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ON THE CHARACTERIZATION OF MONADIC
CATEGORIES OVER SET

by Enrico M. VITALE

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXV-4 (1994)

R6sum6. Dans la premibre partie de 1’article on examine des con-
ditions pour 1’exactitude des categories des algèbres pour une monade.
Dans la deuxibme partie on d6montre une condition n6cessaire et suffi-
sante pour 1’6quivalence entre categories exactes avec assez de projec-
tifs ; on utilise ensuite cette condition pour obtenir une d6monstration
élémentaire de la caract6risation des categories alg6briques sur les en-
sembles et des categories des pr6faisceaux.

Introduction
In this work we look for a new proof of the theorem characterizing monadic

categories over SET (see for example [1]); more precisely, we want to stress the role
of the exactness condition. Let us recall the theorem (in the following "epi" means
regular epimorphism and "projective" means regular projective object):

Let A be a category; the following conditions are equivalent

1) A is equivalent to the category of algebras EM(T) for a monad T over SET

2) A is an exact category and there exists an object G E A such that
- G is projective
- V I E SET 3 1 o G (the I -indexed copower of G)
-VAEA 3 I o G-&#x3E;A epi

To prove that 1) implies 2) one takes as G the free algebra over the singleton;
viceversa the hypothesis over G imply that has enough projectives. So this

theorem leads us to study exact categories with enough projectives and, on the
other hand, to find conditions such that EM(T) is exact and the free algebras are
projective.

1 Regularity and exactness for a category of alge-
bras

In this section we sketch some elementary facts about EM(T) to obtain a topos
theoretic example of a free exact category, i.e. of an exact category with enough
projectives (cf. [4]).
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Proposition 1.1: let A be a regular category and ’lr a monad over A (with
functor part T);

1) T preserves epi’s if and only if the forgetful functor U: EM(T)-&#x3E;A preserves
epi’s

2) if T preserves epi’s, then EM(T) is regular and U preserves and reflects the
epi-mono factorization..

Proposition 1.2: let A be a regular category and T a monad over A;

1) T sends epi’s in split epi’s (i. e. epi’s with a section) if and only if U sends
epi’s in split epi’s

2) if T sends epi’s in split epi’s, then the free algebras are projectives.

Sketch of the proof 2) let f : (D, d) -&#x3E;&#x3E; (TC, JLc) be an epi in EM(T), where
(TC, lzc) is the free algebra over C E A (JL: T2-&#x3E;T is the multiplication of’lr);
f is an epi in EM(T) and so in A, then T f is a split epi in A and using the section
of T f one can construct the section of f in EM(T); the proof of 1) is analogous..

Lemma 1.3: let A be an exact category and T a monad over A; consider
an equivalence relation el, e2: (E, e) -&#x3E; (X, x) in EM(T) and consider its coequal-

is a coequalizer diagram in A, then
0

Proposition 1.4: let A be an exact category and T a monad over A; if T
preserves the coequalizers in A of the equivalence relations in EM(T) and the epi’s,
then EM(T) is exact.

Corollary 1.5: let A be an exact category and T a monad over A;

1) if T is left exact and preserves epi’s, then EM(T) is exact

2) if the coequalizer in A of an equivalence relation in EM(1f) is a split epi in A,
then EM(T) is exact and free algebras are projectives

3) the axiom of choice holds in A if and only if for every monad T over A the
category EM(1f) is exact and the free algebras are projectives..

As each algebra is a quotient of a free algebra, if free algebras are projective then
EM(T) has enough projectives; if, moreover, EM(T) is exact, one has that EM(T)
is the free exact category over its full subcategory KL (T) of free algebras (cf. [4]).
An obvious example of such a situation is when A is SET, or a power of SET, and
we can apply the third point of corollary 1.5. Another example is the following:

Example 1.6: let C be an elementary topos; the category of sup-lattices in F is
the free exact category over the category of relations in E.
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Proof: let us consider the covariant monad "power-set" P:E-&#x3E;E, for which
EM(P) = SL(E) and KL(P) = Rel(E); as the corresponding forgetful functor
SL(E)-&#x3E;E sends epi’s in split epi’s (cf. [5]), SL(g) is a regular category and
the objects of Rel(E) are projectives in SL(E). It remains to prove that the second
point of corollary 1.5 is satisfied; we sketch the proof using the internal language of
E: let e1, e2 : E-&#x3E;X be an equivalence relation in SL(g) and q: X -Q its co-
equalizer in .6; we obtain a section s: Q-&#x3E;X defining V y E Y s(y) = Sup {x E
X|q(x) = y}.

For " aesthetic reasons" , let us observe that the condition stated in 1.5.2 is also
necessary; in fact we have the folowing lemma:

Lemma 1.7: let T be a monad over a category A;

1) if EM(T) is regular and free algebras are projectives, then U sends epi’s in
split epi’s

2) if U sends epi’s in (split) epi’s, then the coequalizer in A of an exact sequences
in EM(T) is a (split) epi in A 

Now we can summarize the previous discussion as follows:
Proposition 1.8: let A be an exact category and T a monad over A; the

following conditions are equivalent:

1) EM(T) is exact and free algebras are projectives

2) the coequalizer in A of an equivalence relation in EM(T) is a split epi in A

2 Exact categories with enough projectives

In this section we obtain a property of exact categories which, in the case of
monadic categories over SET, will allow us to give a short proof of the characterizing
theorem.

Definition 2.1: a full subcategory PA of a category A is said to be a projective
cover of A if

O every object of PA is projective in A

O every object of A is a quotient of an object of PA

Lemma 2.2: let A be a category with kernel pairs and P A a projective cover of
A; PA "generates" A via coequalizers.

(The assertion means that, given a morphism f : A -&#x3E; B in ,A., we are able to
build up a commutative diagram
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such that the left square is in PA and the two horizontal lines are coequalizers, so
that f is the unique extension to the quotient.)

Proof: given A in A, there exists P in PA and an epi p: P-A; now consider
P1

the kernel pair N(p) -&#x3E; P-&#x3E;p A and again there exists an epi p’: P’-N(p)
with P’ in PA, so that p is the coequalizer of PI and p2 and then of p’pl = al
and p’p2 = a2; analogously one can work over B and now the three dotted arrows
making the following diagram commutative arise respectively from the fact that P
is projective and q is an epi, from the universality of q1, q2: N(q) -&#x3E; Q and from
the fact that P’ is projective and q’ is an epi

Proposition 2.3: let A and B be two exact categories with enough projectives,
PA and PB two projective covers and P(A) and P(B) the full subcategories of pro-
jective objects;

1) A is equivalent to B if and only if P(A) is equivalent to P(B)

2) if PA is equivalent to PB, then P(A) is equivalent to P(B)
Proof 1) the non-trivial implication is the "if’: let F: P(A)-&#x3E;P(B) be an

equivalence; define F’: A ) 8 as follows: if f : A-&#x3E;B is in A, consider its pre-
sentation as in the previous lemma

and put F’ f as the unique extension to the quotient of
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The existence of F’ depends on the fact that the (jointly) monic part (il, i2) of the
epi-(jointly) mono factorization 

is an equivalence relation in B; this follows from the fact that the pair (al, a2 ) is a
pseudo-equivalence relation in P(A) (i.e. as an equivalence relation but we do not
require that al and a2 are jointly monic) and so the same holds for (Fal, Fa2) in
P(B). See for instance the transitivity condition: consider the following diagram

where M is the pullback of i 1 and i2 and M’ the pullback of Fal and Fa2, so
that the unique factorization m: M’ -&#x3E; M is an epi; consider again a projective
cover m’: R-&#x3E;&#x3E;M’; the transitivity of (Fal, Fa2) in P(B) means exactly that there
exists a morphism t: R- FP’ making commutative the following diagram

The fact that m’ m is an epi and (it, i2 ) is a mono implies the existence of a morphism
T: M-&#x3E; N which exhibits the transitivity of i 1, i2: N-&#x3E;FP. To show that F’ is
a full and essentially surjective functor is quite obvious (for this recall that F is an
equivalence); the faithfulness of F’ essentially depends on the fact that the image of
(Fbi, Fb2), being an equivalence relation in B, is the kernel pair of its coequalizer
F’q.
2) is trivial under the only condition that A and B have enough projectives.
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The previous proposition explains the name "free" given to an exact category
with enough projectives: it is completely determined by the full subcategory of
projective objects. In [4] we have discussed the universal property satisfied by this
kind of categories.

3 Characterization theorem

Proposition 3.1: let C be a category; the following conditions are equivalent:

1) C is equivalent to the category KL(T) for a monad T over SET

2) there exists an object G E C such that
- V I E SET 3 IOG

-V X EC 3 I E SET such that X= IOG

Proof: 2) =&#x3E; 1) consider the pair of functors

The first condition says that G is left adjoint to C(G, -); the second condition
says that the comparison functor KL(T)-&#x3E;C is essentially surjective and so it is
an equivalence (here T is the monad induced by -O G H C(G, -)).

Proposition 3.2: let A be a category; the following conditions are equivalent:

1) A is equivalent to the category EM(T) for a monad T over SET

2) A is an exact category and there exists an object G E A such that
- G is projective

Proof 2) =&#x3E; 1) let C be the full subcategory of A spanned by 10 G for I E SET;
by proposition 3.1, C cti KLI’lt) for a monad T over SET; so, by proposition 2.3,
A = EM(T) because C is a projective cover of A and KL(T) is a projective cover of
EM(1r)..

4 Presheaf categories

The two previous propositions can be generalized to characterize KL(T) and
EM(T) when 1r is a monad over S.6TX for X E SET (to get examples as presheaf
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categories) ; the short proof suggested for proposition 3.2 remains, of course, un-
changed. It is not surprising (cf. [6]) that proposition 2.3 allows us also to give a
short proof for the characterization of presheaf categories (cf. [2], [3]). In the next
lemma, FamC is the sum completion of a small category C.

Lemma 4.1: let C be a small category and B the full subcategory of SETCop
spanned by sums of representable ,functors; B is equivalent to FarrccC.

Proof: consider the unique extension Y’ : FamC -&#x3E; B of the Yoneda embedding
Y: C-&#x3E; 8; obviously Y’ is essentially surjective; its fullness and faithfulness easily
follow from Yoneda’s lemma.

Lemma 4.2: let 8 be a category with disjoint sums and strict initial object; the
following conditions are equivalent

(1) B is equivalent to the category FamC for a small category C

(2) there exists a small subcategory C of B such that

. V B E B 3 ICil, with Ci E C such that B = II ICi

. V f : C -&#x3E; 11,Ci with C, Ci E C 3 io E I such that f can be factorized
through the injection Cio -&#x3E; II ICi

. the initial object 0 $ C

Proof: 2) =&#x3E; 1) consider the unique extension F: FamC-&#x3E;B of the full inclusion
of C in B; the first condition implies that F is essentially surjective; the second
conditions implies that F is full; the third condition (together with the disjointness
and the fact that the initial object is strict) implies that F is faithful.

Proposition 4.3: let A be an exact category urith disjoint sums and strict initial
objects; the following conditions are equivalent

(1) A is equivalent to the category of presheaves on a small category

(2) A has a set {Gj}J of regular generators such that

. V j E J Gj is projective

. V f : G-&#x3E;IIIGi with G, Gi E {Gj}J 3 io E I such that f can be
factorized through the injection Gio 11, Gi

(3) A has a family of absolutely presentable generators
Proof 1) =&#x3E; 3) and 3) =&#x3E; 2) are obvious (recall that an object G E A is absolutely

presentable if A(G, - ) : A-&#x3E;SET preserves colimits) .
2) =&#x3E; 1): two cases: first, if the initial object 0 E {Gj}J but {Gj}JB0 is not a family
of generators, then {Gj}J = 101 and so A= 1= S£T0; second, if 0 ft {Gj}J let C
be the full subcategory of generators and B the full subcategory spanned by sums of
generators; by lemma 4.2,B = FamC and, by lemma 4.1, FamC is a projective cover
of S£TcoP ; but B is a projective cover of A, so, by proposition 2.3, A = SETCop
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