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LIMITS IN DOUBLE CATEGORIES
by Marco GRANDIS and Robert PARE (*)

CI4HIERFDET()P()LOGIEET

GEOLMETRIE DIFFERENTIELLE CATEGORIQUES 
l’olume.VL-3 (1999)

R6sum6. Dans le cadre des categories doubles, on d6finit la limite
double (horizontale) d’un foncteur double F: n - A et on donne un

th6or6me de construction pour ces limites, a partir des produits doubles,
6galisateurs doubles et tabulateurs (la limite double d’un morphisme
vertical). Les limites doubles d6crivent des outils importants: par
exemple, la construction de Grothendieck pour un profoncteur est son
tabulateur, dans la "cat6gorie double" Cat des categories, foncteurs et
profoncteurs. Si A est une 2-cat6gorie, notre r6sultat se r6duit A la
construction de Street des limites pondérées [22]; si, d’autre part, I n’a

que des fl6ches verticales, on retrouve la construction de Bastiani-
Ehresmann des limites relative aux categories doubles [2].

0. Introduction

Double categories where introduced by C. Ehresmann [7-8]. The notion is
symmetric; nevertheless, we think of it in a non-symmetric way, giving priority to
the horizontal direction. Thus, the usual morphisms between double functors will
be the horizontal natural transformations, and the usual double comma categories
will be the horizontal ones. The main examples will be organised consistently
with this priority, choosing as horizontal arrows the ones "which preserve the
structure" and have therefore good limits.

It was shown in [20] that weighted limits in a 2-category A can be described
as limits of double functors F: II - A, where lt is a small double category; of

course, A is viewed, as usual, as a double category whose vertical arrows are
identities. Persistent limits, those invariant up to equivalence, were also
characterised. Such results are proved in detail in the thesis of D. Verity [24].

(*) Work partially supported by C.N.R. (Italy) and N.S.E.R.C. (Canada).



163.

We define here the notion of (horizontal) double limit for a double functor F:
II - It with values in a double category (4.2); it is based on (horizontal) double
cones (4.1 ), consisting of horizontal maps A - Fi (for i in n) and double
cells depending on the vertical arrows of 1. And we give a construction theorem
for such limits (5.5):
Theorem. The double category A has all small double limits iff it has small
double products, double equalisers and tabulators.

The crucial new limit, the tabulator of a vertical map u: A - B, is the double

limit of the double diagram formed by u. It consists of an object Tu, universally
equipped with two horizontal maps p: Tu -; A, q: Tu - B and a cell n

In particular, if A is a 2-category, tabulators (of vertical identities) reduce to
cotensors 2*A; one recovers thus Street’s construction ([22], Thm. 10) of
weighted limits by such cotensors and ordinary limits (satisfying the correspond-
ing two-dimensional universal property). As a more complex but close compari-
son (whose details can be found in 4.2 and 5.3), let us also recall that limits
relative to double categories, or A-wise limits, have been considered by Bastiani-
Ehresmann ([2], p. 258), in a different sense. Their interest lies in what would be
called here a "vertical" double functor in A, defined over an ordinary category,
and a "one-dimensional" notion of double limit for it. Under such restrictions

(one-dimensional limits of vertical double functors), our result reduces to the
construction of A-wise limits in [2] (p. 265, Prop. 3).

The tabulator of a vertical map and its cotabulator (the corresponding colimit)
describe some important, well-known constructions. For instance, in the proto-
type of most of our examples, the "double category" Cat of categories, functors
and profunctors, the tabulator of a profunctor u: A - B is its category of

elements, or Grothendieck construction, while its cotabulator lu is the gluing, or
collage, of A and B along u, i.e. the category consisting of the disjoint union
A+B, together with new hom-sets u(a, b), for a in A and b in B. In the

double subcategory reel of sets, mappings and relations, we get the "graph", or
"tabulation", of a relation u: A -&#x3E; B (motivating the name "tabulator"), and its
"cograph" (a quotient of A+B) for cotabulator.

As a preparatory lemma for the construction theorem, we show that the double

category A has double limits of "horizontal functors" IHI -+ A iff it has double
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products and double equalisers. The construction of such limits is the standard
one. Here 1HI is the obvious "horizontal" double category of an arbitrary cate-
gory I, obtained by adding identity vertical maps and cells. Then, the theorem is
proved by constructing a new 1-dimensional graph I (a sort of "horizontal
subdivision" of 1) where every vertical arrow u of I is replaced with a new
object UA, simulating its tabulator, and every vertical composition v*u with a
new object (u, v), simulating the "double tabulator" T(u, v) (5.4). The double
functor F: I - A produces a "horizontal functor" G: IHI -+ A, and its double
limit (obtained from double products and equalisers, by the previous lemma) is
the double limit of F.

The mere notion of double limit is unsatisfactory, because of two main prob-
lems : a) it is not sufficient to obtain the limit of vertical transformations (vertical
functoriality); b) it is not vertically determined (vertical uniqueness). The first
anomaly is shown, for instance, by double equalisers in the double category
AdCat of categories, functors and adjunctions (6.5). For b), consider for
instance the double category Tg of topological groups, with algebraic homomor-
phisms as horizontal maps, continuous mappings as vertical ones and commuta-
tive squares (of mappings) as cells; then a horizontal double product GxH has
the "right" group structure, but an arbitrary topology consistent with the former (a
vertical double product would behave symmetrically). And we can provide
various functorial choices of the horizontal double product, taking for instance the
product topology, or the discrete one, or also the chaotic one, which are not even
vertically equivalent (2.2).

The first problem leads us to the notion of a functorial choice of I-limits
(possibly a lax, or pseudo double functor, 4.3-4), to which the construction theo-
rem is extended (5.5 ii). The second is solved by an elementary assumption on the
ground double category A, called horizontal invariance, so that "vertical maps
are transportable along horizontal isos" (2.4). In this case, a functorial choice of
I -limits is also vertically determined, and we just speak of (invariant) functorial I -
limits (possibly lax, or pseudo; 4.5-6). This assumption is satisfied in all our
examples of real interest (Section 3), but not in ’ll’g. Our condition is also "neces-
sary", being equivalent to having invariant unary limits (4.5). Marginally, we also
consider a more complex solution to these problems, regular double limits,
defined by a further universal property "of vertical terminality" (4.7).

Various relaxed notions impose themselves, as is usual in higher dimensional
category theory. Some of our main examples, starting from Cat, are actually
pseudo double categories, with a weakly associative vertical composition (as in
bicategories; 1.9, 7.1). Lax and pseudo double functors, weakly preserving the
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vertical structure, often appear as relevant constructions (Section 3).
A Strictification theorem (7.5) proves that pseudo double categories and func-

tors can be replaced by strict versions, up to equivalence. However, lax double
functors cannot be similarly replaced and the interest of constructing their double
limits subsists. To treat everything in the widest generality would be obscure
(e.g., see the definition of strong vertical transformation of lax double functors,
which already "simplifies" an unmanageable general notion, 7.4). In theoretical
parts, we shall therefore start from the strict case and give marginal indications for
its extension; the main one, the extension of the construction theorem to double
limits of lax double functors, is easy and based on the same elementary limits (5.5
iii). On the other hand, in concrete descriptions and computations (Sections 3, 6)
it is simpler to use the natural pseudo double structures. Interestingly, all these
relaxed constructs are intrinsically asymmetric (1.9): the breaking of symmetry
mentioned above is "written in nature".

We conclude with some remarks about the motivation of this work. It’s

leitmotif can be summarised as follows: arrows which are too relaxed (like
profunctors, spans, relations) or too strict (like adjunctions) to have limits, can be
studied in a (pseudo) double category, correlating them with more ordinary
(horizontal) arrows. (The structure of "2-equipment", introduced by Carboni,
Kelly, Verity and Wood [5], is a different approach to a similar goal.) Note now
that a notion of "symmetric double limit", based on "symmetric double cones" in
some sense, apart from being confined to the strict case and formally suspect as
highly overdetermined, would be of no use here: a double category whose
category of vertical arrows lacks products cannot have "symmetric double
products", in any reasonable sense. Finally, some points of the present work
might be deduced from the theory of internal categories (cf. Street [23]) or
indexed categories (Par6-Schumacher [21]), but we think that double categories
are worth an independent treatment, founded on basic category theory.

The authors would like to thank Mme A.C. Ehresmann for helpful suggestions
on the presentation of this work.

Outline. Basic notions of double categories are reviewed in Section 1. Sesqui-
isomorphisms, linking horizontal isos and vertical equivalences, are introduced in
Section 2. Examples of (pseudo) double categories are given in Section 3. The
next two sections deal with double limits, their functoriality, regularity and
construction theorem. Explicit calculations are considered in Section 6. Finally,
Section 7 is an appendix on pseudo double categories, lax and pseudo double
functors, and their transformations.
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1. Double categories

Double functors will be mainly linked by horizontal transformations, providing
(horizontal) comma double categories (1.7). The notion of (horizontal) double
terminal (1.8) will give our universal notions.

1.1. Basic terminology. The notion of double category is well-known, we
just specify here some basic terminology and notation. A double category A has
horizontal morphisms f: A - B (with composition g-f = gf), vertical

morphisms u: A - A’ (with composition vou), and cells a

where the horizontal map f is the vertical domain (the domain for vertical
composition), and so on. The boundary of the cell (1) is written as a: (u 9 f v).
Horizontal and vertical identities, of objects and maps, are denoted as follows

Horizontal and vertical composition of cells will be written either in the
"pasting" order, either in the "algebraic" one, respectively as

The axioms essentially say that both laws are "categorical", and satisfy the
interchange law. The expressions (a I f) and (f lB) will stand for (a I If.) and

(lf l B). The pasting satisfies a general associativity property, established in [6].
A double category is said to be flat if its cells are determined by their domains

and codomains. The following notions are fairly obvious: double functor F:
A - 1B ; double subcategory; full double subcategory (determined by a subset of
objects); cellwise-full double subcategory (determined by a subcategory of
horizontal maps and a subcategory of vertical maps having the same objects);
double graphs and their morphisms; the latter are also called (double) diagrams.
Unless otherwise stated, the letters A , B, 1, 1, X always denote .double
categories, while m denotes a double graph.
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1.2. Dualities. The 8-element symmetry group of the square acts on a double

category. We have thus the horizontal opposite Ah, the vertical opposite AV,
and the transpose At, under the relations

The prefix "co", as in colimit or coequaliser or colax double functor (7.2), will
always refer to horizontal duality, except when the vertical direction is viewed as
the main one; this only happens in 6.5 e, where we consider vertical colimits.

1.3. Categories and double categories. A double category A can be

viewed as a 3x3 array of sets, connected by functions

Each row forms a category horlA, presenting A as a category object in
CAT, as indicated at the right. Explicitly
- horolA is the category of objects and horizontal maps of A,
- horiA is the category of vertical maps and cells a: u - v, with horizontal

composition,
- hor2A is the analogous category, whose objects are the composable pairs of
vertical maps of A.

Similarly, each column is a category veriA = hori(At), forming a second
such presentation of A. Giving priority to the horizontal composition, we
consider the first presentation as the main one. We say that A has small

(horizontal) hom-sets if the categories horoa, horIA do. Our examples will
always satisfy this property, but not necessarily the transposed one. A double
functor F: I - A determines functors horif: horii - hor;lA.

The category horoA becomes the horizontal 2-category of A, written HIA,
when equipped with 2-cells a: f - g provided by A-cells a: (18 i i*), whose
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vertical arrows are identities. The vertical 2-category VA = H(At) of A will be
of special interest (cf. Section 2); it has cells a: u - v given by cells a: (u v)
of A. On the other hand, a 2-category A determines the double categories:
- QA (of quintets of A, according to Ehresmann), whose horizontal and vertical
maps are the maps of A, the cells being defined by cells of A

- 1HA, the double subcategory of QA with vertical maps the identities of A;
- VA = (IHA)t, the double subcategory of (OA)t having for horizontal maps the
identities of A (for vertical maps the morphisms of A and cells a: (u 1 1 v)
produced by cells a: u - v of A).

There is a bijective correspondence A - 1HA, A - HA between 2-

categories, on the one hand, and double categories where all vertical maps are
identities, on the other. Such a double category A will be said to be horizontal.
And ]-horizontal if moreover all its cells are vertical identities, i.e. if A is of the
form 1HA for a category A (viewed as a trivial 2-category).

1.4. Horizontal transformations. A horizontal (natural) transformation H:
F - G: I - A between double functors assigns

a) a horizontal map

b) a cell

for each object i in I

for each vertical map u: i - j in I

so that the following preservation and naturality conditions hold:

for every i in I

for all u, v vertical in I
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for every

Let 2 be the usual ordinal category, spanned by a map z: 0 - 1 (with faces
87, 8+: 1 - 2). A horizontal transformation can be viewed as a double functor
H: H 2xI -+ A; one recovers F = H.(oxn), G = H.(6+xi), Hi = H(z, 1!), Hu
= H(1 Z ., lu). Similarly, a vertical transformation U: F - G: I - A amounts to
a double functor V2xi - A; it consists of vertical maps Ui: Fi - Gi and
cells Uf: (ui Ff Uj), under three axioms: U(1i) =1 Ui; U(gf) = UgoUf; Ug·Fa =
Ga.Uf.

1.5. Remarks. a) It follows that the maps Hi: Fi -+ Gi produce a natural
transformation of the underlying functors horoF, horoG (and a 2-natural
transformation HF - HG).
b) If A is flat, (ht. 1-2) are trivially satisfied while (ht.3) reduces to usual natural-
ity. A horizontal transformation H: F -i G: I - A reduces thus to a natural
transformation H = (Hi);: horof - horoG: horol - hor0A such that, for every
vertical map u: i - j in n, the boundary (Fu H Gu) admits a (unique) cell.
c) If H is horizontal (resp.1-horizontal), the conditions (ht. 1-2) are again trivially
satisfied and a horizontal transformation H: F - G: I - A reduces to a 2-

natural transformation H F - HG: HH -+ HA (resp. to a natural
transformation horof - horoG: horol - hor0A).
d) If D is just a double graph, a horizontal transformation H: F - G: ID -+ A
between double-graph morphisms, or diagrams, is formed of the same data a), b)
above under the unique condition (ht.3); such a transformation is clearly the same
as a horizontal transformation of double functors H: P - 0: iD- A, where
B is the free double category generated by D. 

e) In contrast with the 1-dimensional case, a horizontal transformation of double
functors is a stronger notion than a horizontal transformation between the underly-
ing diagrams, because of (ht.1-2). This fact will produce a distinction between
limits of double functors and limits of diagrams (cf. 5.6-7, 6.6). But there is no
difference whenever A is flat (by b) or I is horizontal (by c). Moreover, the
stronger notion (on B) can be reduced to the weaker one (on the double graph ID)
when I is the free double category D generated by m (by c).



170

1.6. Exponential. For a small I, consider the double category Al of double
functors I - A, with horizontal and vertical morphisms respectively given by
the horizontal and vertical transformations (written H, K and U, V

respectively).
A cell w: (u K v) is a modification, assigning to any object i of I a cell ui:

(ui Hi vi) so that:
(md.1 ) for every horizontal arrow f: i - j

(md.2) for every vertical arrow u: i - j, a symmetric pasting condition holds.

For IJ small, the double functors F: J xI -+ A correspond to double
functors G: I - Al, by the usual adjunction G(i)(j) = F(j, i). It will be useful

to note that a vertical transformation, viewed at the end of 1.4 as a double functor
V2xI -+ A, can also be viewed as a double functor 1 - AV2, and a

horizontal one as a double functor B - AH2. Here, V2 is the double category
generated by one vertical arrow; AV2 has for objects the vertical arrows of A,
for vertical morphisms their commutative squares, for horizontal morphisms the
cells of A, and finally for cells the cubes of A formed of two commutative
squares of vertical arrows, linked by four cells of A which commute under

vertical composition.

1.7. Comma double categories. Let two double functors D: A - X, F:

B - X with the same codomain be given. The (horizontal) comma (D 11 F) is a

double category, equipped with two double functors and a horizontal
transformation as below, universal in the usual sense

We describe the solution in the particular case we are interested in, for 1B =   ,
the free double category on one object, so that the double functor F reduces to an
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object of X. Then (D 11 F) has:
- objects (A, x: DA - F), where A is in A and x is horizontal in X,
- horizontal arrows f: (A, x: DA - F) - (B, y: DB - F), where f: A - B

is horizontal in A and yoDf = x in X (so that horo(D 11 F) = (horoD I horoF)),
- vertical arrows (u, 4): (A, x: DA - F) --+ (A’, x’: DA’ -&#x3E; F), where u:

A - A’ is vertical in A and 4: (Du x 1p is in X,
- cells a as below (left hand), where a: (u 9 f v) is in A and (Da 11) = 4,

- compositions determined by the ones of A and X, in the obvious way.

The "projections" P, Q are also obvious, and H(A, x) = x, H(u, 4) = 4.

1.8. Terminal object. A (horizontal) double terminal [20] of A is an object
T such that:

(t.1 ) for every object A there is precisely one map t: A - T (also written tA),
(t.2) for every vertical map u: A - A’ there is precisely one cell T (also
written Tu) with

(Actually, the 2-dimensional property (t.2) implies (t.1): apply it to 1 A.) A
(horizontal) universal arrow from the double functor D: A - X to the object F
of the codomain can now be defined as the double terminal (A, x: DA - F) of
the comma (DUF), if such an object exists. If D:IA -+ A I is the diagonal
double functor into a double category of diagrams, this gives -as usual- the
notion of double limit of the double functor FE Al, studied below.

1.9. Lax notions. We also need some relaxed notions, briefly reviewed here; a
precise definition can be found in the appendix, Section 7. In the sequel, for the
sake of simplicity, we shall generally start from the strict notions and give
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marginal indications for the extension of the main results. A reader not familiar
with bicategories might prefer to omit these indications, at first; then read the
appendix and come back to them.
A pseudo double category (7.1 ) has an associative horizontal composition and

a weakly associative vertical one, up to assigned, invertible comparison cells.
Some of the main examples we are interested in are actually of this type, such as
Set, the pseudo double category of sets, mappings and spans (3.2). For
simplicity, a pseudo double category is always assumed to be unitary, i.e. with
strict vertical identities (except in Section 7). The general case can be easily
reduced to the latter, by adding new vertical identities; more simply, in concrete
examples where the vertical composition is provided by some choice (of
pullbacks, for Set), it may suffice to put some mild constraint on this choice.

A lax double functor (7.2) respects the horizontal structure in the usual strict
sense, and the vertical one up to an assigned comparison; it is called a pseudo
double functor if the latter is invertible. Various examples are given in Section 3.
Again, a lax double functor is understood to be unitary, i.e. to respect strictly the
vertical identities (except in Section 7); a motivation can be found in 4.3.

Note now that pseudo double categories have no transposition ( 1.2), for
intrinsic reasons:.,one must start from an ordinary category, to be able to consider
a second composition law, associative up to a natural isomorphism of the first.

Thus, reconsidering 1.3, a pseudo double category only admits the first
presentation 1.3.1, as a pseudo category object in CAT. The associated vertical
structure VA is a bicategory [3, 15, 19], whereas the horizontal one HA is a 2-
category (also because 1f..1f. = 1 f, by unitarity). A vertical pseudo double cate-
gory amounts to a bicategory, under the bijection A - VA, A - VA. On the
other hand, a horizontal pseudo double category is necessarily strict, and amounts
to a 2-category, under the bijection A - IIA, A - 1HA (the constructs 1HA
and QA make no sense for a bicategory). In particular, a monoidal category A
can be viewed as a vertical pseudo double category, having one formal object *
and its horizontal identity, vertical arrows A: * - * coming from A-objects
(composed by tensoring) and cells f: (A 1 B) from A-morphisms. This interpreta-
tion is consistent with viewing each monoidal category of R-modules within the
pseudo double category Ring of rings, homomorphisms and bimodules (5.3).

. A horizontal transformation of lax double functors between pseudo double
categories (7.3) can again be defined as a lax double functor H: H2xA -&#x3E;B; it
is composed of the same data as its strict version, under coherence axioms with
the comparison cells of the functors. Vertical transformations defined in a similar
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way are an unmanageable tool, which we replace with a reduced version, a strong
vertical transformation (7.4), having one system of invertible cells as a naturality
comparison. Strong modifications are also introduced. For pseudo double
functors, we use the transformations and modifications inherited from the lax
case; but we drop the term strong, since here the previous restriction is (nearly)
automatic.

We show in 7.5 that a pseudo double category always has an equivalent strict
one. This strictification extends to pseudo double functors, but not to the lax
ones.

2. Double isomorphisms and sesqui-isomorphisms

This section studies the connections between horizontal and vertical

isomorphisms, or more generally between a horizontal iso and a vertical

equivalence, whose linking forms a sesqui-isomorphism. Such phenomena, peculiar
to double categories, will become important in Section 4, where we show that
invariant double limits are determined up to sesqui-isomorphism. Everything is still
valid for a pseudo double category A (and its bicategory VA, 1.9).

2.1. Double isomorphisms. In the double category A, the relation of being
horizontally isomorphic objects (there exists a horizontal iso f: A - B) may be
very weakly correlated with the vertical analogue. Consider for instance the flat
double category Tg of topological groups, with arbitrary homomorphisms as
horizontal maps, continuous mappings as vertical ones and commutative squares
(of the underlying mappings) as cells. Then the object A is horizontally (resp.
vertically) isomorphic to B iff the underlying groups (resp. spaces) are
isomorphic; the two facts only have in common the set-theoretical aspect.

However, there is an important symmetric notion, for a general A. Consider
a pair (f, u) consisting of a horizontal map f: A - B and a vertical map u:

A - B (between the same objects), provided with a cell k
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(a converging pairing) both horizontally and vertically invertible, as in the left-
hand diagram above (whence f is a horizontal iso and u a vertical one)

Equivalently, one can assign the right-hand diagram above, where X* (a
diverging pairing) is again horizontally and vertically invertible: take x* = (x’ I

1 f . ), with X’ the horizontal inverse of X. (It is easy to see that both

compositions of X and X* are identities: (X l X*) = 1*, x*.x. = 1u.)
The pair (f, u), equipped with Â. (or equivalently with X*), will be called a

double isomorphism from A to B. We get an equivalence relation between
objects, since double isomorphisms can be inverted (inverting the data
horizontally and vertically) and composed (by a pasting).

In Tg, a double isomorphism consists of a pair (i, i), where i: A -+ B is
an ordinary isomorphism of topological groups; moreover, X and Â. * are

uniquely determined, by flatness.

2.2. Vertical equivalences. In fact, we shall need a "vertically relaxed"
notion of double isomorphism. To begin with, let us relax vertical isomorphisms.
Recall that the vertical 2-category A = VA (1.3), consists of the vertical arrows
of A, with all cells whose horizontal arrows are identities

(The vertical composition of cells in A yields what is usually called the
horizontal composition in the 2-category A, and symmetrically. We shall always
use horizontal and vertical with respect to the original situation, i.e. in A; one
should view A as a 2-category "disposed in vertical".)

Such a cell A will be said to be special, and will also be written as X: u - v:
A -+ B, as appropriate within the 2-category A. It is a special isocell if it is
horizontally invertible in A (i.e., an isocell of A); then, u and v are said to be
2-isomorphic (u = v). A vertical equivalence u: A - B is an equivalence of
the vertical 2-category, i.e. a vertical morphism of A having a "quasi-inverse" v:

B --&#x3E; A, with vou = 1 A ., uov = 1 B .

2.3. Sesqui-isomorphisms. Finally, a sesqui-isomorphism from A to B

consists of a horizontal iso linked to a vertical equivalence. Precisely, it may be
assigned as a pair (k, u) of horizontally invertible cells, with boundary as in the
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left-hand diagram below

Then, f is a horizontal iso, while. the pair (u, v) is a vertical equivalence; in
fact, the vertical composite of the given cells shows that vou w 1 Å’ whereas the
right-hand diagram (obtained as in 2.1.1, using the horizontal inverses of Â. and
v) proves that u-mv 6- 1 B . . Equivalently, one can assign a pair (k tt of
horizontally invertible cells, as above. We get an equivalence relation between
objects of A, since sesqui-isomorphisms can be inverted (inverting the data
horizontally), and composed (much as double isos, in 2.1).

The map f determines the associated vertical equivalence u up to special
isocell. Moreover, A and B are sesqui-isomorphic iff there is a horizontally
invertible cell A. as in (1), where u is a vertical equivalence. (Given a quasi-
inverse v, we reconstruct u* = ( 1v I a), with a: u·v = 1B . .)

In Tg (2.1 ), a special cell is necessarily a horizontal identity 1". A vertical
equivalence is the same as a vertical iso, i.e. a homeomorphism. Thus, a sesqui-
isomorphism is the same as a double iso and amounts to an isomorphism of topol-
ogical groups. In the double category QA of quintets of the 2-category A (1.3),
the vertical equivalences are the equivalences of A (having an inverse up to
isocell); a horizontal iso is an isomorphism of A, and can always be completed
to a double iso; the latter property is investigated below, in a relaxed form.

2.4. Horizontal invariance. Say that the double category A is horizontally
invariant if vertical arrows are transportable along horizontal isomorphisms.
Precisely, given two horizontal isos f, g and a vertical morphism u disposed as
below, there always is a horizontally invertible cell k (a "filler")
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as in the well-known Kan extension property. This condition is horizontally and
vertically selfdual. If it holds, two objects A, B horizontally isomorphic are
always sesqui-isomorphic, hence vertically equivalent; in fact, any horizontal iso
f: A -+ B produces two horizontally invertible cells X*, u * as in 2.3.1.

This shows that Tg is not horizontally invariant; on the other hand, every
double category of quintets Ð A and all the examples of the Section 3 are
horizontally invariant. Finally, we give a functorial version of the previous
property, which will be of use for limit functors.

2.5. Lemma. If A is a horizontally invariant, two lax double functors F, G:
I - A (7.2) which are horizontally isomorphic are also "vertically equivalent’ :
Precisely, a horizontal iso H: F - G produces a strong vertical transformation,
U: F -&#x3E; G (7.4), whose components Ui: Fi - Gi are vertical equivalences
associated to Hi: Fi « Gi (2.3), and determined as such up to special isocell.

(In fact, we prove more: F and G are sesqui-isomorphic objects, in a
suitable pseudo double category of lax double functors I - A; but we prefer
not to rest on this complicated structure, described in 7.4.)

Proof. Choose, for every i in I, a sesqui-isomorphism extending Hi

with horizontally invertible cells xi, J1i. Now, the family of vertical equivalences
Ui can be canonically extended to a strong vertical transformation of lax double
functors U: F -&#x3E; G (7.4), as we verify below. Similarly we form V: G -- F;
and X, u are horizontally invertible modifications.

To complete U, let Uf: (Ui Gf Uj) (for f: i - j in 1) be the composed cell
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and, for a vertical u: i -&#x3E; j, let the comparison special isocell Uu: Uj·Fu -+
Gu*Ui: Fi --+ Gj be the following vertical composite (X*j is obtained as in

2.1.1, using the horizontal inverse of Xj)

In the extension to a pseudo double category A (1.9), one should note that
the two possible vertical pastings of (3) yield the same result: the associativity
isocells which link them, a( 1., Fu, Uj) and a(Ui, Gu, 1-), are identities (7.1),
by the unitarity assumption.

3. Examples of double and pseudo double categories

Some examples are considered, mostly related to two prototypes (also
considered in Street [23] and Kelly-Street [15]), the pseudo double category Cat

of categories, functors and profunctors and the double category A d Cat of

categories, functors and adjunctions. All the examples are horizontally invariant (so’
that sesqui-isomorphisms reduce to horizontal isos, by 2.4).

3.1. Functors and profunctors. Our first prototype is the pseudo double
category Cat of (small) categories, functors and profunctors (or distributors, or
bimodules; cf. B6nabou [4], Lawvere [16]). In a general cell

an object is a category, a horizontal arrow is a functor, a vertical arrow u: A -+ B
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is a profunctor u: A°PXB - Set, and a: u - v(f, g): AOPxB -+ Set is a natu-

ral transformation. The composition of u with v: B - C is given by a coend

It is useful to view the elements Xe u(a, b) as new formal arrows X: a - b

from the objects of A to the ones of B. Together with the objects and old
arrows of A and B, we form thus a new category A+uB known as the gluing,
or collage, of A and B along u (which will be shown below to be a double
colimit, the cotabulator of u in Cat, 6.3); the composition between old and new
arrows is determined by the action of u on the old ones

Thus, the profunctor u amounts to a category C containing A+B and, pos-
sibly, additional arrows from objects of A to objects of B; or, more formally, to
a category over 2, C - 2 (with A and B over 0 and 1, respectively). An
element of (vou)(a, c) is an equivalence class uOx: a -&#x3E; c, where X: a --&#x3E; b,
J.1: b-&#x3E; c, and the equivalence relation is generated by u’BOX~ u’Obx (p in

B). The cell a, in (1), corresponds to a functor over 2 (with f and g over 0
and 1)

(The cell a amounts also to a morphism of profunctors g*-u -+ vef*,
where f*: A°PXA’ - Set is the associated profunctor f*(a, a’) = B(fa, a’).)

To simplify things, we assume that the choice of the coend in (2) is bound "to
make vertical identities strict". It is also possible to turn the pseudo double
category Cat into a strict one, by letting a profunctor u: A - B be defined by a
cocontinuous functor

in the same way as a relation r: X - Y can be defined as a sup-preserving map
rA: 2X - 2Y. However, we shall keep the usual setting, where it is simpler to do
computations.

3.2. Spans. The full substructure of Cat determined by the discrete categories
gives the pseudo double category Set = SpSet of sets, mappings and spans. In
fact, a profunctor u: A°PXB - Set between discrete categories is a family of
sets indexed on AxB, and amounts to the usual presentation of a span as a pair
of mappings
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while a cell a: u - v(f, g) is a family of mappings a(a, b): u(a, b) - v(fa, gb)
and defines a mapping a: X u(a, b) -+M v(fa, gb) - X v(a’, b’).

We obtain thus a direct description of Set. The horizontal morphisms belong
to Set; a vertical arrow u = (ui, U2): A-&#x3E; B is a span; a cell a is a

commutative diagram of mappings

spans are composed by a choice of pullbacks (under the constraint that "pullbacks
preserve identities"); the horizontal and vertical compositions of cells are obvious.
The first law gives an ordinary category, while the second behaves in a
bicategorical way, with the usual equations satisfied up to special isocells (2.2),
i.e. horizontally invertible cells whose horizontal arrows are identities.

Here, a special isocell is given by a bijective mapping a: U - V (with via =
ui). An endospan u = (u1, U2): A --&#x3E; A is equivalent to the vertical identity iff
uni, U2 are the same bijection. A vertical equivalence is a span whose components
are bijections.

The embedding D: Set - Cat is a pseudo double functor. Its horizontal 1-
category level D: Set - Cat has a left adjoint 1t(): Cat -&#x3E; Set, associating to
a category its set of connected components and to a functor the induced mapping.
It is natural to define xo on profunctors: the span (n0u)(a, b) is a quotient of
Eu(a, b), where a formal arrow X: a -&#x3E; b is identified to all composites BXa:
a’ -&#x3E; a &#x3E; b - b’. (The theory of adjoints for double functors, to be developed
in a sequel, gives a colax left adjoint 1t(): Cat - Set, with comparison special
cells n0(v.u) - 1t()v.1t()u.)

Similarly, we have the pseudo double category CospSet, where the vertical
arrows are cospans u = (Ul, U2) = (A - U - B) and the cells are mappings a:
U - V producing two commutative squares. The pseudo double category
CospTop of topological spaces, continuous mappings and topological cospans
contains a pseudo double subcategory Mnf related with cobordism and topologi-
cal quantum field theory [1,25]: an object is a topological manifolds, a horizontal
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arrow is a continuous mapping between such manifolds, a vertical arrow is a
cospan u which is either an identity, or subject to the following conditions: U is
a manifold with boundary, the ui are homeomorphisms onto their images, and
the boundary of U is the disjoint union of these two images; a cell is continuos
mapping a: U -&#x3E; V as above.

3.3. Additive categories and metric spaces. Let a symmetric monoidal
category 1J be given, having all coends, preserved by the functors vo-, -Ov,
for all v in V. The prototype Cat considered above can be generalised,
forming the pseudo double category 1J-Cat of ’U-categories, V-functors and 1J-
profunctors (cf. Kelly [ 14]).

In particular, V= Ab gives the pseudo double category of preadditive
categories, with additive functors and profunctors. V = 2 gives the (ordinary)
double category Pos of posets (preordered sets) with monotonic functions and
poset-profunctors u: X°pxY -+ 2, consisting of relations u c XxY down-
closed in X and up-closed in Y (also called order ideals); they compose as
relations. Pos is flat, and has one cell with boundary (u g f v) iff gu s vf.

It is also interesting to work out the case introduced by Lawvere [16] to
formalise (extended) metric spaces as categories enriched in the strict monoidal
category R+ = [0, +oo], with arrows given by the order relation z and tensor
product given by the sum. The double category Jr1tr = R+-Cat has for objects the
metric spaces X, in the generalised (non symmetric) sense of I4-categories

for horizontal arrows the (weak) contractions f: X - X’ (d(x, y) z d(fx, fy)),
for vertical arrows the profunctors u: X - Y, represented by R+-functors

which compose by a coend, calculated as a greatest lower bound in [0, +oo]

As in 3.1, u(x, y) should be viewed as the distance from a point of X to a
point of Y, defining a new metric space, the collage X+u Y (with d(y, x) =
+oo). Mtr is flat, as the cell a: g*u - vf* just corresponds to the following
inequalities
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or, equivalently, u(x, y) + d(gy, y’) &#x3E; v(fx, y’).
The embedding of strict monoidal categories

gives an embedding of double categories (reflective and lax coreflective, accord-
ing to a notion of adjoint double functors to be studied in a sequel)

identifying Pos to the double subcategory of Jt1tr consisting of those metric
spaces whose distance takes values in {0, +oo} , their weak contractions and their
profunctors with values in {0, +oo}

(In this respect, a generalised metric space X can be viewed as a preordered
set equipped with further information d(x, x’).)

3.4. Relations. In P os, the full double subcategory of discrete posets (x «
x’ iff x = x’) is the (flat) double category Rel = RelSet of sets, mappings and
relations.

By the previous embedding, Rel can also be viewed as the double subcate-
gory of Ir1tr consisting of discrete metric spaces, with d(x, x’) = +oo if x# x’

(and 0 otherwise), their weak contractions and their profunctors with values in
{0, +oo}. There is also a split lax embedding (identifying relations with jointly
monic spans)

where R is the obvious double functor taking a span to the associated relation,
while S is the lax double functor taking a relation u c AxB to the jointly monic
span Su = (A - u - B), having a comparison cell (Sv)*(Su) - S(vsu) from
a (composed) span to the jointly monic span defining the same relation.

Similarly, we have the double category RelAb of abelian groups, homomor-
phisms and relations. More generally, any abelian category A has an associated
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double category RelA of morphisms and relations (and this can be extended in
various directions, e.g. regular categories or Puppe-exact ones).

This construction arises naturally. Indeed, if F: A -+ B is an exact functor

between abelian categories, F extends to a unique functor REIF: RelA -+ RelB
preserving order and involution, hence to a double functor Relf: RelA - RelB .
Further, if a: F - G: A - B is any natural transformation between such

functors, the same components form a lax-natural transformation Rela: Relf -
ReIG and a horizontal transformation Rela: RelF -+ ReIG. Regular inductive
squares (providing regularly induced morphisms between subquotients) are cells
of the previous type, where u: A - A’ and v: B -&#x3E; B’ are monorelations

(subquotients), g: A’ -&#x3E; B’ is the inducing morphism and f: A -&#x3E; B the

induced one, coinciding with v#gu [17,10].

3.5. Functors and adjunctions. We consider now a second prototype, the
double category AdCat of (small) categories, functors and adjunctions. In a
general cell

each object is a category, a horizontal arrow is a functor, a vertical arrow is an
adjunction directed as its left-hand component

and finally a = (a., a*) is a pair of natural transformations ( from f to g, as

made precise below) each of them determining the other one, via the units and
counits of the two adjunctions

Horizontal isos are isomorphisms of categories, vertical equivalences are
adjoint pairs which are equivalences. There is an obvious forgetful double functor
Adcatt - 0 Cat, which takes u to u. and a to a.. Abelian categories, with
their exact functors and adjunctions, form a cellwise-full double subcategory
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AdAbc of the previous one. Similarly, we write AdTp the double subcategory
of AdCat" (vertically reversed) consisting of toposes, logical morphisms
(functors which preserve the topos structure) and geometrical morphisms
(adjunctions whose left-hand part preserves finite limits, directed according to the
right adjoint, as usual).

3.6. Ordered sets and adjunctions. The double category AdOrd of

(small) ordered sets, functors (monotonic functions) and adjunctions (or
"covariant connections") is a full double subcategory of AdCat. It is flat, since a

cell a: (u 9 f v) as above (3.5.1) exists iff v.f gu. (or equivalently fu* s v*g)
and is then determined by its boundary.

Important double subcategories of Adored, full with respect to vertical
arrows and cells, are:

- AdLt: lattices (with 0 and 1), homomorphisms and adjunctions;
- AdMl: modular lattices, homomorphisms and modular connections.

A modular connection u: X - Y is a pair of monotonic functions u.: X -
Y, u*: Y - X between modular lattices, which satisfies the following
conditions, stronger than the adjunction ones: u*u.(x) = x v u.(O), u.u.(y) =
Y A u.(1) (for xe X, yeY) [9]. 
We also consider further restrictions, of more direct interest in homological

algebra, the double gubcategories AdoLt and ADOM having the same objects
and arrows but only bicommutative cells, with v.f = gu. and fu* = v*g. ADOMI
was used to treat formally direct and inverse images of subobjects for categories
of modules, or more generally for abelian or Puppe-exact categories [9], while
AdoLt plays a similar role in the more general context of "semiexact" and
"homological" categories, in the sense of [11]. As proved in 6.5 e, ADOMI is

"vertically Puppe-exact"; its category of "vertical relations" was studied in [9],
Section 3 (modular relations).

4. Double limits

Double limits for double functors F: I - A are considered. I is assumed to

be small, and F is viewed as an object in the double category Al = X.

4.1. Cones. Consider the diagonal double functor
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taking each object A to the constant double functor DA: I - A.
A (horizontal) double cone for the double functor FE Al is a horizontal

transformation x: DA -&#x3E; F: II --&#x3E; A, where A (the vertex of the cone) is in A.
By definition (1.4), this amounts to assigning the following data a), b), subject to
the axioms (dc.1-3):

More precisely (as I might be empty, in which case DA does not determine
A), a double cone of F is a pair (A, x: DA - F) as above, i.e. an object of
the comma (D 11 F), described in 1.7.

If we allow A to be a (unitary) pseudo double category (7.1) and F = (F, (p):
I - A a (unitary) lax double functor (7.2), with comparison special cells
p(u, v): Fv·Fu -&#x3E; F(v*u), then the axiom (dc.2) is to be replaced with

for u, v vertical in 1.

This more general situation will only be considered marginally (at the end of
4.2, 4.3, 5.5 and 5.7). No modification is needed when I is just a double graph.

4.2. Limits. A (horizontal) double limit lim(F) = (A, x) of the double functor
Fe A’ is a universal such cone (A, x: DA - F), i.e. a double terminal of (D 11
F), if such exists. Specifying the conditions (t.l-2) in 1.8, this means that

(dl.0) x: DA - F is a horizontal transformation (4.1 ),

(dl.1 ) for every double cone (A’, x’: DA’ - F) there is precisely one horizontal
map t: A’ - A in A. such that xoDt = x’,

(dl.2) for every vertical arrow in (D 11 F)

where u: A’ -- A" is vertical in A and 4: (Du X" 1 F . ) is an X-cell, there is

precisely one cell T in (DHF) with boundary
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or, in other words, precisely one A-cell T such that

i.e. « l xi)= Ej in A, for all i in I

a) Note that (dl.2) implies (dl.1 ), by 1.8. The conditions (dl.0-2) only depend, as
far as I is concerned, on its double graph structure plus the composition of
vertical maps; and the latter is only relevant for (dc. 1-2).
b) The uniqueness part in (dl.2) means that the projections xi: A - Ai are

jointly monic with respect to A-cells r: (u t’ t" ; 11).
c) If A = HA is the 1-horizontal double category associated to a category A, the
double limits in A reduce to ordinary limits in A. If A is a 2-category (and A
= HA is horizontal), a double limit in A can be viewed as a weighted limits in
A and conversely ([20, 24]; cf. 6.6). On the other hand, the restriction to 1-
horizontal I = HI yields double limits of horizontal functors, considered in 5.1.

d) If F and G have a double limit, a horizontal transformation H = ((Hi),
(Hu)): F -- G: I - A determines a horizontal arrow limH: limf -&#x3E; limG.

Vertical transformations are considered below.

e) No modification is needed for the lax case (4.1 ), except what we already said
about cones.

In a double category, a double limit will also be called a limit, provided no
ambiguity may arise. When, occasionally, we want to refer uniquely to the first
universal property (d1.0-1 ), we speak of a one-dimensional limit. Let us recall
now that Bastiani-Ehresmann ([2], p. 258) introduced the notion of an A-wise
limit of a functor f: I - veroa, defined over an ordinary category, with values
in the category of objects and vertical arrows of a double category. This notion



186-

corresponds, in the present terminology, to the one-dimensional limit of the
associated vertical double functor F: VI - A (see also 5.3.)

4.3. ’Vertical functoriality. The notion of double limit presents two problems
with respect to the vertical structure, namely "functoriality" and "uniqueness",
which we turn now to investigate. First, the existence of I-limits does not
automatically produce a (lax) double functor, because the limit of vertical
transformations may fail (as happens for equalisers in AdCat or AdOrd; 6.5).

To be precise, the limit of a vertical transformation U = ((Ui), (Uf)): F - G:
H - A is a pair (u, x: Du - U), universal with respect to the horizontal

composition of modifications (formally, a one-dimensional limit for . U: B -·
A V2, see 1.6). In other words, we have a modification n: (Du P u) such that

every 4: (Dv x U) factors uniquely as (D4p K)

The solution x is unique up to horizontal composition with a horizontally
invertible cell cp; and the latter is necessarily special, if n is confined to have as

horizontal arrows p: DA - F, q: DB -+ G two fixed (even one-dimensional)
double limits of F and G. The universal property (dl.2) amounts to saying that
the vertical identity of the one-dimensional limit of F is the limit of 1; .
We say that A has a lax (resp. pseudo, strict) functorial choice of I-limits if

there is a lax (resp. pseudo, ordinary) double functor L = (L, (p): AI -+ A (7.2)
with a horizontal transformation p = ((pF), (nU)): DL - 1: Al - Al satisfying
the following conditions

i) for any double functor Fe AI, (LF, pF: DLF - F) is a double limit in A,
with components pFi = pi: LF - Fi, pFu = pu: (18 . pi pj u)),

. ii) for any vertical transformation U = ((Ui), (Uf)): F - G, (LU, 1tu:
DLU - U) is a limit.

Thus, L takes all families (of objects, arrows and cells) to their limit, coher-
ently with domains and codomains, identities and compositions, in the appropriate
way -lax, or pseudo, or strict- with respect to the vertical composition. If (L’,
q) is a second lax functorial choice, there is a unique horizontal transformation of
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lax double functors (7.3) H: L - L’ such that (DH I q) = p: DL - 1, and H
is horizontally invertible.

Dually, for double 1-colimits, a colax functorial choice consists of a colax
double functor C = (C, y): Al - A with a horizontal transformation k = ((kF),
(KU)): 1 - DC.

For a pseudo double category A, the same terminology will be adopted (with
some abuse), replacing the exponential AI with the pseudo double category
Ps(II, A) of pseudo double functors (7.4); but the existence of a strict functorial
choice has no longer any interest (nor practically any sense, when the vertical
composition is defined by invoking the axiom of choice). Finally, as a partial
motivation of the unitarity assumption, note that a lax double functor L satisfying
i), ii) is necessarily pseudo unitary, and can always be made unitary (as in 7.5).

4.4. Lemma. A lax functorial choice of I -limits in A can be equivalently
reduced to the following choices:

a) for every double functor F: I - A, a "one-dimensional limit" (LF, pF),
satisfying (dl.1 ),
b) for every vertical transformation U = ((Ui), (Uf)): F -&#x3E; G: I - A, a limit

(1) LU: LF - LF, 1CU: (DLU pF PF U)
with respect to the horizontal composition of modifications (as specified above,
4.3.1 ), so that vertical identitl’es are preserved (L1 F. = 1 LF).

Our choice L is pseudo, or strict, iff its comparison special cells (p(U, V):
LV-LU -+ LW (determined below, in (2)) are horizontally invertible, or ,
identities, respectively. ,

Proof. In fact, we can (uniquely) complete the data a) b), to form a lax double
functor L = (L, p): Al - A and a horizontal transformation p = ((pF), (1tu):
DL -+ 1: Al - Al, which satisfy the definition 4.3:
- for any horizontal transformation H: F - F, let LH: LF - LF’ be its limit

(4.2 d), using a); the horizontal composition and identities of such

transformations are automatically preserved; 
- for any cell a in Al, let La be its limit, using b), consistently with the
previous choices (by hypothesis); again, horizontal composition and identities are
preserved;
- for any vertical composition W = V.U: F -- G - H in AI, let the
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comparison special cell p(U, V) be determined by the universal property of
(L.W, (1twi»

The coherence equations follow now from the cancellation property of univer-
sal solutions.

4.5. Invariant functorial limits. The second problem, "vertical uniqueness"
of double I-limits, is still unsolved. In fact, it is true that, given a pseudo (resp.
strict) functorial choice L, a limit of vertical isos is a vertical equivalence (resp. a
vertical iso), so that -inside this choice- a limit is also vertically determined.
However, there may exist various choices for L, vertically non-equivalent; this is
the case of binary products in Tg (2.1), where we may choose to equip the
algebraic product GxH with the product topology, or the discrete one, or the
chaotic one...

A solution is provided by assuming that our double category A be horizon-
tally invariant (2.4), as are all our examples of real interest (Section 3). Then, for
any two limits A, B of the same double functor F: I -+ A, the canonical
horizontal iso A - B has an associated vertical equivalence A - B deter-
mined up to special isocell (2.3). By Lemma 2.5, this fact can be extended to two
lax functorial choices (L, p) and (L’, q) of I-linfts in A: the canonical (and
invertible) horizontal transformation H: L - L’ (7.3) produces a strong vertical
transformation U: L - L’, whose general component UF: LF-&#x3E; L’F is a

vertical equivalence associated to HF.

Thus, in a horizontally invariant double category A, a functorial lax choice of
n-limits is also vertically determined, and we just speak of (invariant) lax functo-
rial I-limits, or pseudo functorial I-limits, or functorial I-limits. (In the last case,
we mean that we have pseudo functorial I-limits, and we are actually exhibiting a
realisation which is an ordinary double functor.) The characterisation of Lemma
4.4 can now be expressed more simply, as in theorem 4.6, below. All this
extends to pseudo double categories and limits of lax double functors; except that,
now, a strict solution may make no sense (see 6.3).

Finally, let us remark that there is scarce interest in giving a direct notion of
"invariant lax functorial I-limits", independent of the horizontal invariance of A
and based on the existence of "horizontally invariant" limits of vertical transfor-
mations for I (as in 4.6a). In fact, and plainly, A has unary limits (I =1) of
this kind precisely iff it is horizontally invariant. (Unary colimits give the same.)
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4.6. Invariance Theorem. Assume that the double category A is horizon-

tally invariant (2.4).

a) The existing I-limits of vertical transformations are also horizontally invariant,
in the sense that we can modify their domain and codomain up to horizontal
isomorphism. Precisely, let a vertical transformation U: F - G: I - A be
given, with double limits (A, p) of F and (B, q) of G, and a consistent limit
(u, n) of U (i.e., u: A -&#x3E; B and 1t: (Du P U)). If also (A’, h) and (B’, k) are
double limits of F and G, there is a limit (v, p) of U consistent with them.

b) A has lax functorial I-limits iff every double functor F: I - A has a double
limit and every vertical transformation U = ((Ui), (Uf)): F -&#x3E; G: I - A has a
limit (4.3.1).

Proof. a) It is sufficient to prove that, in the limit of U = ((Ui), (Uf»), the given
limit (B, q) of G can be replaced by any other limit (B’, k); similarly, one can
modify the domain. First, there is a unique horizontal iso b: B - B’ coherent

with the cones q and k (q = (Db I k)). By horizontal invariance, this b can be
embedded in a cell L, horizontally invertible (write A! for its inverse)

producing cells ÀÏ = (À 1 ki . ), again invertible, and pi = (ni ; as a pasting of
modifications, this family is a modification p: (D(y-u) P u). 

1

We have to prove that you: A - B’ is a limit of U, with projections (pi).
Take a cone ai: x - Ui, with factorisation ai = (a I ni)

There is a unique cell g such that (u l Li) =1 gi. , precisely J.1 = (lbg 3L’)
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and the vertical pasting of the diagrams (2) and (3) provides the solution of our
problem, goa. Its uniqueness can be proved similarly. Finally, b) is a rewriting
of Lemma 4.4, once we know that, in the limit of a horizontal transformation,
"domains and codomains can be modified".

4.7. Regular limits. We end this Section introducing a stronger notion of
double limit, defined by a further universal property of "vertical terminality" and
providing a second solution to the two problems considered above.

Let F: I -+ A be a double functor. We say that the cone (X, p: DX -+ F)
is a regular (double) limit if it is a double limit (satisfies (dl.l-2) and moreover

(dl.3) for any double functor GE AI, any vertical transformation U = ((Ui),
(Ufj): G - F and any horizontal cone q: DY - G, there exists a vertical

arrow u: Y -- X and a modification 1t: (Du q u) (consisting of cells xi as in the
middle square below, coherent with the cells Uf of U), which are terminal in
the following sense

- for any g: Y’ - Y, v: Y’ - X’ and any modification 4: (Dv x Y u) (consisting
of cells 4i as in the right-hand square above, coherent with the cells of U)
having vertical domain y = qoDg, there exists a unique cell P: (v f u) such that

(Dp |n) = §.

Plainly, the existence of regular double I-limits in A produces a lax functorial
choice of them; it is also evident that Tg has (vertically unique) regular products,
the chaotic-algebraic ones, by the terminality of the chaotic topology. Further
study of regular double limits, deferred to a sequel, will show that, again, they are
determined up to sesqui-isomorphism and can be reduced to the "unary case".
This shows immediately that in Cat all the existing (co)lax functorial (co)limits
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(see 6.3) are regular, whereas this is not true in AdCat.
But note that this further universal property (dl.3) has a different status from

the previous ones, (dl.l-2), which keeps us from inserting it in the definition of
double limit.

a) As category objects in Cat, small double categories give rise to Cat-indexed
categories, and the indexed-category-theory notion of limit merely amounts to
double limits. In fact, we get a horizontal cone which is universal with respect to
all cones "whose vertex is an arbitrary vertical diagram". But this is equivalent to
universality for cones "with vertex an object" (dl.1 ) and "cones with vertex one
vertical arrow" (dl.2).
b) The property (dl.3) cannot be expressed within the comma (D 11 F), since it

appeals to other double functors GE AI; thus, a regular limit is not the same as a
regular terminal in (D H F).
c) While, in any double category A, the unary limit of the object X is any
horizontal iso X’ - X, the existence of regular unary limits in A is a non-

trivial property (which can be used to produce regular I-limits from any lax
functorial choice of them).

5. The construction of double limits

All double limits can be constructed from products, equalisers and tabulators
(Thm. 5.5).

5.1. Limits of horizontal functors. Let us treat first the easier case of a

horizontal functor F: I - A, which means that I  IHI is 1-horizontal (for I a
category), and F can be thought of as an ordinary functor F = horoF: I -&#x3E; A =

hor0A. 
Then a double cone of F is the same as an ordinary cone of F, and the first

universal property (dl.1 ) for lim F = (A, x: DA - F) amounts to saying that
(A, x) = lim F. A double limit of a horizontal functor is thus an ordinary limit
which also satisfies (dl.2), i.e. is preserved by the functor 1.-: horoa - hor1A.
Moreover, if A is horizontally invariant, then (by 4.6b) it has lax functorial IHI-
limits iff :

(a) the categories hor0A and horiA have (ordinary) I-limits, preserved by the
three structural functors hor0A S horIA (identity, domain and codomain).
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In particular, consider the ordinary product (A, (pi: A -+ Ai)) in hor0A, of
a (small) family (Ai)iE I of objects of A (our indexing double category I is

discrete). Then this cone (A, (pi)i) is the double product of the family in A iff

(dp.2) given two cones (X, (xi)i), (Y, (yi)i), a vertical arrow u: X - Y and
cells 4i: (u Xi Yi 1Ai . ), there is precisely one cell T such that, for all i, (T I pi) = 9

Similarly, consider now the ordinary equaliser e: E - A (in hor0A) of a
pair of horizontal maps f, g: A= B. Then (A, e) is the double equaliser of
the two maps in A iff

(de.2) for every cell §: (u y 1 Ä) of A which equalises f and g ((§ 1 f)

(§ 1 g)) there is precisely one cell r: (u t’ t" 1 Ë) such that (T le) = §.

The existence and functoriality of (co)products and (co)equalisers in our
standard examples will be studied in Section 6.

5.2. Lemma. The double category A has all small (resp. finite) double limits
of horizontal functors iff it has all small (resp. finite) double products and double
equalisers; the construction is the standard one. If A has a lax (pseudo, strict)
functorial choice of double products and double equalisers, this construction
provides a similar choice of I-limits, for any small I = HI (for I a category).

Proof. We already remarked (5.1) that the double limit of a horizontal functor
amounts to an ordinary limit in hor0A which is preserved by the functor 1.- :
horoA -+ hor1A. Thus, the first statement is a straightforward consequence of
the construction theorem for ordinary limits. The second as well, by Lemma 4.4.

5.3. Tabulators and cotabulators. We call (horizontal) tabulator of a vertical
arrow u: A - B the double limit of the double diagram consisting of u. The
object Tu is thus equipped with two horizontal maps p, q and a cell
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which determines the whole cones is therefore monic on horizontal maps into
Tu. The corresponding double colimit is called cotabulator and written lu; it

comes equipped with

J

In particular, the cotensor 2*A (resp. the tensor 20A) of the object A by
2 is the tabulator (resp. cotabulator) of its vertical identity. There is a canonical
diacgonal (horizontal) map, provided by the identity cell of A

The one-dimensional property of tabulators amounts to a right adjoint to the
functor 1.-: horoa - horlA. Thus, if A has one-dimensional cotabulators,
1.- is a right adjoint and the double limits of horizontal functors in A just amount
to their one-dimensional property (5.1 ).

All the (pseudo) double categories considered in Section 3 have tabulators and
cotabulators, most of which are calculated in 6.1-5. In particular, in Real, Tu c
AxB is the "graph", or "tabulation", of the relation u, motivating the general
name; in Cat, Tu is the Grothendieck construction on the profunctor u and lu
its collage A+uB; in AdCat we have the comma category Tu = (u.I B) = (A I
u’). Restricting Ab-Cat to the full substructure of preadditive categories having 
one object, we obtain the pseudo double category Rng of rings, with
homomorphisms"and bimodules u: R - S (u is a left-R, right-S bimodule).
Then, Tu is a ring of matrices, with "matrix" product

On the other hand, Tg (2.1 ) lacks tabulators: if the continuous mapping u:
A --&#x3E; B does not preserve the unit, there are no cells having the boundary
required for (1).

Finally, completing (after 4.2) a comparison with "A-wise limits" in the sense
of Bastiani-Ehresmann, let us recall that the tabulator, more precisely its one-
dimensional version, was introduced in [2] (p. 260) as the A-wise 2-limit of a
vertical arrow u, and called "representation" of u; the double category A is
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called "representable" if each vertical arrow has a representation. The construction
of double limits which we give below (5.5i), restricted to one-dimensional limits
for "vertical" double functors F: VI - A, coincides with the construction of A-
wise limits given in [2] (p. 265, Prop. 3), by means of representations and limits
of ordinary functors in the category hor0A of horizontal arrows of A.

5.4. Tabulators and composition. We already know how the tabulator 2*A
of a vertical identity is related to the object A, through the diagonal map dA
(5.3.3). Given now a vertical composite w = vou: A -&#x3E; B-&#x3E; C, we need to
know how the three tabulators of u, v, w are related.

This will use the pullback T(u, v) of Tu and Tv, over the middle object B
(which we assume to exist)

and the diagonal map duv: T(u, v) - Tw given by the universal property of Tw

It is easy to show (and it also follows from the construction theorem below)
that T(u, v) is the double limit of the diagram consisting of the consecutive
vertical arrows u, v (with projections in A, B, C and structural cells in u, v

given by the left-hand part of diagi-am (1)).

5.5. Theorem: the construction of double limits. i) The double category
A has all small (resp. finite) double limits iff it has small (resp. finite) double
products, double equalisers and tabulators. The construction is explicitly
described in the proof below (5.6 for the free case, 5.7 for the general one).
ii) If A has a lax (or pseudo, strict) functorial choice of the basic limits (double
products, double equalisers and tabulators), this construction provides a similar
choice of I -limits, for any small 1.

iii) Finally, if A is a pseudo double category, double limits for lax double
functors I - A (end of 4.1) are still obtained from the same basic limits, under
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a slightly generalised construction (5.7 F).

5.6. Proof, Part I. (The double limit of a double diagram) Of course one
needs only to prove the "sufficiency" part of the statement. We consider first the
"free case", which is considerably simpler, contains various interesting non-
horizontal cases and allows for a more economical algorithm.
We assume thus that I is just a double graph, and F: I - A a (double)

diagram; or equivalently, we consider the double functor F: I - A spanned by
F, on the free double category generated by I (1.5 d). We already know that, in
this case, the cones x: DA - F: I - A are just subject to one naturality
condition (dc.3) (1.5), which simplifies the problem.

The solution is based on turning F into a 1-horizontal functor G: HI - A,
and taking its double limit; the graph I is a sort of "horizontal subdivision" of I.

The procedure is similar to computing the end of a functor S: COPXC - D as

the limit of the associated functor S§: C§ -&#x3E; D based on Kan’s subdivision
category of C ([13], 1.10; [18], IX.5).

A) Form a new 1-dimensional graph I, the horizontal subdivision of I, by
replacing every vertical arrow of I with a new object, simulating its tabulator.
Precisely, I is formed by the following objects and arrows (and is finite when-
ever I is so):

a) all the objects and horizontal arrows of I,

b) for every vertical map u: iu -- ju of H, a new formal object u, also written
u, together with two new arrows pu: u^ -+ iu, qu: UA ju

c) for every cell a: (u 9 f v) of I, a new arrow a^:u^-&#x3E; v, also written a.

B) Let G:HI -A be the 1-horizontal functor naturally deriving from F and
the tabulator-construction for vertical maps:

a) G coincides with F on the objects and horizontal arrows of I,

b) for every vertical map u: iu -- ju of I,

(1) Gu = T(Fu),

while Gpu: Gu-&#x3E; Giu and Gqu: Gu -+ Gju are the projections of T(Fu) in A;
these projections will again be written pu and qu, while we write xu: ( 1 · qu pu Fu)
the structural cell of the tabulator,

c) for every cell a: (u g v) of I, Ga is the horizontal map of A such that
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according to the universal property of xv with respect to the cell (xu I Fa).
The double limit of this horizontal diagram G:HI -&#x3E; A exists, by hypothe-

ses and the previous lemma 5.2. We want now to prove that it gives the double
limit of F; in fact, we construct an isomorphism of double categories between
(D 11 F) and (D’U G), whose double terminals yield our two limits. Here, D’:

A -&#x3E; A HI is the new diagonal double functor.

C) The canonical double functor (D 11 F) -+ (D’ll G).

a) Let (A, x: DA - F) be a double cone of F. Its "ordinary part" (A, (xi)i)
can be extended to an ordinary cone (A, x’: D’A - G) of G, using the non-
ordinary part (xu)u: define x’(u): A - T(Fu) as the horizontal map of A

determined by the cell xu, via the tabulator-property

And x’ is indeed a cone, as it is coherent with the new arrows pu, qu, Ga:

where the first two properties follow from (3), the third from the cancellation
property of xv

b) A horizontal map of (D 11 F), a: (A, x: DA - F) -+ (B, y: DB - F),
determines a horizontal map a: (A, x’) - (B, y’) of (D’ll G), since (using
again the cancellation property of nu)

(6) (a I y’(u) l1tu) = (a I yu) - xu = (x’(u) l nu).

c) A vertical map of (D 11 F), (s, 4): (A, x: DA - F) --&#x3E; (C, z: DC - F),
where s: A - C is vertical in A and 4: (Ds X 1F.) is an X-cell, determines a
vertical map (s, 4’): (A, x’) -+ (B, y’) of (D’ll G), extending the cell 4 to 4’:
(D’s y; 1;) so that 4’(u) satisfies (setting qu = (zu) *(4i,,) = (§ji).(xu»

d) Finally, it follows that a cell of (D 11 F) detennines one of (D’ll G).
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D) In the reverse direction, one constructs a canonical double functor (D’ll G)
-+ (D 11 F) inverse to the former, by similar arguments. We just specify its action
on objects. Given a cone (A, (xi: A - Fi)¡, (x’u: A - Gu)u) of G, one forms
a double cone (A, x: DA --&#x3E; F) by letting

which satisfies (dc.3) since, for a: (u 9 f v) in R

(9) (xu I Fa) = (x’u l1tu I Fa) = (x’u I Ga I nv) = (x’v l1tv) = xv.

E) Assume now, for ii), that we have, in A, a lax (pseudo, strict) functorial
choice of the basic limits and let us construct a similar choice for I-limits; by
Lemma 4.4, this can be reduced (both on hypotheses and conclusion) to two more
elementary choices a), b).

The first choice is given by the "one-dimensional part" of what we have
already proven. As to the second, a vertical transformation U = ((Ui), (Uf)): F
-&#x3E; F: I -&#x3E; A has a natural extension to a vertical transformation U: G - G’:

H I -&#x3E;A , which is defined on the new objects uA through the fact that
tabulators have been assigned a choice of limits of vertical transformations

(10) U(uA): T(Fu) - T(F’u) (u vertical in B)

so that also the value on the new arrows a A: U^-&#x3E; VA is uniquely determined.
But this vertical transformation of horizontal functors U: G - G’ has an

assigned limit, because of 5.2. Finally, since both steps respect the structural
functors (1.-, dom, cod), so does their result.

5.7. Proof, Part II. (The general case) Now let I be an arbitrary double
category. Then the previous construction of the graph I (step A); of G (step B)
and of the isomorphism (D 11 F) = (D’ll G) (steps C-D) has to be supplemented
as follows.

A) I has some supplementary objects and arrows:
- for every i in B, a new arrow di: i - 1 i . ^ (simulating the diagonal map
5.3.3),
- for every vertical composition w = v-u in I, a new object (u, v) and three
arrows pUV: (u, V)* -&#x3E; UA, quv: (u, v) - v, duv: (u, v) - WA (simulating the
object T(u, v) of 5.4 and its arrows).

B) G is extended to these objects and arrows, by the objects and maps of A
they simulate:
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- G(di) is the diagonal map dFi: Fi -+ 2*Fi = G( 1.i ^) (5.3.3); again, for the
sake of simplicity, we write G(d;) as di, and ni the structural cell of the
tabulator 2*Fi (i.e., 1t for u = 1.i )
- Guv = T(Fu, Fv) is the double limit of the composable pair Fu, Fv (5.4); the
arrows pw, quv, duv of I are taken by G to the projections and the diagonal
of Guv (5.4.1-2), which we simply write as puv: Guv -+ Gu, quv: Guv - Gv,
duv: Guv -+ Gw; note that (Guv, puv, quv) is the pullback of (qu, pv) in

horolA.

C) Given a double cone (A, x: DA - F), extend our previous x’: D’A - G

(5.6 C)) to the new objects (u, v) by letting x’uv: A - Guv be defined by the
pullback-property of Guv

In order to prove that the new x’ is a cone, it suffices to prove its coherence
with the new arrows di, puv, quv, duv; two conditions hold by definition (1)
above, the remaining two follow from the definition of the diagonal maps di, duv
and the structural cells 1t¡, xu (together with their usual cancellation property)

D) Given an ordinary cone (A, x’: D’A - G), we have to prove that the old
associated double cone (A, x: DA - F), defined by letting xu = (x’u l nu), is
indeed a double cone for the new situation, i.e. satisfies also the conditions (dc.l-
2) concerning the vertical composition in I; this proceeds much as above (let w
= vou, in the second case)

E) For the lax functoriality patt ii), take a vertical transformation U = ((Ui),
(Uf)): F - F’: I -+ A. The corresponding U: G -- G’:HI --&#x3E; A is defined on
the new objects (u, v)
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through the fact that tabulators and pullbacks have been assigned a choice of limits
for vertical transformations. Again, the extension to the new arrows di: i -+ 1i.^ ,
puv: (u, v) - UA, quv: (u, v) - v, duv: (u, v) - wA is uniquely determined.

F) Finally, it is easy to modify the previous steps for the more general relaxed
case iii). Now, x preserves the vertical composition up to the special comparison
cells of F, (p = (p(u, v): Fv·Fu --&#x3E; Fw (4.1, (dc.2’)) and duv are defined

coherently

Therefore, we just replace (3), (5) above with (3’), (5’):

6. Explicit constructions

After computing limits and colimits in double categories of quintets (6.1 ) and in
the examples of Section 3 (6.2-5), we end by an example showing the difference
between double limits of double diagrams and double functor (6.6). Recall that the
term double limit is often replaced with limit, and note that all (pseudo) double
categories studied below are horizontally invariant, so that the results of 4.5-6 apply.

6.1. Limits for quintets. The 2-category A is 2-complete iff the associated
double category QA has all double limits; and dually.

In fact, A is 2-complete iff it has 2-products, 2-equalisers and cotensors by
2 [22]. First, it is easy to see that 2-products (resp. 2-equalisers) in A produce
double products (resp. double equalisers) in Q) A; and conversely. Second, if the
A-morphism u: A - B is viewed as vertical in QA, its tabulator (Tu; p, q; 1t)
can be constructed as the inserter
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with p = p’i, q = p"i. Conversely, the cotensor 2*A is obtained as the tabula-
tor of the identity of A.

6.2. Metric spaces, posets and relations. Examining the examples of
Section 3, let us begin to study the profunctor-based, flat double categories Mtr &#x3E;

P os :D Rel (3.3-4). We prove here that all of them have lax functorial limits and
colax functorial colimits. Moreover:

- the double category Mtr of metric spaces has functorial sums and cotabulators;
- the double subcategory P os of preordered sets (identified with metric spaces
with distance in {O, +oo} ) is closed in Mtr under limits and colimits; it has
functorial products, sums and cotabulators;
- the double subcategory Rel (a set being viewed as a discrete metric space with
values in {0, +-)) is closed in both under limits, sums and coequalisers;
products and sums are functorial; on the other hand, cotabulators are quotients of
the corresponding ones in Mtr and P os, and are not functorial.

a) Products and sums. For products, recall that II Ai has the 1--metric d((xi),
(yi)) = vi d(xi, yi); the product of profunctors ui: Ai -&#x3E; Bi is IIui((ai), (bi)) =
vi ui(ai, bi). For a sum E Ai, the distance within each component is completed
by setting d(x, y) = +- when x, y are in different components; similarly for a
sum of profunctors. Pos and Rel are closed under such constructs.

Arbitrary sums are obviously functorial, whereas even finite products in Jt1tr

are not; it is sufficient to consider the square PxP of the singleton, and the
following profunctors P -- P (each of them, being defined on one pair,
amounts to a constant)

This counterexample would fail for u’ - v = +oo. In fact, a product of
profunctors (ui: Ai -- Bi) in Rel (and Pos) is represented by the obvious
relation IIui: IIAi-&#x3E; IIBi (down-closed in domain and up-closed in codomain,
3.3) whose graph is the product of the graphs of all ui; and this procedure is
functorial.
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b) Equalisers and coequalisers. In 1M tr, the equaliser of a pair of weak
contractions f, g: A -+ B is the set-theoretical equaliser, say A, with the

restricted metric; for a vertical transformation

(2) (u, v): (f, g) - (f, g’), (u ? v(f, f), u z v(g, g’))

take u : A - A’ the restriction of u. Similarly, the coequaliser B is the set-

theoretical one, a quotient of B with the induced metric d(p, p’) = ^b,b’ d(b, b’);
to prove colax functoriality, take v : B -&#x3E; B’ as induced by v (v(p, p’) = Âb,b’
v(b, b’)). Again, Pos and Rel are closed under such constructs.

It is easy to give examples showing that equalisers and coequalisers do not
preserve the vertical composition in Rel, whence in lPos and lMtr, as below

c) Tabulators and cotabulators, I. In It1tr, the tabulator of a profunctor u:

A -&#x3E; B is a sort of "graph" of u (viewing u(a, b) as a distance, as in 3.3)

(in fact, given the right-hand cell above, we have u(fx, gx)  d(x, x)). Given a
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commutative square of vertical arrows (x, y): u - v, its limit T(x, y) is the

restriction of xxy: AxB - A’xB’.

The cotabulator of u is the collage A+uB (3.3), with d(a, b) = u(a, b) and
d(b, a) = +oo for aE A, bE B. Given a commutative square of vertical arrows

(x, y): u --+ v, its colimit s =1(x, y) is calculated on pairs (a, b’) by means of
the diagonal of the square, z = vex = y.u: A -&#x3E; B’ (the other values of s being
obvious)

Moreover, this procedure is functorial. Given a second square (x’, y’): v -+

w, with s’ = 1(x’, y’) and s = i(x’-Px, y’*y), the only non trivial verification
concerns the pairs (a, b")E AxB"; noting that y’oz = z’.x, we have

d) Tabulators and cotabulators, II. Pos is closed under both constructs, whereas

Rel is just closed under tabulators: the cotabulator of a profunctor u: A -&#x3E; B in

Mtr may have d(a, b) = u(a,b) = 0, in which case a and b must be identified

for the Rel-cotabulator.

Giving a direct description for Rel, the tabulator Tu c AxB is the graph of
the relation u, whereas the cotabulator lu is its cograph, a quotient of A+B.
Given a commutative square of vertical arrows (x, y): u -&#x3E; v, its limit T(x, y)

is the induced relation t = m’#(xxy)m = (TuxTv)n(xxy) (where m = p, q&#x3E;:
Tu - AxB); its colimit is the induced relation s = h’(x+y)h# (for h: A+B -*
lu). Again, these constructs need not preserve vertical composition (which also
proves that tabulators are not functorial in Poms and lMtr); below, (0, 0; 1, 0)
belongs to T(x’x, y’y), but not to T(x’, y’)·T(x, y)
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while in (11) all cotabulators of u, v, w are the singleton, i(x, y) and l(x’, y’)
are identities, but 1(x’·x, y’·y) is empty

6.3. Limits of profunctors. We study now the pseudo double category Cat
of categories, functors and profunctors (3.1 ), proving that it has all lax functorial
limits and colax functorial colimits, actually pseudo functorial forfinite products,
arbitrary sums and cotabulators. For horizontal double functors, our (co)limits are
given by the ones of Cat. (Note also that, in the ordinary presentation of
profunctors, the vertical composition is defined by some "unknown" choice, so
that here a strict functorial construction of (co)limits would have no sensible
meaning.)

a) Products and sums. In C at, the product of a family of profunctors ui:

Ai - Bi is nui((ai), (bi)) = II ui(ai, bi)). Their sum 1:ui takes a pair of
objects x, y of 1: Ai to ui(x, y) (resp. 0) when x and y belong to the i-th
component (resp. to different components).

Vertical composition is plainly preserved by sums (up to natural iso); it is also
preserved by finite products, as it follows from the cartesian closedness of Set
(take a = (ai, a2) in AlxA2, etc.) 

.

In the infinite case, the components of the canonical cell are surjective
mappings
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which are not injective, in general. In fact, if u: 1 --&#x3E; B and v: B - 1 are

terminal profunctors (with constant value the singleton), then vou: 1-&#x3E; 1

amounts to the set noB of connected components of the middle category. It is
well-known that no: Cat - Set does not preserve infinite products, as shown
for instance by a sequence Bn (n &#x3E; 0) of "zig-zag" categories .

of unbounded length, so that there is no (finite!) path in 1IBn connecting the
objects (0) and (n).

b) Equalisers and coequalisers. Equalisers and coequalisers in Cat are well-
known ; they produce (co)lax functorial (co)limits in Cat: we already noted that a
vertical transformation (u, v; a, 0): (f, g) -&#x3E; (f, g’) amounts to a pair of
functors a, 0: A+uB - A’+vB’ over 2 (3.1.4); their (co)equaliser is a category
over 2, yielding the (co)limit of the transformation.

All this is better verified in a formal way. Recall our analysis of a double
category as a category object within categories (1.3). Here, the category horocat
of objects and horizontal arrows is Cat, and we have seen that the category
hor, Cat of vertical arrows and cells is Catl2 (3.1 ). The structural functors

are pulling back along the face and degeneracy functors S’ : 1 fl 2 : p. As
Cat and Cat/2 are complete and cocomplete, and all their structural functors
have left and right adjoints, and finally Cat is horizontally invariant (2.4), it
follows that Cat has lax functorial limits and colax functorial colimits for all
horizontal pseudo double functors HI --&#x3E; Cat, constructed as in Cat (5. la).

Also here one proves that equalisers are not pseudo functorial using the fact
that xo: Cat - Set does not preserve them; for coequalisers, this is proved
below (6.4a).

c) Tabulators and cotabulators. In Cat, Tu is the category of elements, or
Grothendieck construction, of the profunctor u: A --&#x3E; B. It has objects (a, b, X)
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with aE ObA, bE ObB, LE u(a, b) and maps given by pair of maps of AxB
which form a commutative square in the collage A+uB (3.1 )

the functors p, q are obvious, and the natural transformation n is

The cotabulator lu = A+uB is the gluing, or collage, of A and B along u
(with new maps given by (lu)(a, b) = u(a, b), 3.1 ), with the obvious inclusions ,

i, j and structural cell t .

(7) t: u - 11° (i, j): AopxB -+ Set, i(a, b): u(a, b) = iu(a, b).

A vertical transformation of pseudo double functors (7.4) amounts here to a
square of vertical arrows (x, y; (p): u --+ v, commutative up to a special isocell
p: Y*u QC vex: A - B’. Its limit T(x, y): Tu - Tv (omitting (p for simplicity)
is induced by the product profunctor xxy: AxB -+ A’xB’

with and

in Tv. This is not consistent with vertical composition, as proved below (6.4b).
Its colimit s = l(x, y) (determined up to special isocell), is calculated on pairs

(a, b’) by means of the diagonal of the square, z = v·x = you: A - B’

This procedure is pseudo functorial. Given a second square (x’, y’; p’):
v - w, with s’ = 1 (x’, y’) and s = I(x’·x, y’·y), the only non trivial
verification concerns pairs (a, b") E AxB" (as in 6.2.8); but, since y’.z = z’ex,
the value of s’·s on such pairs is given by z’·x = (w·x’)·x = w·(x’·x) = z.

6.4. Limits for spans. The pseudo double category Set of sets, mappings
and spans is identified to the full double subcategory of Cat consisting of
discrete categories (3.2). We prove now that also Set has all lax functorial limits
and colax functorial colimits; for horizontal functors, (co)limits are given by the
ones of Set. The embedding D: Set -+ Cat preserves all limits, as well as all
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colimits of horizontal functors, while cotabulators in Set are quotients of the
corresponding ones in Cat. Moreover, Set has pseudo functorial products,
equalisers, sums and cotabulators.

a) Horizontal double functors. The "positive" results of 6.3 a,b) restrict to the full
double subcategory Set, since the embedding Set - Cat preserves limits and
colimits.

But here, arbitrary products are pseudo functorial in Set. In fact, the
canonical mappings 6.3.2 are bijective as soon as all categories Bi are discrete,
so to reduce all coends to sums of sets. Moreover, (co)equalisers in Set have an
obvious, simpler construction, given by the (co)equaliser of the mappings a, p:
U - V representing the cells

Equalisers in Set are pseudo functorial, because in Set "pullbacks preserve
equalisers". On the other hand, coequalisers do not preserve the vertical
composition in Set; it is sufficient to take the similar counterexample for Rel in
6.2.4, and transfer it by the lax double functor S: Rel - Set taking a relation to
the associated jointly monic span (3.5), which happens to preserve the vertical
compositions and coequalisers of that diagram. This also shows that coequalisers
are not pseudo functorial in Cat.

b) Tabulators and cotabulators. In Set, the tabulator Tu is plainly the "graph" of
the span, i.e. the middle object in the usual representation of a span; this is
consistent with the embedding in Cat, which gives the discrete category Tu =
1:u(a, b), and with the lax double functor S: Rel -+ Set. Thus, tabulators in
Set arelaxfunctorial(as in Cat); but they are not pseudo functorial (nor in Cat),
as proved by our counterexample in Rel (6.2.10), noting that S preserves the
compositions of profunctors appearing there.

Finally, the cotabulator lu in Set is given by the pushout of the span u,

which is the set of connected components n0(lDu) of its cotabulator in Cat.
The lax double functor S: Rel - Set preserves them. Again, cotabulators in
Set are colax functorial: take a vertical transformation (x, y; p): u -+ v in Set,
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with p: y·u = vex: A -&#x3E; B’ (6.3c), its colimit l(Dx, Dy): lDu -&#x3E; 1Dv in

Cat, and realise its colimit in Set as no of the last profunctor (3.2.4). Again,
they are not pseudo functorial, as proved by our counterexample in Rel (6.2.11 ).

6.5. Limits and colimits for adjoints. Let us examine now the double
category AdCat of categories, functors and adjunctions, together with its double
subcategories considered in 3.5-6.

a) Products and sums. The prototype AdCat has functorial products and sums.
It is sufficient to note that the product u = (u., u., 11, e) of a family of adjunctions
(ui: Ai - Bi) can be formed by (standard) products in Cat

equipped with the obvious cells 1ti: (u g; ui), whose covariant and contravariant
part are identities

Similarly for sums. The double subcategories AdAbc, AdTp, Adored,
AdLt and ADMI are closed under such functorial products. Adored is also
closed under functorial sums.

b) Equalisers. AdCat, AdOrd, AdLt and AdMl have equalisers, supplied by
the equalisers of Cat; but they are not even lax functorial. Plainly, equalisers do
not exist in AdAbc, but isoinserters do (6.6).
c) Tabulators. In AdCat, the tabulator Tu is the comma category

This realisation is functorial: given a commutative square of vertical arrows
(x, y): u - v, as in diagram 6.2.9, let T(x, y) = t be the induced adjunction,
which it is convenient to write using both descriptions of the tabulator given
above, in (3):

The unit of 1. --i t consists of morphisms of (u. I B)) induced by the units
11’ of x and y
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as shown by the outer square of the following commutative diagram

Tabulators are inherited by AdAbc. In fact, if A and B have some type of
limits, or colimits, the same holds for Tu (since u, preserves the existing
colimits and u* the existing limits), and the projections preserve them. It is thus
easy to show that, if A and B are abelian, so is Tu (use also the fact that the
functor (p, q): Tu - AxB is faithful and reflects isos). They are also inherited
by AdTpv (by Artin gluing, [12], 4.27), as well as AdOrd, AdLt and

ADMI, where

d) Cotabulators. AdCat has functorial cotabulators, where C = lu = A+uB is

the category consisting of the disjoint union A+B, together with new maps h E
C(a, b) (from objects of A to objects of B) represented by elements h E

B(u.a, b), and the natural composition between new maps h and old maps f, g

the cotabulator-cell i: i - ju.: A - lu is given by ta = (1u.a):a - u.a.

Restricting to AdOrd, we get the disjoint union A+uB, with the order

relations of A and B, and a s b iff u.a:5 b (iff a  u.b).
e) Finally, the double subcategories AdoLt and ADOW of bicommutative cells
(3.6) have also some vertical (co)limits of interest. To begin with, AdoLt and
AdoMl have a vertical zero-object (trivially functorial), the singleton

The kernel and cokernel of a covariant connection u = (u., u’): X Y, in
the categories Ltc and Mlc
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become functorial vertical kernels and cokernels in our double categories (and
ADOMI is "vertically Puppe-exact", in an obvious sense: the induced cell from
cocker to kerocok is vertically invertible).

AdoLt has also functorial vertical products and sums (while these do not exist
in ADOM), both constructed with the cartesian product of lattices

6.6. Diagrams versus functors. Finally, we want to clarify the difference
between the double limit of a double diagram and a double functor, showing that
the latter is indeed a richer concept.

The isoinserter (X, x, ç) of a pair of horizontal arrows f, g: A - B, in a
double category A 

universally inserts a vertically invertible cell between fx and gx. It is (a well-
known weighted limit in the 2-category HA and) the double limit of the
following double functor F: I -+ A (in n, vou = 1.j , uov = 1 k)

Now, take A = AdCat. Let 10 be the double graph explicitly shown in (2)
(omitting the identities of I and the conditions on vRu, uov) and Fo: 10 -+
AdCat the restriction of F. Then, the double limit X of the double diagram Fo
is the full subcategory of (flg)x(glf) over the objects

while the double limit of F is the isoinserter of f and g, i.e. the full

subcategory of X of those objects where 0 and B’ are reciprocal isos. In the
flat double subcategory AdOrd of monotonic functions and adjunctions the
distinction disappears: in both cases we get the equaliser of f and g.
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17. Appendix: Lax notions

This section contains the definition of pseudo double categories, lax and pseudo
double functors, their horizontal and vertical transformations, and their

modifications. It ends with a Strictification Theorem, showing that pseudo double
categories and functors can be replaced with ordinary ones.

7.1. Pseudo double categories. A pseudo double category A is a "pseudo
category object" in CAT. Accordingly, it is equipped with a horizontal partial
composition (b-a) satisfying the category laws, and a vertical partial composition
(b·a), functorial on the previous structure, which satisfies such laws up to three
natural isomorphisms Ä, p, a (natural with respect to horizontal composition),
whose horizontal domain and codomain are identities.

To give an explicit formulation, we adopt here the "one-sort formulation"
where everything is a double cell, and write their compositions as aolb = boa,
aO2b = boa. A is thus a system (A; al, ei; Ä, p, a) (with i = 1, 2; F- -, +)
such that:

(pdco) (basic properti’es) A is a set, whose elements are called (double) cells of
A, equipped with four faces die: A - A satisfying

given two cells a, b, the i-composition aoib is defined iff 8y(a) = 8g(b), and

then

(pdcl) (the main structure) A 1 = (A; d1E , 01) is a category, called the main
structure, or 1-structure (or horizontal structure) of A. The main faces of a cell a
are written ae = 8§la; they form the objects of A 1 (vertical arrows of A), also
denoted by letters u, v, w...

(pdc2) (the two-dimensional structure) A12 = (AI; d2e, ®2; Ã, p, a) is a pseudo-
category object in Cat.

Explicitly, the last axiom (after what was already anticipated in (pdc0)) means
that:
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The above axioms can be represented by diagrams, either in A i (as above),
either in A. Thus, in (pdc2.2), the naturality condition ((a2a)®2a) o 1 (La+) _
(kc) e 1 a amounts to a commutative square of Ai 1 (under ® 1 ) and also to an
equality of pasting diagrams in A (write u = a7, v = a+)
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Note also that the formula (-f2ku = flu in (pdc2.2) says that the horizontally
invertible cells Au are special (iso)cells (2.2), i.e. their vertical domain and
codomain are identities. A bicategory [3, 15, 19] is the same as a vertical pseudo
double category: all horizontal arrows are identities.

A is said to be unitary, or normalised, if the unit comparisons X, p are

identities. In the previous sections this assumption, which is useful and no real
restriction (1.9; 3.1-2), is always understood.

7.2. Lax double functors. A lax double functor F: A - B between pseudo
double categories takes "items" of A to "items" of B of the corresponding type,
respecting the horizontal structure in the usual strict sense, and the vertical one up
to an assigned comparison (p = 9p.

Thus, every object A is equipped with a special cell PA: 1 FA -+ F(1 A . ):
FA - FA (the identity comparison), and every vertical composition v-u is

equipped with a special cell q(u, v): Fv-Fu -+ F(vou): FA - FC (the composi-
tion comparison), in a coherent way. This means the following:

i) (naturality) for a vertical composition b-a,

ii) (coherence laws for (p, Â. and (p, p) for a vertical morphism u, the following
diagrams of special cells are commutative (under horizontal composition)

iii) (coherence hexagon for (p, a) for consecutive vertical morphisms u, v, w,

the following diagram of special cells is commutative
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The composition of lax double functors, being based on the horizontal
composition of arrows and cells, is strictly associative:

By horizontal duality (1.2), a colax double functor F: A - 1B has special
cells cpA: F(1. A) - IpA and cp(u, v): F(vou) - Fv*Fu forming a lax double
functor between the horizontal opposites, Fh: Ash - B h. A pseudo double
functor (between pseudo double categories) is a lax one in which the comparison
cells are horizontally invertible; the co-notion is equivalent.
A unitary (co)lax double functor (between unitary structures) has F(1 A) = 1 FA

and identity cells cpA. In the previous Sections we always restrict to this case, as
motivated in 4.3.

7.3. Horizontal transformations. Let A and B be pseudo double cate-
gories. Proceeding as in 1.4, a horizontal transformation of lax double functors
H: F -+ G: A - B can be defined as a lax double functor H: H 2xA --&#x3E;B ,
with F = H.(8-x/A), G = H.(g+xA ).
H amounts thus to giving two lax double functors (F, (p), (G, xV), with

additional data (as in the strict case, 1.4):

a) for each object A in , a horizontal map HA: FA - GA,

b) for each vertical map u: A - B in A, a cell Hu: (Fu HA Gu),
satisfying the following relaxed conditions (the third does not include cp, yr and

coincides with (ht.3) in 1.4):

(1ht.1 ) (coherence with identity comparison) for all A, (pA H 1. A) = (1. HA l WA)
(lht.2) (coherence with composition comparison) for w = v-u in A,

(lht.3) (naturality) for a:(u f g v) in
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The horizontal composition of horizontal transformations is strictly categorical.
In the unitary case, one takes H(1 A). = 1HA . 

7.4. Strong vertical transformations and modifications. Let us restrict
to the unitary case. A general vertical transformation U: F - G: A - B of lax
double functors should be defined as a lax double functor V2xA - IB . This

makes a complicated structure (with two systems of comparison cells for
naturality), of which we have few examples and no present use. We prefer
therefore to restrict to a simpler notion (with one system of isocells), which is
needed for sesqui-isomorphisms of lax double functors (2.5, 4.5).
A strong vertical transformation U: F - G of (unitary) lax double functors

consists of vertical maps UA: FA - GA, cells Uf: (UA Ff Gf UA’) and special
isocells Uu: UB-Fu -+ Gu.UA: FA - GB (natural ity comparison), under the
axioms:

(svt.1 ) for A in A,

(svt.2) for f, g horizontal in A,

(svt.3) for a: (u f v) in Ag

(svt.4) for w = vsu in A, the following pasting



215

coincides with (1uc.p(u, v)) I Uw).

The vertical composition W = V-U, for V: G - S, has naturality cells Wu
obtained by pasting the ones of U and V, and correcting the result by the
associativity isocells a

A strong modification g: (U H V): (F F’ G G’) of lax double functors is defined as
in the strict case (1.6), up to inserting, in the diagrams of the coherence
conditions, the comparison cells of the (strong) vertical transformations. Thus,
the first axiom (md.1 ) stays unchanged, while (md.2) is replaced with

(smd.2) for every vertical arrow u: A -+ B in A

The vertical composition of strong vertical transformations is associative up to
special modifications a(U, V, W): W-(V-U) -+ (W·V)·U, whose component
at the object A is the special isocell a(UA, VA, WA). This completes the
definition of the pseudo double category Lax(A, B ) of (unitary) lax double
functors between pseudo double categories (with their horizontal transformations,
strong vertical transformations and strong modifications).
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A vertical transformation of (unitary) pseudo double functors will be, by
definition, a strong one. (This notion is essentially equivalent to a pseudo double
functor V2xA - Is, which comes equipped with two systems of comparison
isocells). Similarly, a modification is meant to be strong. We have now the
pseudo double category Ps(A, B) of pseudo double functors, their horizontal
and vertical transformations, their modifications.

7.5. Strictification Theorem. Every pseudo-double category P has an

associated double category A, equivalent to it by means of pseudo double func-
tors F: P -+ lA, G: A - 1P with GF = 1, FG s 1 (horizontally isomorphic).
Every pseudo double functor S: P -&#x3E; Q can be similarly replaced by an ordinary
double functor S’: A - B. (But lax double functors cannot be similarly trans-
ferred, even keeping them lax.)

Proof. Recall that the pseudo-double category P has a vertical bicategory V1P,
whose cells a: u - v are provided by the special cells a: (u 1 1 v) of P ; its

associativity and unit comparisons a, X, p are the ones of IP . We shall

repeatedly use the coherence theorem for bicategories (Mac Lane-Par6 [19]),
which -loosely speaking- says that any "natural" diagram of VP made up of
instances of the comparisons a, X, p commutes (natural means that "accidental"
composites must not occur).
We want to replace VP with the free category V on the (graph of the) old

vertical arrows. A new vertical arrow u = (ul,... un): A - A’ is thus a string of
old vertical arrows A = Ao - A 1 -&#x3E; ... 

-&#x3E; An = A’, including an empty string
eA: A - A for each object; their composition is concatenation.

The free category V comes with an evaluation morphism of reflexive graphs
(-)^ : V -&#x3E; V1P, taking the string u to U = (...(U3.(U2.Ut»...): A -- A’ (and
eA to 11); it is actually a unitary morphism of bicategories, with comparison

obtained by composing instances of a (or from X, p, if u or v is a new

vertical identity). The coherence theorem for VP says that we get the same
result, no matter how this is done, and that (1) is indeed coherent with the
associativity isocells a of V1P (and the trivial ones for V)
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Now, the objects and horizontal arrows of A are the same as those of 1P, as
is horizontal composition of arrows. The new vertical arrows are the previous
strings, and vera = V. A new double cell a is represented by an old double

cell â: (u f g ; v)

in particular, the horizontal identity lu of a new vertical arrow is represented by
1û, and the vertical identity ef of a horizontal arrow is represented by 1 f.

Horizontal composition of double cells in A is like in 1P , and forms a

category. The vertical composition boa of new double cells is expressed by the
following old cell (b·a)

To prove that A is a double category, the main point is vertical associativity,
co(bea) = (c·b)·a. These new cells are expressed h1 P as the composites of the
following diagrams (where the boldface characters denote the cells which are to be
vertically composed fi rst), with u# = (U".ui’.u) A and v* = (u-".U’.-U)
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and these cells coincide. Actually, form a solid diagram inserting two associativity
isocells of 1P ,

so that the central prism commutes (by definition of pseudo double category);
then, the right-hand part, involving the second instance of a and the right-hand
part of the diagrams above, commutes by (2); and similarly the left-hand part.

The interchange law in A is obvious once it is written out (a cell w cancels
with a w-1). The identity laws are left to the reader.

The (unitary) pseudo double functor G: A -&#x3E; P has already been
constructed: G(u) = u, G(a) = i, with composition comparison w(u, v): v.u
- (v·u)^. The embedding F: P-&#x3E; A is obvious (a vertical arrow is sent to the
corresponding string of length 1). It preserves vertical identities and composition
up to special new isocells pA: eA -+ lA (represented by the double identity of
A, OA) and p(u, v): Fv·Fu -&#x3E; F(vou) (represented by the horizontal identity of
the old composite v.u). Then, GF = 1 while FG is horizontally isomorphic to
the identity on A, by special isocells Hiï: (FGu i u ) represented by the horizon-
tal identity of u, for each string u .
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Finally, given a pseudo double functor S: P -+ Q, with special isocells aA:
1. SA -&#x3E; S(1A.) and a(u, v): Sv·Su --&#x3E; S(v·u), the strictified double functor S’:

A -+ 1B has

the cell S’(a) is represented by a modification of S(a)

obtained from generalised isocells a (well defined, by the coherence theorem of
bicategories). This procedure needs an invertible comparison and does not work
for a lax double functor.
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