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COHERENT PROHOMOTOPICAL ALGEBRA

by Timothy PORTER

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XVIII - 2(1977)

Homotopical algebra a la Quillen [20] is an abstract form of homo-

topy theory designed to give a «non linear homological algebras for use in

more general categories than those in which the classical, linear version

applied. In a classical situation, the category of chain complexes of right
modules over some associative ring A , the two theories look very similar,
but the «homotopical» theory is neatly axiomatised whilst the «homological

theory is less firmly fixed.

In the category pro ( Mod-A ) of pro-objects in the category Mod-A

of right A-modules, there is a perfectly good homology theory since this cat-

egory pro ( Mod-A ) is an abelian category with enough proj ectives. This ho-

mology theory is, in an obvious sense, an extension of the usual homolo-

gy theory on Mod-A , however it is an extension of the homotopy theoretic
structure on the corresponding category C(Mod-A ), of chain complexes in

Mod-A .

In various papers [17, 18 , 19] the possibility of extending homotopy
theories from a category C to the corresponding procategory pro ( C ) has

been considered in both the general abstract case and for specific applica-
tion to the case where C is the category of Kan simplicial sets. In this ap-

plication it was necessary to consider a « homotopical» structure on the cat-

egory pro ( C ( Mod- A ) ) - at least for A the ring of integers. It is this «pro-

homotopical algebras that this paper considers.

The meaning of «coherent» in the title is analogous to its use by
various algebraic topologists ( see for example Vogt [26] ), namely that dia-

grams commute up to homotopy and these homotopies satisfy «coherent»

homotopy commutativity relations, thus the homotopies are « compatible».

The connection with Vogt’s paper [26] is more than just the use
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of one word ; Sections 4 to 7 deal with the algebraic analogue of the homo-

topy limits which are the subject of Vogt’s paper. The construction of some

of these algebraic homotopy limits is well known and even in the general
case the two components of the construction are much used both in isola-

tion and together, however the precise formulation in terms of the relevant

homotopy structure seems to be unknown. What is a homotopy limit ? Briefly

by defining a homotopy structure in C ( Mod-A ) and pro ( C ( Mod-A)) one gets
an inclusion of the corresponding homotopy categories,

where it exists holim is right adjoint to this functor.

1. PROCATEGORIES.

Although the definition and elementary properties of procategories
are described in various sources (notably the original Séminaire Bourbaki
notes of Grothendieck [10], as well as the Appendix to Artin and Mazur’s
notes [2] and some Seminar notes of Duskin [6] ) the treatment is slightly
different in each case and so we will summarize the terminology which will

be used in this paper.

For convenience we will work within a universe U ; as usual, Ens

will denote the category of U-small sets and all functions between them.

All categories will be assumed to be U-categories, i. e. all hom-sets are

U- sm all.

Let C be any category; then the Yoneda lemma gives an embedding

Let I be a U-small category, i. e. the object class of I is a U-set. I is

said to be cofiltering if it satisfies the following two conditions :

Cl) For any objects i , j of I , th e hom-set I ( i , j ) is either empty or

contains exactly one morphism.
C2) If i, j are objects of I there is a k in I and maps k -+ i, k -+ j.

(Some authors have considered a weaker form of C1, but in our situation

this adds nothing and so we avoid it. )
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If 0: J -+ I is a functor of index categories we say 4) is cofinal if

for all i in I , there is a j in J and a map in I from cp (j) to t.

If F is a functor from a U-small cofiltering index category to a cat-

egory C , then F is called a projective system. Any projective system det-

ermines a functor from C to Ens defined, for a projective system F, by

A functor K: C -+ Ens is said to be pro-representable provided it is functor-

ially isomorphic to a functor of the form hF , for some projective system
F : I -+ C indexed, as usual, by a cofiltering index category I . The pro-re-
presentable functors form a full subcategory PRO-REP ( C ) of Hom( C , Ens).
If C has finite projective limits, PRO-REP(C) corresponds to the cat-

egory of all left exact functors on C . This result has been proved at various

times in varying forms by various people; a slightly weak form is attributed

to Deligne and Lazard in [6] and, for the case we shall be interested in,

namely where C is a U-small abelian category, the result may be found in

Stauffer [ 24 .

If C is a U-small abelian category, then all pro-representable func-

tors from C to Ens factor through the forgetful functor from the category

Ab of abelian groups to Ens; so, in this case, there is an isomorphism of

categories

where SEX(C, Ab) is the category of all left exact additive functors from

C to Ab . The Yoneda embedding mentioned above gives an embedding

and, by taking pro ( C ) to be the category SEX(C, Ab)op, we get the can-
onical embedding c : C - pro ( C ) . We may represent each obj ect in pro ( C )
in at least one way as a projective limit, lim X , of some proj ective sys-
tem X : I -+ C , con sidered as a proj ective system in pro ( C ) . Every proj ec-
tive system in C admits a limit in pro(C) and every object of pro(C) is

isomorphic to such a limit; thus pro ( C ) is a «cocompletion» of C (see
Stauffer [24] for the corresponding completion construction).
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The following proposition, proved in Duskin’s notes [61, allows one

to give an internal description of pro ( C) .
Let F : I - C and G: J - C be projective systems in C indexed

by I and J respectively, let h F , hG be the corresponding left exact func-

tors ; then there is a natural isomorphism

Thus this can be taken as an internal definition of the hom-set (or hom-

group ) in pro ( C ) .

VGe end this section with a brief resume of some results which will

be needed later.

1.1. Let 0 : I -+ J be a cofinal functor and F : J -&#x3E; C a projective sys-
tem in C indexed by J . Also let Fo : I - C be the composite functor; then

hF=hF4) in Hom ( C, Ens ) , thus internally F and Fo are isomorphic in the
category pro ( C) .

1.2. Let X: D -+ pro ( C ) be a finite diagram in pro ( C ) and suppose

that D contains no loops ; then there is a prodiagram

such that in

As a special case of 1.2 we get

1.3. If f: X - Y is a map in pro(C), there is a U-small cofiltering in-

dex category I and a projective system f, : I - Ar(C), where Ar ( C ) is

the category of morphisms in C, and an isomorphism fI = f in Ar ( pro ( C ) ) .

In both 1.2 and 1.3 we say X, (or f, ) is obtained by reindexing X
(or f).

Although the motivation for studying procategories comes from the

application of the cocompleteness result, the internal description together
with much use of 1.1, 1.2 and 1.3 is often more convenient to manipulate
than the «dual of SEX ( C, Ab ) » definition.

2. THE HOMOTOPY STRUCTURE OF pro(C(Mod-A)).

We fix once and for all an associative ring A with identity, 1 # 0.
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Mod-A denotes the category of U-small unitary right A-modules and C(Mod-A )
the corresponding category of chain complexes which will be assumed to

be bounded below, i. e. K in C (Mod-A) satisfies the condition :

there is some N0 such that Kq = 0 for q  N .

For brevity we refer to obj ects in a procategory pro ( C) as being pro-

objects in C ; with this terminology we shall refer to objects of pro( Mod-A )
as being pro-A-modules ( «unitary» and «right» always being subsumed un-
der the term « modules) and objects of pro (C(Mod-A)) as being procom-
pl exes ( again « bounded below» and « of A-modules », fixed throughout, will

be left out).

The homotopy structure in C (Mod-A ) is given by listing those maps
which will be weak equivalences, fibrations and cofibrations ( see Quillen

[20] or, better for our purposes, Brown [4] ). The weak equivalences are

those chain maps which induce isomorphisms on homology; the fibrations

are epimorphisms in C ( Mod-A ) and the cofibrations are those maps i such

that: (i) ¿ is a monomorphism ;
( ii ) (Cokeri)q i s proj ective in Mod-A for each q .

REMARK. For some purposes it would be better to consider chain com-

plexes bounded above with weak equivalences as above, fibrations are epi-

morphisms with dimensionwise injective kernels and cofibrations are just

monomorphisms. The difference between the two approaches corresponds
to emphasizing projective resolutions rather than injective resolutions in a

treatment of homological algebra.

We say a chain complex X is fibrant if the unique map X -&#x3E; 0 is

a fibration ; thus all chain complexes are fibrant in the «bounded below»

case. More limiting is the notion of cofibrant: X is cofibrant if the unique

map 0 -&#x3E; X is a cofibration, i. e. X is a cofibration if and only if Xq is a

proj ective A -module for each dimension q .

Th e structure listed above ( ignoring the cofibrations) almost defines
a category of fibrant objects, in the sense of Brown [4], the only remaining
structure is a «path space object ». The exact construction of this is immat-

erial, but could be given by comparison with the corresponding structure
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in the category of simplicial A-modules to which C ( Mod-A ) , or rather part
of it, is isomorphic. ( The construction is given in detail in Gabriel and Zis-

man[7].)

Dually the cofibrant objects form, of course, a category of cofibrant

objects and the same comment as above goes through for this case. The def-

inition of a category of cofibrant objects is essentially due to Brown [4] ; 
one has just to dualise his axiom system. He does not explicitly give them

but, on page 442, mentions the possibility briefly. The definition is however

given explicitly in [18] to which we now turn for the following ideas.

aGe want to define weak equivalence, fibration and cofibration, in

pro(C(Mod-A)) . As noted in [18] any homotopy theory ( a la Brown [4] ) on

a category C lifts to one on pro ( C ) and likewise for the dual theory. It

should be noticed however that although the fibrations and cofibrations may
interact nicely in C , they need not do so in pro(C) , i. e. Quillen’s axiom

(M1) may not hold ( see Quillen [20], p. I.I.I ).

Weak equivalence : A map f : X -&#x3E; Y in pro (C(Mod-A)) is a basic weak

equivalence if there is an indexing category I and a reindexing f, : Xi -&#x3E; Y,
of f such that, for each i in I , fl(i): Xl(i)-&#x3E; Yl(i) is a weak equivalen-
ce in C ( Mod-A ) , or alternatively if f is an isomorphism. A weak equivalen-
ce is a composite of basic weak equivalences.

Fibration : A s above wi th f, ( i ) a fibration in C ( Mod-A).

Go fLbration : As above with « cofibration » replacing « weak equivalence».
The path space objects in C (Mod-A ) are functorially constructed (one

need only check the simplicial analogue) and so we can use this functor-

iality

to define ( functorially) a path space object Fl: l -&#x3E; C ( Mod-A ) for each pro-

complex F .

If we denote by I the class of weak equivalences, we can form a

category of fractions pro(C(Mod-A))[E-1], which we shall denote by:

Ho pro (C (Mod-A ) ) , for short. The set of maps from F to G in this categ-
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ory is denoted by [ F , G].

The shift functor

given by

acts as a loop space functor in C ( Mod-A ) and in pro(C(Mod-A)). Its in-
verse is the suspension functor and there is clearly an adjointness

( see Gabriel andZisman [7], p. 102 - 106).

The main applicability of this category depends on the following :

PROPOSITION 2. l. For any pro-A-module M there is a cofibrant procom-
plex F[ M], isomorphic to M(0) the procomplex with M in dimension zero
and zeroes elsewhere.

PROOF. Let U be the forgetful functor

and F the free functor left adjoint to U . If we denote the composite

F U by R, we get a procomplex F[ M] as follows:

F[M]0 =R(M).
Let 8 : R -&#x3E; 1 be the natural map which comes from the adjointness :

F -&#x3E; U ,

F[M]1 = R (Ker8 (M)), 6 : F[M]1 -&#x3E; F[M]0 being 6(K er 6 (M)).
Assuming F[M]q is defined and also 6q: F[M]q-&#x3E; F[M]q-1, then :

F[M]q+1=R (ker 6q) and 6q+1 =6(K er 6q). 
Each F[M]q+1 consists at each index of a free module, hence F[M] is

cofibrant. The complex F[ M] ( i ) is clearly acyclic and 8 (M): F[M]0-&#x3E; M
gives a morphism from F[M] to M (0) in pro ( C ( Mod-A ) ) which induces

isomorphisms on the homology progroups. Thus 8(M) is a weak equivalen-
ce and the result follows.

Thus if we extend the embedding

to an embedding



146

and consider each M in pro ( Mod-A ) as the corresponding M (0) in the cat-

egory pro ( C ( Mod-A ) ) , then each pro-A-module is weakly equivalent to a

cofibrant obj ect.

3. PROHOMOLOGY AN D COHOMOLOGY.

Given any prochain complex C in pro (C(Mod-A)), one can define
its nth prohomology module Hn ( C ) by the usual process of extending func-
tors from a category to the corresponding procategory. There is the nth ho-

mology functor

and if one defines

for

to be the composite, then we have for each index i :

If one wishes to add coefficients, say in an A-module M, one merely uses

the classical homology Hn (-;M) with coefficients in M and again forms

the composite. A similar method works for cohomology functors but of cour-

se the resulting cohomology object is not a pro-A-module but an indA-mo-

dule, that is an inductive system of A-modules (or alternatively an object
of the completion of Mod-A ). It is immediate that the homology profunctors:

induce functors ( which we will also denote by Hn)

and, by using the naturality of the universal coefficient sequences for homo-

logy and cohomology, it is easily shown that the other two cases follow,

gi vin g functors

and
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The fact that Hn(C;M) is an «indmodule» and not a promodule is

inconvenient and it is better to have a cohomology object which is either

in pro ( Mod-A ) or, as good, in Mod-A itself. One obvious way to arrive

at a cohomology module would be to take the inductive limit of the cohomo-

logy «indmodule» and thus arrive at a Cech-style cohomology theory. We

shall adopt another definition of cohomology more suited to the homotopical

viewpoint, namely a « global» cohomology.

The hom-set in Ho pro (C (Mod-A)) has a natural abelian group stru-

cture which agrees with that given by the loop-suspension group and cogroup
structures in Ho pro( C (Mod-A ) ) . Following Brown [4] we define

for

where M(n) is the procomplex with M in dimension -n and zero in all other

dimensions.

If we recall the fact that the suspension functor

is given by

and that the loop space functor Q is given by

the internal description of Hom in pro ( C (Mod-A)) shows that V- and 12

are again adjoint, and it then follows by the Adjoint Functor Lemma of Brown

[4], page 426, that

where F[ M] is the cofibrant resolution of M given by 2.1 above.

The functor Hn (C ; M.) is, of course, covariant in M and contrava-

riant in C and, as one would expect, there is a long exact cohomology se-

quence. This result is proved in general by Brown [4] p. 432-433 and so

we merely indicate how to translate from this situation to his general set-

ting ( see also [ 18] ).

THEOREM 3.1. Let
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be a short exact sequence in pro (Mod-A ) ; then there is a long exact se-

quence, natural in C :

P ROO F. By the reindexing theorem, f3 can be represented by some

where I is a small cofiltering category and 81 is an epimorphism in the cat-

egory (Mod-A )’ . Then Ll = KerB l is the fibre of the fibration 81 Since
all complexes are fibrant, the result follows from Brown’s Proposition 4,

[4], p. 432.

There is a corresponding result for a short exact sequence of co-

fibrant procomplexes ; the exact statement of this result may be found in

[ 18] 4.1, but we only need it in the particular case of cofibrant resolutions

of modules.

THEOREM 3.2. Let

be a short exact sequence in pro ( Mod-A ) ; then there is a long exact se-

quence for any pro-A-module K :

PROOF. Careful use of the free-forgetful comonad construction of Proposi-
tion 2.1 allows one to replace

by an exact sequence of cofibrant procomplexes

which is thus a cofibration sequence in the subcategory of cofibrant pro-

complexes. The two sequences are linked by the diagram hereafter, in which

,a (L), 8 (M) and8(N) are weak equivalences:
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Replacing K by F[K], the result follows from the dual of Brown’s result

[4] p. 432, also mentioned in [18].

Although many of the standard cohomology results from « classical»

homological algebra carry over without appreciable change in the statement

of the result, the methods of proof are often very different. We illustrate this

point by reference to the form of the Universal Coefficient Theorem for Co-

homology used in [ 19 . The main difficulty of the proof is at a point where,
in the classical case, there is absolutely no trouble. We get rid of this dif-

ficulty in the following proposition.

P ROP OSITION 3.3. L et C Ln pro ( C (Mod-A ) ) satisfying the condition :
There is a representation C : I -&#x3E; C (Mod-A) o f C such that, for each i

in I and n ,

is the zero map.

Let F be any pro-A-module and F(o), as before, the procomplex with F
in dimension zero and zeroes elsewhere ; then there is a natural isomorphism

PROOF. First let it be remarked that the restriction on C is not the weak-

est condition which would make the proposition hold, however it is the form

of the restriction which occurs naturally in the Universal Coefficient Theo-

rem and hence we will not bother with the more general result. Secondly it

should be noted that the proposition holds if F is replaced by any acyclic

complex. The isomorphism

is given by taking the induced maps on prohomology; explicitly if f : C-&#x3E; F(0)
is an actual map in pro ( C ( Mod-A ) ) , then
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is zero for * 1= 0 and

exactly the same occurs if f is a map in Ho pro (C (Mod-A)) since then,

using the notation of Brown [4] for the canonical functor

f can be written as f = y(g)y(t)1-1 , where t is a weak equivalence and

hence induces an isomorphism on prohomology; we can thus define

where g0 and to are the induced maps in dimension zero of g and t resp.

We can define an inverse to T as follows: If f: C0 -&#x3E; F is a map in the

category pro ( Mod-A ) , let f(0) be the map in pro ( C ( Mod-A ) ) which is f

in dimension zero and zero elsewhere, f(0) : C-&#x3E; F(0). We let

Clearly To( f ) = f ; it is less clear that

for

this will be proven as soon as it is shown that the non-zero dimensions of

any map in [ C, F(0)] are irrelevant in as much as any «homotopy class» in

[C, F(0)] can be represented by a map of the form f(0) as above. Vie rely on
Brown’s results on pages 424 and 425 of [4] to the effect that any homo-

topy class f : C - F(o) can be written as

with t E E or alternatively as

with s E E ( this comes from the fact that admits a calculus of fractions,

cf. Gabriel and Zisman [7], which is essentially that I satisfies a categ-

orical Ore condition). The second of Brown’s results is that if f, g: X - Y

are maps in pro (C(Mod-A)), then y ( f ) = y ( g) if and only if there is a
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weak equivalence t: X’ -&#x3E; X equalising f and g up to the notion of homo-

topy coming from the path space object. Using these two results it suffices

to prove the following lemma.

LEMMA 3.4. L et C, F be as above and G = F in pro ( C ( Mod- A ) ) . I f f
is a map from C to G in pro ( C ( Mod-A ) ), then c ( f ) = c ( f ) where f agrees

with f in dimension zero and is zero elsewhere.

PROOF. "We construct a procomplex D with a weak equivalence t: D - C

such that f t = f t . Let En be the equaliser of

for

and Fo = C0. We define Dn = Cn+ En-1 (DEn and tn : Dn -&#x3E; Cn by

regarding En C Cn ; the n-th boundary operator an : Dn -&#x3E; Dn-1, that is

is given by the matrix operator

and hence is zero on the first and third summands and maps the second sum-

mand identically to the third summand of Dn-1. It is easily checked that D
is a procomplex and t is a weak equivalence.

The Lemma, and thus the Proposition, is proved. The way is now

clear for a fairly classical proof of the Universal Coefficient Theorem for

Cohomology in pro ( Mod-A ) where A is a principal ideal domain.

THEOREM 3.5. Let F be in pro( Mod-A ) for A a principal ideal domain
and l et C be a co fibrant object in pro (C(Mod-A)); then for each q &#x3E; 0 ,
there is a subgroup Nq-1 ( C ; F) o f Ext1 (Hq"1 (C), F) and an exact se-

quence of abelian groups
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where Hom and Extl are the usual bifunctors coming from the global&#x3E;&#x3E; clas-

sical homological algebra o f pro(Mod-A). Moreover h is the canonical «in-

duced homomorphism. map.

PROOF. First we can, if necessary, replace C, by reindexing, with a com-

plex in which each Cn (i) is free. We work with this «locally free » procom-

plex in the classical way; thus there is a short exact sequence

in pro ( C ( Mod-A ) ) , where

Since A is a principal ideal domain, Z and B are cofibrant being resp-

ectively subcomplexes of C and I C (the suspension of C ). This implies
that (*) is a cofibration sequence in the homotopy structure of pro (C (Mod-A ))y
hence there is a long exact sequence

Since B and Z have trivial boundary operators,

by the previous proposition, and the naturality of the isomorphism constructed,

there gives that the homomorphism y q : Bq (C ) - Zq (C) induces the link mor-
phism of the long exact sequence

which is the same as

in other words 6 = Hom (yq, 1). Thus there is a natural short exact sequence

Looking at the short exact sequence

and applying the « classical » long exact Horn - Ext sequence gives
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taking

gives us

and

which completes the proof except the statement about h .

This last statement is easily seen to follow from the commutativity

of the diagram

since the isomorphism W was exactly the «h» for Proposition 3.3.

REMARKS. 1. Unless Zq ( C ) is globally projective one cannot claim that

but in many of the applications this does not matter.

2. Theorem 3.5 was given without proof in [ 19] as Theorem 4.4. The

first proof in something like this form appeared in [16], I.1.7.

4. HOMOTOPY LIMITS . FUNCTOR CATEGORIES.

As mentioned in the introduction, several of the homotopy limits we

shall be considering are well known. As a first example we take the homo-

topy kernel.

Suppose f: X -&#x3E; X’ is a map in C ( Mod-A ) ; the homotopy kernel of

f is a chain complex K , with map K i-&#x3E; X such that y((1) = y (0) and, gi-
ven any (K’,1) with the same property, there is a unique homotopy class

9 of maps ( i. e. a map in Ho C ( Mod-A ) ) from K’ to K such that
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The complex K is easily constructed; it is the f’ f constructed in Gabriel

and Zisman, p. 104 - 105 [7] ; briefly one forms the double complex

and from this one obtains a chain complex by the usual means of forming the

corresponding total complex ; thus

and

is given by the matrix

1 : Tf-&#x3E; K is the projection onto the second factor.

This use of a double complex followed by taking the total complex
is absolutely typical as will be seen later.

Although our eventual purpose is to try to construct a homotopy li-

mit functor

right adjoint to the constant projective system functor
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not only is it convenient to consider more general homotopy limits first, but

also for many applications outside the range of this paper these construc-

tions are more important.

Let I be any small category and Hom ( I , C ( Mod-A ) ) the category

of functors from I to C ( Mod-A ) . "We define a homotopy structure in the cat-

egory Hom ( I , C ( Mod-A ) ) in very nearly the same way as was used, in

Section 2, for pro ( C ( Mod-A ) ) (cf. [18]):
- A map f:X -&#x3E;Y in Hom (I, C(Mod-A)) is a weak equivalence if, for

every object i in I , f(i): X(i)-&#x3E;Y(i) is a weak equivalence in the cat-

egory C ( Mod-A, -
- f is a fibration if each f (i is an epimorphism, and is a cofibration

if, for each i and integer n , (Coker f(i))n is a projective A-module ;
- the path space functor on C ( Mod-A ) extends to give the path space

object in Hom(I,C(Mod-A)).

There is an inclusion functor

where, for each chain complex K , El (K ) (i ) = K for all i . The weak equi-
valences of C (Mod-A ) are preserved by E, and so E, induces a functor

we want to try to produce a right adjoint to this functor which will be the ho-

motopy limit, holim, for this case. In general, this right adjoint does not

exist ; the construction we outline below works as long as there are finitely
many objects in I ; if this is not so, the construction may lead to a chain

complex which is not bounded below . To avoid this difficulty we restrict our

attention to diagrams of positive complexes or, for virtually no extra work,

diagrams which are uniformly bounded below, i. e. there is an integer n such

that Xq = 0 for q  n . We also rephrase the definition of holim, slightly,
as follows :

Given a diagram of complexes X: I , C(Mod-A) , holim, X is that

complex, if it exists, which represents the functor


