all
categories with finite products, monadic over Set; or also for the adjunction ab:

(b) All this can be easily extended to the weak double categories SpSet, SpAb (or
SpA, for any category A with finite limits, monadic over Set).

7.4. Lax monads and Kleisli algebras. Similarly, a lax monad T = (T, 11, 03BC)
(on X) will be a monad in the 2-category LxDbl (2.2). Thus, T: X - X is a

lax double endofunctor, with comparison cells T[X]: 1°TX -&#x3E; T1°X , T[r, s]:
Tr®Ts -&#x3E; T(res). For instance, any pseudollax adjunction F - U produces a lax
monad T = UF on the domain of F.

Given T, one can construct, in a standard way, the pseudo double category XT
of Kleisli T-algebras:
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- objects X and horizontal arrows f: X - X’ are as usual (defined by f:

X - TX’ in X), as well as their horizontal composition: f’ . f = (J.1X". Tf . f) A;
- vertical arrows r: X -o-&#x3E; Y are as in X, with the same identities and composition;
- a cell Z: (rte) is defined by a cell Z: (r f Tr’) of X;

9 
y g

the horizontal composition of cells is the obvious extension of the one of maps (as
in the right diagram above). The vertical one uses the laxity cells of T

To verify the middle-four interchange, we get an (outer) diagram of vertical
arrows and cells in X (t denotes the comparison cells of T)

whose commutativity is proved by inserting two middle cells, TT = T[Tr", Ts"]
and t’ = T2[r", s"]. Then, the left square commutes by naturality of r on Ç’,11’;
the middle one by definition of the comparison cells of T2; the right one by coher-
ence of g: T2 - T on r", s".

7.5. Lax monads and lax adjunctions. As already observed, a pseudo/lax
adjunction produces a lax monad. On the other hand, a lax monad T = (T, 11, w)
(on X) produces a strict/lax adjunction

by extending the usual procedure to the vertical structure. FT is the obvious

embedding, FT(X) = X, FT(f) = nX’.f, FT(r) = F(r), etc. (a strict double
functor). UT is extended to cells by the cells p, while its laxity cells UT[r, s]
come from the ones of T (the cells UT[X] are similar)
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The unit 11: 1 -&#x3E; UTFT = T coincides with the unit of T; the counit e:

FTUT - 1 is defined in the usual way on objects, and similarly on a vertical arrow

Now, given a pseudo/lax adjunction F --i U, the associated lax monad T =

UF and its pseudo double category of Kleisli algebras, the comparison L: A - XT
is defined in the usual way on objects and horizontal arrows, and extended to the
vertical structure. We obtain a lax double functor, with comparison cells defined by
the ones of U (L[A] is similar)
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