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A NOTE ON CATEGORIES ENRICHED IN
QUANTALOIDS AND MODAL AND TEMPORAL LOGIC

by Kimmo I. ROSENTHAL

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFERENTIELLE

CA TJ:GORIQUES

VOL. XXXIV-4 (1993)

RBSLIMB. Dans cet article, 1’auteur observe que la s6man-

tique des pr6faisceaux relationnels pour la logique des

pr6dicats modale et temporelle, d6velopp6e par Ghilardi et
Meloni, peut etre g6n6ralis6e en utilisant la th6orie des

categories enrichies dans un quantaloide. Cette g6n6ralisa-
tion exploite 1’equivalence entre les pr6faisceaux relation-
nels sur une cat6gorie localement petite A et les cat6go-
ries enrichies dans le quantaloide libre P(A) etabli e dans
un article ant6r!eur.

In 15,61, Ghilardi and Meloni develop a semantics for
modal and temporal predicate logic using the concept of a rela-
tional presheaf on a small category A (more generally, they con-
sider graphs). By a relational presheaf, we mean a lax functor
F: AoP-&#x3E;Rel, where Rel is the category of sets and relations. A

morphism of relational presheaves F and G is a lax natural
transformation R:F-&#x3E;G, whose component relations are actually
functions.

Relational presheaves have arisen independently in another
context in the theory of quantaloids C14,17J. A quantaloid Q is a

category enriched in the category of sup-lattices SL. Thus, Q is

locally small with each hom-set Q(a,b) a complete lattice, such
that composition preserves sups in each variable. In 1141, Rosen-
thal showed that for every locally small category A, one can

construct the free quantaloid P(A), with this construction provi-
ding the left adjoint to the forgetful functor from the category
of quantaloids to the category of locally small categories.

Furthermore, viewing P(A) as a bicategory and using the
well-established theory of categories enriched in a bicategory,
one can show that categories enriched in P(A) correspond preci-
sely to relational presheaves on A. I

This correspondence leads to the observation central to

this paper, namely that the relational presheaf semantics for

*The author gratefully acknowledges support provided by NSF-
RUI Grant n° 9002364.
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modal and temporal predicate logic, developed by Ghilardi and
Meloni in 161, can be generalized so as to be interpreted for

categories enriched in any quantaloid. The case where the base

bicategory is a free quantaloid P(A) reduces to the case of
relational presheaves on A.

After some preliminaries on quantaloids, we describe the
work of Ghilardi and Meloni in the setting of categories en-

riched in an arbitrary quantaloid. This is done in a natural way
by reinterpreting the relevant idea for relational presheaves in
the language of enriched category theory.

We then proceed to consider examples. First, we consider
the case of relational presheaves and describe the connection
between them and categories enriched in free quantaloids. Thus,
the investigation in [6] for relational presheaves becomes a

special case of our theory. We observe then that Goguen’s no-
tion of non-deterministic flow diagram programs 17,81 is descri-
bed by relational presheaves and thus fits readily into this fra-
mework. We conclude our examples by examining the connection
with the theory of modules over a quantaloid. Finally, we pose
some suggestions for further areas of research.

1. Modal and temporal logic for categories enriched in a quan-
taloid.

A. Quantaloids are a natural categorical generalization of

quantales, which are partially ordered algebraic structures which
have received much interest recently in many quarters. (For a

thorough introduction to quantales, see Rosenthal [13].) In addi-
tion to a series of articles by Rosenthal examining various as-

pects of quantaloids [14,15,16], quantaloids have been utilized in
Ill to keep track of typing on processes, in 121 to study tree

automata categorically (also see [161) and in [11] to investigate
distributive categories of relations.

We begin with the definition of quantaloid.

DEFINITION 1.1. A quantaloid is a locally small category Q such
that:

(1) for a,b E Q, the hom-set Q(a,b) is a complete lattice.
(2) composition of morphisms in Q preserves sups in both

variables.

From another perspective, this says that Q is enriched in
the symmetric, monoidal, closed category SL of sup-lattices.

From (2) above, it follows that there are left and right
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residuations (adjoints to composition) analogous to those of

quantale theory. (For details, see [14,16 or 17]).

If Q and S are quantaloids, then we can define a quanta-
loid homomorphism to be a functor F: Q -&#x3E; S such that on

hom-sets it induces a sup-lattice morphism Q (a,b) -&#x3E; S (Fa ,F b) ;
in other words it is just an SL-enriched functor.

We now list a few examples of quantaloids to help the
reader understand them better.

EXAMPLES. (1) A quantaloid with one object is precisely what is

called a unital quantale. Note that if Q is a quantaloid, then the
hom-sets Q(a,a) are unital quantales for all a E Q. (See [131 for
a detailed introduction to quantales.)

(2) Both SL, the category of sup-lattices, and Rel, the cate-

gory of sets and relations, are quantaloids.
(3) Free quantaloids. Let A be a locally small category. Defi-

ne a quantaloid P(A) as follows. The objects of P(A) are preci-
sely those of A. Given a,b E A, then P(A)(a,b)= P(A(a,b)), the

power set of the hom-set A(a, b) . If S: a -4 b and T:b-&#x3E; c are
sets of morphisms of A, let

This operation preserves unions in each variable and thus we

have a quantaloid. P(A) is called the free quantaloid on A . This
is because P defines a monad on the category of locally small

categories and functors and quantaloids are precisely the P-alge-
bras. (For details, see [14].)

Our interest is in discussing categories enriched in quan-
taloids. A quantaloid is a locally partially ordered bicategory and
we can utilize the theory of enriched categories and functors for

bicategories. We recall for the reader the relevant definitions for
the special case of quantaloids. (For an excellent introduction to
enriched categories and functors, see C10J. See 131 and the refe-
rences therein for the bicategory case.)

DEFINITION 1.2. wet Q be a quantaloid. A set X is a Q-category
iff it comes equipped with the following data:
(1) a function p: X-&#x3E;Obj(Q) assigning to ,x E X an object p(x)E Q;
(2) an enrichment, which assigns to every pair x, y E X a mor-

phism XL.x,)r): p(x)-&#x3E;p(y) in Q such that:
(a) ip(x)X(x,x) for all X E X,
(b) X(y,z) oX(x,y) Xex,z) for all x,y,z E X.

If reQ, we shall denote p-1(r) by X(r).
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DEFINITION 1.3. Let X and Y be Q-categories. A Q-functor is a

function l:X-&#x3E;Y such that:

for all x,a E X.

B. In work begun in 151 and then further developed in 161,
Ghilardi and Meloni describe a relational semantics for modal
and temporal predicate logic using categories of relational pre-
sheaves. Motivated by the connection between relational pre-
sheaves and enriched categories established in [14], we shall
show that their ideas can be easily transcribed to the setting of
categories enriched in a quantaloid Q. We shall concentrate on
the definition of the operators of "future and past necessity"
and "future and past possibility" in the enriched case. We shall
not reproduce all of their results nor present a formal descrip-
tion of their notion of temporal do,ctrlne.

DEFINITION 2.1. Let Q be a quantaloid and X be a Q-category.
An attribute A of X is a collection of sets A={A(r)}rEQ, where
A(r)CX(r) for all r.

Let D(X) denote the set of all attributes of X. We can
now define the relevant modal operators on attributes as fol-
lows.

DEFINITION 2.2. Let A be an attribute of a Q-category X.
(1) "past possibility" O . Let XE X(r) with r E Q. X E (O A) ( r)

iff there exists a morphism f: s - r in Q and a y E A(s) such
that f s X(y, .x) .

(2) "future necessity" D. Let X E X( r) with r E Q. x E (13 A) (r)
iff for every morphism g: r - u in Q and every z E X( u) , we

have that g s X( x, z ) implies z E A( u) .

The definitions of "future possibility" 0 and "past neces-
sity" 11 are dual to the above two definitions. We shall include
them here for the completeness and then state the basic rela-

tionships that are satisfied.
(3) "future possibility" O. Let X E X (r) with rE Q. x E (O A) (r)

iff there exists a morphism g: r - u in Q and z E A(u) such that
g  X(x,z).

(4) "past necessity" 0. Let x E X(r) with r e Q, x E (O A) (r) iff
for every morphism f: s - r in Q and every y E X(s) , we have
that f  X(y,x) implies y E A( s) . 

The following proposition can easily be verified using the
definition of enriched category and we omit the proof.
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PROPOSITION 2.1. Let Q be a quantaloid and let A be an attri-

bute of X , where X is a Q-category. Then:

(Adjointness)
(In t erdefin a bili ty)
(Closure and coclosure properties)

and

and

and

and

(Note: -, denotes set-theoretic complement.)

An important consideration in Ghilardi and Meloni 161 is

the behavior of these operators with regard to inverse image (or
substitution in logical terms). All of their results carry over.
Let l : X-&#x3E;Y be a Q-functor with X,Y Q-categories. If A is an

attribute of Y, then l-1 (A) is the attribute of X with

l-1(A) (r)=l-1(A(r)) for all r- E Q. The following holds.

PROPOSITION 2.2 Let Q be a quantaloid, X, Y be Q-categories
and l : X-&#x3E;Y a Q-functor. Let A E D (Y). Then

PROOF. These all follow easily from the fact that cp is a Q-
functor. We shall prove the first one and leave the rest for the
reader. x E O (l-1(A)) (r) iff there exist

and with

Since cp is a Q-functor, we have X (z,x) Y (l (z),l(x)) and since

l(z)E A(s) , we have that l (x) E O A, proving that x E l-1(O A).

If l:X-&#x3E;Y is a Q-functor, then cp-1: D(Y).-, D(X) has left
and right adjoints

and

The various relationships that these satisfy in 161 with regard to
attributes still hold in this setting utilizing the definition of

Q-functor. We shall not go into the details here.
Ghilardhi and Meloni also dicuss various notions such as

open maps and discrete and 6tale objects, all of which require
the existence of products XxY. We shall now discuss products
briefly in the context of Q-categories. We need a preliminary
definition.
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DEFINITION 2.3. Let Q be a quantaloid. Q is called weakly dis-
tributive iff:

(1) Fo(g^h)(fog)^(foh), whenever f,g,h are morphisms of
Q with f composable with g and h .

(2) (g^h) ok  (g^k) o(h^k), whenever g,h,k are morphisms of
Q with k composable with g and h.

Let X and Y be Q-categories with Q weakly distributive.
We can define XxY as follows:

If aeQ, let (XxY)(a) - X(a) x Y(a).
If (x,y) E (XxY)(a) and (x’,y’) E (XxY)(b) define the enrichment

Weak distributivity must be used to verify Definition 1.2 (2b).

PROPOSITION 2.3. If Q is a weakly distributive quantaloid, then
XxY is a Q-category.

Thus, if Q is weakly distributive, we can discuss products
in this setting. One can easily see that free quantaloids P(A) are
weakly distributive.

2. Examples.
A. Relational presheaves.

We are interested in the special case where Q is of the
form P(A). P(A)-categories turn out to be related to lax rela-
tion-valued functors AoP-&#x3E;Rel, which were called "non-determi-
nistic functors" in [14] and "relational presheaves"’ in CS, 6J. We
shall define relational presheaves and their morphisms and then
state the main result, which served as the motivation for the

general considerations of §1.

DEFINITION 3.1. Let A be a locally small category. A relational
presheaf on A is a lax functor F: AOP-7Rel, where laxity means:

(1) F(f) of(g) ç: F(gof) for all composable morphisms f,g of
A. 

(2) AF(a) C F(1), where A is the diagonal relation and a E A.

DEFINITION 3.2. Let F: AoP-&#x3E;Rel and G: AoP-&#x3E;Rel be relational

presheaves on A. A relational presheaf morphism (or rp-mor-
phism) R: F-&#x3E;G is a lax natunal transformation such that R, is a

function from F(a) to G(a) for all a E A.

Composition of rp-morphisms R: F-&#x3E;G and S : G-&#x3E;H is de-
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fined by (S oR) a = Sa oRa. Relational presheaves together with rp-
morphisms form a category denoted R(A). If we let P(A)-Cat
denote the category of P(A)-categories and P(A)-functors, then
in 1141, it was proved that these two categories are equivalent.
We proceed as follows.

Let F: AoP-&#x3E;Rel be a relational presheaf. Define a P(A)-ca-
tegory XF by XF(a) = F(a) and, if x E F(a), y E F(b) , then

Let R: F-&#x3E; G be an rp-morphism of relational presheaves on
A. Define d R: XF - XG as follows: If x E XF(a) = F(a), let

dR(X) = R,,(x). Then, dR: XF-&#x3E; XG is a P(A)-f unctor.

We can now define a functor D: R(A)-&#x3E;P(A)-Cat by taking
D(F) = XF, where F E R(A) and D(R) = dR for R: F-&#x3E;G an rp-mor-
phism.

THEOREM 3.1. 0: R(A)-t P(A)-Cat is an equivalence of categories.

Details of all the above can be found in [141 or [17]. We
now describe the transition from P(A)-categories to relational

presheaves.
If X is a P(A)-category, define a relational presheaf Fx by

Fx(a) = X(a) and if f: a - b is a morphism in A, then the rela-
tion F(f) is defined by (y,x) E F(f) iff f E X(x,y)

If X,Y E P(A)-Cat and 8: X-Y is a P(A)-functor, we can

define Ra: Fx-Fy by Rõ,a( x) = 6(x) for .x E F(a).

Using the functor (D from Theorem 3.1, the description of
the four operators *, 0, Ð and D found in 161 trans’cribes exactly
to the definitions of Definition 2.2.

The interpretation that can be assigned (see Ghilardi and
Meloni 161) is that an element of the category A is to be vie-
wed as a "state" b and a morphism f: b -&#x3E; c is a "temporal de-
velopment" from state b to state c; thus a morphism of P(A) is
a set of temporal developments. If X is a P(A)-category, given
bEA, X( b) can be thought of as a set of events occuring at b
and if x E X( b) , y E X( c), then X(X,y) is the set of all temporal
developments, along which it is possible to relate event y to

event x (or obtain y as a "descendant" of x).

Special case: Non-deterministic flow diagram programs. In 171
(and briefly in 181), Goguen presents a way of describing flow

diagram programs using essentially the theory of relational pre-
sheaves. Hence, again appealing to Theorem 3.1, these can be
described using enriched category theory.
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In this example, the elements of A are thought of as

"states of control" and the morphisms of A are "transitions of
control states". If X is a P(A)-category and b E A, then X( b) is
a set of memory states of computations at state b, and letting
x, y be as above, X (x,y) is the set of all transitions along which
computation y may be obtained from computation x.

B. Q-modules.
Let Q be a quantaloid. In a very natural way, one can de-

fine the notion of a left Q-module as a lattice theoretic genera-
lization from ring theory. Modules over a quantale (in particular,
over a frame) were a key element in the descent theory for to-
poi developed by Joyal and Tierney [9] and modules are also
central to the work of Abramsky and Vickers on process se-

mantics [1]. (Q-modules are studied in some detail in (171.) We
shall utilize the fact that modules can be viewed as Q-enriched
categories.

We begin with the definition of a left Q-module for a

quantaloid Q.

DEFINITION 3.3. Let Q be a quantaloid. A left Q-module M
consists of the following data:

(1) for every aeQ, a sup-lattice Ma.
(2) for a , b E Q, we have an action Q(a,b)x Ma-&#x3E; Mb, denoted

by ( f, x) /-7 f . x satisfying:

DEFINITION 3.4. Let Q be a quantaloid and let M and N be left
Q-modules. A Q-module homomorphism from M to N is given
by the following data: For a E Q, we have a sup-lattice mor-
phism wa: Ma-&#x3E; Na satisfying f.wa(x) = wb(f.x) for all mor-

phisms f E Q(a , b) .

We thus obtain a category Q-MOD of left Q-modules,
which is in fact a quantaloid. We shall just refer to modules, as

they will all be understood to be left modules.

Equivalently, a left Q-module can be viewed as an SL-
enriched functor Q-&#x3E;4 SL, and a homomorphism is an SL-natural
transformation a: M-N. (Note: Because of how we have been

writing composition, our notion of left module is a covariant

functor, whereas in [1] it is a contravariant functor.)
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If M is a Q-module, then it can be viewed as a Q-enri-
ched category as follows. Let M(a) = Ma, and if x E M(a) and

y E M( b), define the enrichment

M(x,y) = sup{f:a-&#x3E;b I f.x Y).
It is easy to check that this makes M into a Q-category.

Now looking at our modal operators in this setting, we
have the following interesting result.

PROPOSITION 3.1. Let Q be a quantaloid, M be a Q-module and
let A be an attribute of M . Then

(1) OA and OA are both Q-modules,
(2) DA is a Q-module.

PROOF. (1) Let x e (OA)(r) and let g: r - s be a morphism of Q.
We must show that g. X E (O A) (s). Since x E (o A) ( r), there exist
an f: t -&#x3E; r in Q and a y E A( t) such that f’ s M(y,x), Le., f.)’
X. Then, we have that

(gof). y = g. ( f . y) s g. x, and thus gof s M(y, g. x) .
Because y E A( t) and g of : t-&#x3E; s, it follows that g. x E (O A) (s),
proving that 0 A is a Q-module.

To prove that OA is a module, let x and g be as above.
We must show that g . x E (O A) (s) . Since x E (0,A)(r), there exist
h: r - u and z E A(u) such that h s M( x,z) , i.e., h. z x. Consi-
der the morphism (g -4,h): s-4 u . This is the so-called left resi-
duation in the quantaloid Q alluded to after Definition 1.1. (Gi-
ven k: s -&#x3E; u in Q, then k s (g-&#x3E;lh) if f k og &#x3E; h; in particular
(g-&#x3E;lh) og  h.) Thus

(g-&#x3E;lh).(g.x)= ((g-&#x3E;lh)og).X h.x :!g z,

thus (g-&#x3E;lh )M (g.x,z) proving that g . x E (O A) (s) and hence O A
is a Q-module.

(2) We shall now prove that DA is a Q-module. Let x be in

( A)(r) and let g: r -&#x3E; s be a morphism of Q. We know that for
all morphisms h: r -&#x3E; u and for all z E M( u) , if h.x z then we
have z E A( u) . Let k: s-&#x3E;u and let z E M( u) . We must show that
if k.(g.x) z , then z E A( u) . But, k.(g.x) = ( k og) . x and hence
letting h = k og above, we can conclude that g.x E (O A) (s), as

desired.

It does not seem that QA has to be a Q-module; at least
the obvious arguments to try do not work.

We shall call a Q-sub-module N of a Q-module M upper
closed iff Nr is an upper set in the order it inherits from Mr
for all r. The following is easily established.



276

COROLLARY 3.1. Let Q be a quantaloid, M be a Q-module and
let A be an attribute of M. Then

(1) o A is the smallest upper closed sub-module of M con-

taining the attribute A.
(2) OA is the largest upper closed sub-module of M contai-

ned in the attribute A.

This particular example of modules and modal operators
seems to merit further study.

C. Future possibilities.
It seems that the temporal structures studied in [4] can

be fruitfully generalized to the setting of quantaloids. They con-
sider categories enriched in quantales and clearly one possibility
is to generalize to quantaloids. The objects of the base quanta-
loid Q could be thought of as stages of some process and the

morphisms as temporal developments between stages. If a E Q,
the quantales Q(a,a) describe time while at stage a .

If X is a Q-category, another direction of investigation is
to allow for the attributes D(X) of X to have a more general
structure instead of the Boolean algebra structure on each com-
ponent A( r) of an attribute A. We could allow A( r) to have the
structure of a quantale for each r E Q, e.g. it could be a frame

(perhaps there is a relation to the work of Reyes and Zolfaghari
1121), or if one were interested in linear logic, A(r) could be a

Girard quantale for each r. One can then try to develop defini-
tions of the operators &#x3E;, &#x3E;, D and fl in this context.
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