Further criteria for totality

B. J. Day

Cahiers de topologie et géométrie différentielle catégoriques, tome 28, no 1 (1987), p. 77-78

<http://www.numdam.org/item?id=CTGDC_1987__28_1_77_0>

Introduction. This Note is a sequel to the Kelly survey [2] of totality for enriched categories and some familiarity with the latter is assumed. It is supposed throughout that \(V \) is a symmetric monoidal closed category with \(V_o \) admitting all small limits and arbitrary intersections of monics.

Generators and totality.

Theorem 1. Any cocomplete category \(A \) is total if it admits arbitrary cointersections of epics and has a small generating set.

Proof. It suffices to show that the coend \(\int^a f_a \otimes a \) can be constructed in \(A \) from the generators \(G \) of \(A \). First consider the pushout diagram of the canonical map \(1 \otimes \epsilon \) and \(k \) with \(1 \otimes \epsilon \) jointly epic since \(G \) generates \(A \):

\[
\begin{array}{ccc}
fa \otimes (g, a) \otimes g & \xrightarrow{k} & \int f \otimes g \\
\downarrow \otimes \epsilon & & \downarrow e_* \\
1 \otimes \epsilon & \xrightarrow{\text{p.o.}} & q_*
\end{array}
\]

This implies that each \(e_* \) is epic; then the pushout of all those epics over \(a \) in \(A \) is easily seen to be precisely \(\int^a fa \otimes a \) in \(A \), as required.
REMARK. In the above result, epics can be replaced by the maps in E for any E-M-factorization system on A; a general result concerning limits of M-subfunctors can be found in the Lemma of [1], 83.

The adjoint-functor Theorem and totality.

THEOREM 2. A category A is total iff it is complete with all intersections of [strong] monics and there exists a functor r from $[A^{op}, V]$ to A and a natural [strong] monic $\mu: 1 \rightarrow ry$.

PROOF. Necessity is clear. For sufficiency consider the canonical diagram

```
    fa --> A(rya, rf) \rightarrow A(\alpha, r\alpha)
       \downarrow                    \downarrow
       \alpha_1 \downarrow \rightarrow A(rya, ryb) \rightarrow A(1, r\alpha_4)
       \downarrow                    \downarrow
       yb(\alpha) \downarrow \rightarrow A(1, \mu) \rightarrow A(a, ryb)
```

The result now follows from the Adjoint-Functor Theorem [1].

As an application, consider the category A of coalgebras for a density comonad on a category B. If such an A is complete then it is total with no assumption on B.

References.