ALBERTO CAVICCHIOLI
LUIGI GRASSELLI

Minimal atlases of manifolds

<http://www.numdam.org/item?id=CTGDC_1985__26_4_389_0>
MINIMAL ATLASES OF MANIFOLDS *
by Alberto CAVICCHIOLI and Luigi GRASSELLI

RÉSUMÉ. On montre que chaque "ball-intersection atlas" minimal d'une n-variété M connexe et linéaire par morceaux a exactement n boules si la frontière de M est non vide. Ceci améliore divers résultats connus relatifs aux recouvrements par boules minimaux des variétés.

1. INTRODUCTION.

Given a connected compact n-manifold M, a natural invariant of M is the minimal number of balls which are needed to cover M.

Following [SN] the Ljusternik-Schnirelmann category (resp. the strong Ljusternik-Schnirelmann category), written cat M (resp. C(M)), is the minimal number of open contractible subsets (resp. of balls) of M which suffice to cover M. Obviously

\[C(M) \geq \text{cat } M. \]

W. Singhof proved that C(M) = cat M if cat M is not too small compared with the dimension of M.

If M is a closed connected combinatorial n-manifold (n > 0) which is geometrically \([n/r]\) - connected, \(r \geq 2\), then M can be covered by \(r\) combinatorial balls \([\mathbb{Z}_2]\). If M is \(r\)-connected and \(r \leq n - 3\), then \([n/(r+1)]+1\) balls suffice to cover M as was later proved by E.C. Zeeman for PL-manifolds \([\mathbb{Z}_1]\) and by E. Luft in the topological case \([L]\).

Classical results for particular classes of spaces are:

1° A closed piecewise-linear 3-manifold covered by 3 open 3-balls is a 3-sphere-with-handles \([\mathbb{H}M]\).

2° If M is a locally trivial n-dimensional sphere bundle over a sphere, having a cross-section, then M admits coverings by 3 open \(n\)-balls \([M1]\).

Theorems which improve some quoted statements are obtained in [M2, PD, S1, S2] by making use of residual sets, a concept introduced in [DH].

(*) Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council of Italy) and within the Project "Geometria delle Varietà Differenziabili" of the M.P.I. (Italy).
Relations between the Poincaré conjecture and ball coverings arguments are studied in [OS, Z2].

In order to cover a manifold with balls whose intersections are nice, R. Osborne and J. Stern proved this theorem: If M is a closed k-connected topological n-manifold and $q = \min\{k, n-3\}$, then M can be covered by p open balls if $p(q+1) > n$. Further, these balls may be chosen so that the intersection of any collection of them is $(q-1)$-connected.

The boundary case is also considered in [OS, KT].

In the present paper, we prove that each minimal "ball-intersection atlas" of a connected piecewise-linear n-manifold M has exactly n balls if ∂M is non-void. This improves some results of [OS] and [KT] in the piecewise-linear category.

2. NOTATIONS.

Let Δ_n be the set $\{0, 1, ..., n\}$ and $N_n = \Delta_n - \{0\}$. The symbol $\#A$ means the cardinality of the set A.

All (compact) spaces and maps considered belong to the piecewise-linear (PL) category in the sense of [H] or [Z1]. The prefix PL will always be omitted.

The ball-complexes B_1, B_2 are said to be abstractly isomorphic if there exists a bijection $f : B_1 \to B_2$ preserving the face-incidence relation.

An n-pseudocomplex K is an n-dimensional principal ball-complex in which every r-ball, considered with all their faces, is abstractly isomorphic with the complex underlying an r-simplex ([HW], p. 49). K is said to be a pseudodissection of the polyhedron $|K|$. By $S_r(K)$ and K^r, we respectively denote the set of all the r-balls of K and the s-skeleton of K. We shall also call r-simplex (resp. vertex) each r-ball (resp. 0-ball) of K.

Given a simplex s in an n-pseudocomplex K, the disjoined star $\text{std}(s, K)$ is defined to be the disjoint union of the n-simplexes of K containing s, with re-identification of the $(n-1)$-faces containing s and of their faces. The subcomplex

$$\text{lk}(s, K) = \{ \tau \in \text{std}(s, K) \mid \tau \cap s = \emptyset \}$$

is called the disjoined link of s in K. If K is a pseudodissection of a manifold, the star $\text{st}(s, K)$ and the link $\text{lk}(s, K)$ of a simplex s in K are not necessarily balls or spheres; however, $\text{std}(s, K)$ and $\text{lk}(s, K)$ are the balls or spheres obtained by a minimal set of severings on $\text{st}(s, K)$ and $\text{lk}(s, K)$ respectively. A vertex v of an n-pseudocomplex K.

390
will be called a cone-vertex if it belongs to all n-simplexes of K (or, equivalently, if \(\text{st}(v, K) = K \)).

An r-simplex s of a closed n-pseudomanifold K (cf. [SP]) is said to be regular (resp. singular) if \(\text{lk}(s, K) \) is (resp. is not) a combinatorial \((n-r-1)\)-sphere.

An identification system of a principal n-pseudocomplex K is defined to be a set \(G \) of simplicial isomorphisms such that, for any pair
\[
S_{n-1}^\alpha, S_{n-1}^\beta \in S_{n-1}(K),
\]
there exists at most one map
\[
\varphi_{\alpha \beta} : S_{n-1}^\alpha \to S_{n-1}^\beta
\]
belonging to \(G \). Let \(\sim_G \) be the equivalence relation on
\[
S(K) = \bigcup_{r \in \Delta_n} S_r(K)
\]
defined as follows:
\[
s_h^G \sim_G s_k^G \text{ iff } s_h^G = s_k^G \text{ or there exists a sequence of isomorphisms in } G \text{ (or their inverses) taking one to the other.}
\]
The symbol \(\hat{K}_G \) will denote the quotient complex \(S(K)/\sim_G \).

3. MINIMAL BALL COVERINGS.

Let \(M \) be a closed connected n-manifold and \(B = \{ B_i \mid i \in \mathbb{I} \} \) be a finite set of closed \(r \)-balls such that \(M = \bigcup_{i \in \mathbb{I}} B_i \).

Definition 1. \(B \) is said to be a \(P_0 \)-ball covering if it satisfies the following property:

\((P_0)\) For every \(i, j \in \mathbb{I} \) (\(i \neq j \)),
\[
B_i \cap B_j = \partial B_i \cap \partial B_j
\]
has \((n-1)\)-manifolds as connected components.

\(B \) is said to be a \(P_1 \)-ball covering if it satisfies the following property

\((P_1)\) For every \(i, j \in \mathbb{I} \) (\(i \neq j \)),
\[
B_i \cap B_j = \partial B_i \cap \partial B_j
\]
has \((n-1)\)-balls as connected components.

\(B \) is said to be a \(P_2 \)-ball covering if it satisfies the following property

...
(Pₙ) For every J ⊆ I, ∑ J = k, for k ≤ n+1,
\[\bigcap_{j \in J} B_j = \bigcap_{j \in J} (\overline{B_j}) \]
has \((n-k+1)\)-balls as connected components.

Obviously \(P_2 \Rightarrow P_1 \Rightarrow \ldots \Rightarrow P_\emptyset\).

Definition 2. Let \(M\) be an \(n\)-manifold with \(h > 0\) boundary components \(M_j\) \((j \in \mathbb{N}_h)\) and \(B = \{ B_i \mid i \in I \}\) be a finite set of closed \(n\)-balls such that \(M = \bigcup_{i \in I} B_i\). B is said to be a \(P_\alpha\)-ball covering \((\alpha \in \Delta_2)\) of \(M\) if \(B\) satisfies the property \(P_\alpha\) and
\[B_j = \{ B_i \cap M_j \mid i \in I \} \]
is a \(P_\alpha\)-ball covering of the closed \((n-1)\)-manifold \(M_j\), for every \(j \in \mathbb{N}_h\).

Note that a \(P_\emptyset\)-ball (resp. \(P_1\)-ball) covering is a ball covering (resp. strong ball covering) in the sense of [IY, KT] (resp. [FG2]).

Let \(M\) be a connected \(n\)-manifold. For \(\alpha \in \Delta_2\), define :
\[b_\alpha(M) = \min \{ \#B \mid B \text{ is a } P_\alpha\text{-ball covering of } M \} \]
Obviously,
\[b_\emptyset(M) \leq b_1(M) \leq b_2(M) \]
The following results are known.

Proposition 1.
1° If \(M\) is a closed \(n\)-manifold, \(b_2(M) = n + 1\) [P1, FG1].
2° If \(M\) has non-empty connected boundary, \(b_3(M) \leq n\) [FG2].
3° If \(M\) has non-empty boundary, \(b_3(M) \leq n\) [KT].

The statements 2 and 3 of the above proposition can be obtained as easy consequences of the following :

Proposition 2. If \(M\) is a connected \(n\)-manifold with non-empty boundary, then \(b_2(M) = n\).

Proof. We first prove that \(b_2(M) \leq n\) by exhibiting a \(P_2\)-ball covering \(B^*\) of \(M\) with \(n\) balls. Let \(M_i\) \((i \in \mathbb{N}_n)\) be the boundary components of \(M\), \(M_i'\) a copy of \(M_i\) and \(\varphi_i : M_i \rightarrow M_i'\) the identification map. Let \(w_i\) \((i \in \mathbb{N})\) be a point such that the adjunction space
\[Q = M_1 \cup_{\varphi_1} (w_1 \ast M_1') \cup_{\varphi_2} \ldots \cup_{\varphi_n} (w_n \ast M_n') \]
is a closed \(n\)-pseudomanifold.
Moreover, if K is a simplicial triangulation of Q, the set of the singular simplexes of K is $\{w_i \mid i \in \mathbb{N}_n\}$ and the disjoined star of each simplex of K is strongly-connected.

We give an inductive algorithm for constructing a pseudodissection K_p ($0 \leq p \leq n$) of Q such that $S_0(K_p)$ has p regular cone-vertices. Let $K_0 = K$.

Let now A_j $(j \in \mathbb{N}_p)$ be a regular cone-vertex of K_p. There exist a finite sequence $\xi_1 = \{\sigma_{\alpha}^{n-p}\}_{\alpha=0}^{s}$ of all the $(n-p)$-simplexes of K_p not containing $A_1, ..., A_p$ and a finite sequence $\xi_2 = \{w_i\}_{i=0}^{u}$ of $(n-1)$-simplexes of K_p such that, for every $\beta \in \mathbb{N}_s$,

$$\sigma_{\beta}^{n-1} \in st(\sigma_{\gamma}^{n-p}, K_p) \cap st(\sigma_{\gamma}^{n-p}, K_p)$$

for some $\gamma < \beta$. For each $\sigma_{\alpha}^{n-p} \in \xi_1$, consider the disjoined star $std(\sigma_{\alpha}^{n-p}, K_p)$ and glue them pairwise together by identifying the two copies of every $(n-1)$-simplex of ξ_1. The pseudocomplex B so obtained is a pseudodissection of an n-ball. Moreover, there exists an identification system G on B such that the quotient B/G is isomorphic with K_p. Define A_{p+1} as an interior point of B and set $\Sigma = A_{p+1} \ast \delta B$. If G' is the identification system induced by G on Σ, set $K_{p+1} = \Sigma G'$. There exist a finite sequence $\xi_2 = \{\nu_\delta\}_{\delta=0}^{u}$ of all the vertices of K_p different from the regular cone-vertex A_j $(j \in \mathbb{N}_n)$ and a finite sequence $\xi_3 = \{w_i\}_{i=0}^{v}$ of $(n-1)$-simplexes of K_p such that, for every $\delta \in \mathbb{N}_v$,

$$\nu_\delta \in st(\nu_\delta, K_p) \cap st(\nu_\delta, K_p)$$

for some $\mu < \delta$. Note that

$$\{ w_i \}_{i=1}^{v} \subset \{ \nu_\delta \}_{\delta=0}^{u}.$$

By the strong connectedness of $std(w_i, K_p)$, it is possible to obtain a triangulated n-ball B_i $(i \in \mathbb{N}_h)$ such that:

1° all the vertices of B_i belong to ∂B_i,
2° w_i is a cone-vertex of B_i,
3° there exists an identification system G_i on B_i such that $B_i G_i$ is isomorphic with $std(w_i, K_p)$.

Let ξ_3 be the finite sequence obtained from ξ_2 by considering the disjoined stars of all the regular vertices of ξ_2 and all the n-balls B_i's. By identifying the elements of ξ_3 along suitable $(n-1)$-simplexes of ξ_2, we can obtain exactly h triangulated n-balls $D_1, ..., D_h$ such that

$$\{w_k \mid k \in \mathbb{N}_h\} \cap D_i = \{w_i\}.$$
There exist an identification system G^* induced by ξ and a triangulated n-ball E obtained from C_1, \ldots, C_h such that $|E_{G^*}| = \mathbb{Q}$, A_1, \ldots, A_n are cone-vertices of E_{G^*} and

$$S_0(E_{G^*}) = \left\{ A_j \mid j \in \mathbb{N}_h \right\} \cup \left\{ w_j \mid j \in \mathbb{N}_n \right\}.$$
Set $T = E_{G^*}$. If T' is the first barycentric subdivision of T, define

$$B = \left\{ B_i \mid i \in \mathbb{N}_{n+h} \right\},$$

where

$$B_j = \text{st}(A_j, T') \quad \text{if} \quad 1 \leq j \leq n,$$
$$B_j = \text{st}(w_j, T') \quad \text{if} \quad n+1 \leq j \leq n+h.$$

Note that, by construction,

$$B_i \cap B_j = \emptyset \quad \text{if} \quad i \neq j, \quad \text{and} \quad i, j \in \mathbb{N}_{n+h} - \mathbb{N}_h.$$

$B^* = \left\{ B_i \mid i \in \mathbb{N}_n \right\}$ is a P_2-ball covering of M.

Now we show that no such covering of smaller cardinality exists. Let $B = \left\{ B_i \mid i \in \mathbb{N}_k \right\}$ be a P_2-ball covering of M. For each $i \in \mathbb{N}_k$, $H_j(B_i \cap M)$ is the j-th homology group. The Mayer-Vietoris sequence gives:

$$\ldots \to H_j(B_i \cap M) \oplus H_j(B_i \cap M_s) \to \cdots \to H_j(B_i \oplus B_j \cap M) \to H_{j-1}(B_i \cap M_s) \to \cdots$$

Then

$$H_j((B_i \cup B_j) \cap M) = 0 \quad \text{if} \quad j \geq 2,$$

while, for $j = 1$, it is a free abelian group (possibly zero). By induction on $m \geq k$, the Mayer-Vietoris sequence gives:

$$0 = H_j((\bigcup_{i=1}^{m-1} B_i) \cap M) \oplus H_j(B_m \cap M) \to H_j((\bigcup_{i=1}^{m-1} B_i) \cap M_s) \to$$
$$\to H_{j-1}((\bigcup_{i=1}^{m-1} B_i) \cap M_s) = 0.$$

Then

$$H_j((\bigcup_{i=2}^m B_i) \cap M) = 0 \quad \text{if} \quad j \geq m,$$

while, for $j = m-1$, it is a free abelian group. If $k < n$, setting $m = k$, we have that

$$H_j(M \cap M_s) = H_j(M_s)$$

vanishes for $j \geq k$ and is a free abelian group for $j = k - 1$. In particular $H_{n-1}(M_s) = 0$ and $H_{n-2}(M_s)$ is a free abelian group.
This is a contradiction because either $H_{n-1}(M_\delta) = \mathbb{Z}$ or $H_{n-1}(M_\delta) = 0$ and $H_{n-2}(M_\delta)$ has torsion, M_δ being a closed $(n-1)$-manifold.

Remark. For the proof of $b_2(M) \geq n$ it is sufficient that each B_j is a P_2-ball covering of M_j without assuming the property P_2 for B in the interior of M.

Note that Proposition 2 improves the statement of the Theorem 4.1 in [OS] in the case $q = 0$.

4. MINIMAL ATLASES.

A BI-atlas (ballintersection atlas) of a closed connected n-manifold M in the sense of [P2] is a finite covering

$$A = \{ V_\alpha \mid \alpha \in A \}$$

de M such that :

a) each V_α is an open n-ball,

b) the intersection of any number of V_α's has open balls as connected components.

In order to define a concept of BI-atlas for manifolds with boundary, we need the following

Definition 3. Let M be a connected n-manifold. An open subset P of M is said to be an open n-quasi-ball if P is homeomorphic with the union of an open n-ball B with a finite number (possibly null) of open disjoint $(n-1)$-balls on ∂B.

Definition 4. A finite covering $A = \{ V_\alpha \mid \alpha \in A \}$ of a connected n-manifold M with h ($h > 0$) boundary components M_i ($i \in N_h$) is said to be a BI-atlas if the following conditions hold :

a') each V_α is an open n-quasi-ball,

b') the intersection of any number of V_α's has open quasi-balls as connected components,

c') $A_i = \{ V_\alpha \cap M_i \mid \alpha \in A \}$

is a BI-atlas of the closed $(n-1)$-manifold M_i ($i \in N_h$).

Let us define

$$a(M) = \min \{ \# A \mid A \text{ is a BI-atlas of } M_j \}.$$

A BI-atlas A of M such that $\# A = a(M)$ is said to be a minimal atlas of M.

395
In ([P2], Proposition 5.1), M. Pezzana proved that $a(M) = n + 1$ for every closed connected n-manifold M.

Proposition 3. If M is a connected n-manifold with h ($h > 0$) boundary components M_i ($i \in \mathbb{N}_h$), $a(M) = n$.

Proof. Let Q be the closed n-pseudomanifold constructed as in Proposition 2 starting from M. If $T = E_Q$ is the pseudodissection of Q obtained in Proposition 2, the interior of the space $|\text{std}(A_i, T)|$, underlying the disjoined star of each cone-vertex $A_i \in S_T(T)$ ($i \in \mathbb{N}_h$), is an open n-ball of Q. If T' is the first barycentric subdivision of T, set

$$B_i = |\text{st}(A_i, T')|.$$

The polyhedron $M' = \bigcup_{i=1}^{n} B$ is homeomorphic with M.

Since $M' \subset Q$, the collection

$$A = \{|\text{std}(A_i, T)| \cap M' | \quad i \in \mathbb{N}_h\}$$

is a BI-atlas of M' such that $|A| = n$. In fact, each connected component of $|\text{std}(A_i, T)| \cap \partial M'$ is an open collar of the $(n - 1)$-ball

$$|\text{std}(b_{1I}, T')| \cap \partial M',$$

b_{1I} being the barycenter of the edge $<A_i, w_r>$ for some singular vertex $w_r \in S_T(T)$. This proves that $a(M) \leq n$.

Conditions b' and c' of Definition 4 give $a(M) \geq n$, according to a Mayer-Vietoris argument as in Proposition 2. \(\diamond\)
REFERENCES

SN. W. SINGHOF, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), 385-415.

