BARRY MITCHELL

Monoidal structures on graded categories

Cahiers de topologie et géométrie différentielle catégoriques, tome 23, n° 1 (1982), p. 43-45

<http://www.numdam.org/item?id=CTGDC_1982__23_1_43_0>
Two monoidal structures on a category \mathcal{V} are equivalent if there is a bimonoidal (that is, strict monoidal) structure on the identity functor $1_{\mathcal{V}}$, using one monoidal structure in the domain and the other in the range. Also if \mathcal{V} and $\hat{\mathcal{V}}$ are monoidal categories, then two bimonoidal structures on a functor $T: \mathcal{V} \to \hat{\mathcal{V}}$ are equivalent if there is a monoidal isomorphism $T = T$ using one bimonoidal structure in the domain and the other in the range.

Let G be a group acting on a monoidal category \mathcal{V}. This means that for each $x \in G$, there is a bimonoidal equivalence $T_x: \mathcal{V} \to \mathcal{V}$ and monoidal isomorphisms making a couple of obvious diagrams commute. Such an action induces an action of G on the abelian group $Z^*\mathcal{V}$ of automorphisms of $1_{\mathcal{V}}$. Let $G\mathcal{V}$ denote the category of G-graded objects of \mathcal{V} (that is, the direct product of G copies of \mathcal{V}). If \mathcal{V} has coproducts, we can define a tensor product in $G\mathcal{V}$ by the rule

\begin{equation}
(A \otimes B)_z = \bigotimes_{x, y = z} A_x \otimes T_x B_y.
\end{equation}

Under the assumption that the tensor product of \mathcal{V} preserve coproducts and epimorphisms and that the unit of this tensor product be a generator for \mathcal{V}, we show:

Theorem 1. The equivalence classes of monoidal structures on $G\mathcal{V}$ using the tensor product (2) are in 1-1 correspondence with the elements of $H^3(G, Z^*\mathcal{V})$. Moreover, the equivalence classes of bimonoidal structures on $I_{G\mathcal{V}}$, using any one of the above monoidal structures in both domain and

*) Work supported by NSF grant MCS-7703645.
range, are in 1-1 correspondence with the elements of $H^2(G, Z^*V)$.

Two symmetric monoidal structures on a category V are equivalent if there is a symmetric bimonoidal structure on I_V making the monoidal structures equivalent. Now for G^V with the tensor product (2) to have a symmetric monoidal structure at all, one must assume that V is symmetric monoidal and that G is abelian and acts trivially on V (that is, $T_x = 1_V$ for all $x \in G$ with the isomorphisms (1) identities). In this case the monoidal structure on G^V using the tensor product (2) and the trivial 3-cycle will be referred to as the trivial monoidal structure. Then again with the above blanket assumptions on V, we show:

Theorem 2. If G is abelian and V is symmetric monoidal, then the equivalence classes of symmetric structures on the trivial monoidal structure on G^V are in 1-1 correspondence with the equivalence classes of bilinear antisymmetric maps $f: G \times G \to Z^*V$, where two such maps f, f' are equivalent if there is a 2-dimensional cocycle h such that

$$f'(x, y) - f(x, y) = h(x, y) - h(y, x)$$

for all $x, y \in G$.

An immediate consequence of the above theorems, using the fact that the group of integers has cohomological dimension one, is that if K is a commutative ring, then up to equivalence there is precisely one monoidal structure on the category of Z-graded K-modules (with the usual graded tensor product), and the symmetries for this structure are in 1-1 correspondence with the elements $k \in K$ such that $k^2 = 1$. In particular, if K is a domain, we find that the only symmetries are given by

$$a_p \otimes b_q \mapsto b_q \otimes a_p \text{ and } a_p \otimes b_q \mapsto (-1)^{pq} b_q \otimes a_p.$$

Finally, if we start with an abelian group K on which a group G acts, then we can take V to be $Sets^K$ (so that $Z^*V = K$ as G-modules), in which case Theorem 1 gives new interpretations of the cohomology groups $H^3(G, K)$ and $H^2(G, K)$.
Details of this work will be appearing in reference [5].

REFERENCES

4. S. MAC LANE, Natural associativity and commutativity, Rice University Studies 49 (1963), No 4, 28-46.

Department of Mathematics
Rutgers University
NEW BRUNSWICK, N. J. 08903
U. S. A.