G. M. Kelly

A note on the generalized reflexion of Guitart and Lair

Cahiers de topologie et géométrie différentielle catégoriques, tome 24, n° 2 (1983), p. 155-159

<http://www.numdam.org/item?id=CTGDC_1983__24_2_155_0>
A NOTE ON THE GENERALIZED REFLEXION OF GUITART AND LAIR

by G. M. KELLY *

By a weak reflexion of a locally-small category \mathcal{A} onto a full subcategory \mathcal{B} we mean the assigning to each $A \in \mathcal{A}$ of a small projective cone π_A, with vertex A and with base in \mathcal{B}, such that $\mathcal{A}(\pi_A, B)$ is a colimit-cone in \textbf{Set} for each $A \in \mathcal{A}$ and each $B \in \mathcal{B}$. When each π_A has its base indexed by a discrete category, π is a multi-reflexion in the sense of Diers [1]; it is an actual reflexion if moreover each of these discrete categories is 1.

For example, let \mathcal{A} be the category of commutative rings. When \mathcal{B} consists of local rings, a weak reflexion is given by taking for π_A the cone of localizations $A \rightarrow A_p$ of A; its base is indexed by the ordered set of prime ideals p of A. When \mathcal{B} consists of the fields, a multi-reflexion is given by the discrete cone $A \rightarrow A/m$ where m runs through the maximal ideals of A. When \mathcal{B} consists of the rings A with $2A = 0$, an actual reflexion is given by $A \rightarrow A/2A$.

Guitart and Lair study in [4] the existence of weak reflexions when \mathcal{B} is given as follows. We have a set $\Theta = \{ \theta_B \}$ of projective cones

$$\theta_B : \Delta N_B \rightarrow T_B : \mathcal{L}_B \rightarrow \mathcal{A}$$

in \mathcal{A}, where ΔN_B denotes the functor constant at N_B; and \mathcal{B} consists of those $A \in \mathcal{A}$ for which each $\mathcal{A}(\theta_B, A)$ is a colimit-cone in \textbf{Set}. They further restrict themselves to the special case in which each generator of each cone θ_B is an epimorphism in \mathcal{A}.

Each of the examples above is of this kind. For local rings there are two cones θ_1 and θ_2 in \mathcal{A}; θ_1 is the pushout diagram of the two (epimorphic) maps

* The author gratefully acknowledges the assistance of the Australian Research Grants Committee.
while θ_2 is the cone of vertex 0 over the empty diagram. For fields there are again two cones: θ_2 as above and θ_3 the discrete cone

$$\mathbb{Z} \to \mathbb{Z}[x] \to \mathbb{Z}(x).$$

For rings with $2A = 0$, there is a single cone θ_4 whose base is indexed by 1, namely $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.

We suppose henceforth that \mathbb{B} is given as above. We recall that, for a regular cardinal α, an object $A \in \mathcal{A}$ is called α-presentable if $\mathcal{A}(A, \cdot) : \mathcal{A} \to \text{Set}$ preserves α-filtered colimits. Guitart and Lair sketch in [4] a rather complicated proof by transfinite induction of the following: There is a weak reflexion π of \mathcal{A} onto \mathbb{B} if \mathcal{A} is cocomplete, if each L_B is small, and if there is a regular cardinal α such that each N_B and each $T_B L$ is α-presentable. Moreover π can be taken to be a multi-reflexion if each L_B is discrete.

The α-presentability hypothesis is a strong one; hardly any objects are α-presentable in the category of topological spaces or in the dual of an algebraic category. By analogy with the case where each L_B is 1 - the «orthogonal subcategory problem» of [2] - this hypothesis should not be needed when the generators of the cones θ_B are epimorphic: at least if \mathcal{A} is cowellpowered, which is not a grave restriction. By the same analogy, there should be a simple and direct proof in this case. We now verify that this is so, and that moreover the base of each cone π_A may then be taken to be an ordered set.

We refer to [5] for the notion of strong monomorphism, and for the fact that epimorphisms and strong monomorphisms constitute a factorization system (see [2]) on \mathcal{A} if \mathcal{A} admits finite limits and all intersections of strong monomorphisms, or if \mathcal{A} admits finite colimits and all cointersections of epimorphisms; certainly, therefore, if \mathcal{A} is complete and well-powered, or cocomplete and cowellpowered.

THEOREM 1. Let the full subcategory \mathbb{B} of the locally-small category \mathcal{A}
be determined as above by a set Θ (not necessarily small) of cones θ_β (not necessarily small), where each generator of each θ_β is epimorphic in \mathfrak{A}. Let epimorphisms and strong monomorphisms constitute a factorization system on \mathfrak{A}, and let \mathfrak{A} be cowellpowered.

For each $A \in \mathfrak{A}$ denote by S_A the small category whose objects are (a set of representatives of) the epimorphisms $p : A \to C$ in \mathfrak{A} with domain A and codomain in \mathfrak{B}, and whose maps $p \to p'$ are the maps $q : C \to C'$ with $qp = p'$; clearly S_A is an ordered set. Let $d_A : S_A \to \mathfrak{B} \subset \mathfrak{A}$ be the projection functor sending $p : A \to C$ to C, and let

$$\pi_A : \Delta A \to d_A : S_A \to \mathfrak{A}$$

be the cone whose p-th component is p itself.

Then an object B of \mathfrak{A} lies in \mathfrak{B} if and only if each $\mathfrak{A}(\pi_A, B)$ is a colimit-cone in Set.

Proof. The essential observation is that \mathfrak{B} is closed in \mathfrak{A} under strong subobjects. To see this it suffices to consider a single cone $\theta : \Delta N \to T$ of Θ, with epimorphic generators $\theta_i : N \to T_i$. Let $j : D \to B$ be a strong monomorphism in \mathfrak{A}, with $B \in \mathfrak{B}$. By the diagonal-fill-in property for epimorphisms and strong monomorphisms, the diagram

$$\begin{array}{ccc}
\mathfrak{A}(T_i, D) & \xrightarrow{\mathfrak{A}(\theta_i, D)} & \mathfrak{A}(N, D) \\
\downarrow & & \downarrow \\
\mathfrak{A}(T_i, j) & \xrightarrow{\mathfrak{A}(\theta_i, j)} & \mathfrak{A}(N, j) \\
\downarrow & & \downarrow \\
\mathfrak{A}(T_i, B) & \xrightarrow{\mathfrak{A}(\theta_i, B)} & \mathfrak{A}(N, B)
\end{array}$$

is a pullback in Set. Since colimits are universal in Set, and since $\mathfrak{A}(\theta_i, B)$ is a colimit-cone in Set, so is $\mathfrak{A}(\theta_i, D)$; so that $D \in \mathfrak{B}$.

It is now easy to see that $\mathfrak{A}(\pi_A, B)$ is a colimit-cone for $B \in \mathfrak{B}$.

For let $f : A \to B$, and let f factorize as an epimorphism $p : A \to C$ followed by a strong monomorphism $j : C \to B$. Since $C \in \mathfrak{B}$ by the above, p is a generator of π_A through which f factorizes. If f also factorizes as $g p'$ through another generator $p' : A \to C'$ of π_A, the diagonal-fill-in property applied to $g p' = j p$ gives a $q : C' \to C$ with $qp' = p$ and $jq = g$. Hence $\mathfrak{A}(\pi_A, B)$ is a colimit-cone.
Conversely, if $\mathfrak{C}(\pi_A, B)$ is a colimit-cone for each A, then $\mathfrak{C}(\pi_B, B)$ is a colimit-cone; so that $1 : B \to B$ factorizes as $1 = j p$ for some epimorphism $p : B \to C$ with $C \in \mathfrak{B}$. But then the epimorphism p, being a coretraction, is invertible; and $B \in \mathfrak{B}$. □

Theorem 2. Add to the hypotheses of Theorem 1 the completeness of \mathfrak{A}, and suppose each cone θ_B to have a discrete base \mathfrak{L}_B. Then the restriction of π_A to a suitable full subcategory of S_A gives a multi-reflexion of \mathfrak{A} onto \mathfrak{B}.

Proof. Since connected limits commute with discrete colimits in Set, we have \mathfrak{B} closed in \mathfrak{A} under connected limits. For each connected component δ of S_A, therefore, the limit of $d_A|\delta : \delta \to S_A \to \mathfrak{A}$ is an object E_δ of \mathfrak{B}; and the $p : A \to C$ of S_A induce a map $r_\delta : A \to E_\delta$. Let this factorize as the epimorphism $s_\delta : A \to K_\delta$ followed by the strong monomorphism $k_\delta : K_\delta \to E_\delta$. Then $K_\delta \in \mathfrak{B}$, and s_δ is an object of S_A; clearly the greatest object of the ordered set S_A which belongs to δ. It is now evident that any $f : A \to B$ with $B \in \mathfrak{B}$ factorizes uniquely through some s_δ, and through one only. □

We include for completeness the classical:

Theorem 3. If each $\mathfrak{L}_B = 1$ in Theorem 2, \mathfrak{B} is closed under limits in \mathfrak{A}, and we get an actual reflexion ρ_A of \mathfrak{A} onto \mathfrak{B}, where ρ_A is the epimorphic part of the factorization of $A \to \text{lim} d_A$ into an epimorphism followed by a strong monomorphism. □

We end by observing that the cowellpoweredness hypothesis of Theorem 1 does hold in the example to which Guitart and Lair give most prominence - that of the algebras for a mixed sketch S. By this is meant a small category \mathfrak{S} in which are given a small set $\Phi = \{\phi_a\}$ of small projective cones and a small set $\Psi = \{\psi_\beta\}$ of small inductive cones; unlike Guitart and Lair, we do not ask the ϕ_a to be limit-cones nor the ψ_β to be colimit-cones. The category $S\text{-}Alg$ of S-algebras is the full subcategory of $[\mathfrak{S}, \text{Set}]$ given by those $A : \mathfrak{S} \to \text{Set}$ for which each $A\phi_a$ is a limit-cone and each $A\psi_\beta$ is a colimit-cone. The sketch S is projective when
the set Ψ is empty; write S_0 for the projective sketch obtained from S by discarding Ψ. It is classical that categories of the form S_0-Alg are the locally presentable ones of Gabriel-Ulmer [3]; and that such a category is reflective in $[\hat{S}, \text{Set}]$, and is therefore complete and cocomplete.

Let $Z : S^{op} \to S_0$-Alg be the composite of the Yoneda embedding $Y : S^{op} \to [\hat{S}, \text{Set}]$ and the reflexion $R : [\hat{S}, \text{Set}] \to S_0$-$Alg$. Clearly $B = S$-Alg is the full subcategory of $\hat{A} = S_0$-Alg consisting of those objects A such that $\hat{A}(\cdot, A)$ sends the projective cone $\theta_\beta = Z \psi_\beta$ of \hat{A} to a colimit-cone in Set for each β. Note that each generator of θ_β is epimorphic if each generator of ψ_β is monomorphic.

Finally, observe that \hat{A} is cowellpowered by Satz 7.14 of [3], an account of which in English can be found in Section 8.6 of [6].

BIBLIOGRAPHY.

Pure Mathematics Department
UNIVERSITY OF SYDNEY
N. S. W. 2006. AUSTRALIA