PING CHENG YUEN
Higher order frames and linear connections

Cahiers de topologie et géométrie différentielle catégoriques, tome 12, n° 3 (1971), p. 333-371

<http://www.numdam.org/item?id=CTGDC_1971__12_3_333_0>
HIGHER ORDER FRAMES AND LINEAR CONNECTIONS

by YUEN Ping Cheng

Introduction.

In the first part of this paper we develop some elementary properties of semi-holonomic k-frames parallel to those of holonomic k-frames. Our definition of a semi-holonomic k-frame is essentially equivalent to the one originally given by Ehresmann [1b]; our formulation, however, leads us easily to define a canonical 1-form θ_k on the principal fibre bundle $\widetilde{H}^k(V^n)$ of semi-holonomic k-frames on a differentiable manifold V^n. If we restrict θ_k to the principal sub-bundle $H^k(V^n)$ of holonomic k-frames on V^n, we obtain the canonical 1-form given by Kobayashi [3]. Our main result is the "Holonomy Theorem" where we give a geometrical interpretation of the holonomy conditions in terms of the canonical 1-form. This result will be useful for studying the integrability of higher order G-structures. These preliminary results served originally as an introductory part to a forthcoming paper which deals with the structure tensors of higher order regular G-structures and higher order geometric structures.

The second part of this paper deals with the higher order linear connections. Let V^n be a differentiable manifold. A linear connection of order k on V^n is an infinitesimal connection on the principal fibre bundle $\widetilde{H}^k(V^n)$. Its torsion form is defined to be the exterior covariant derivative of θ_k. There is a one-to-one correspondence between the set of linear connections of order k (resp. quasi-holonomic linear connections of order k without torsion) on V^n and the set of invariant sections of the canonical projection $\widetilde{H}^{k+1}(V^n) \rightarrow H^1(V^n)$. We show further that a linear connection of order k on V^n is locally flat if and only if it can be obtained by successive prolongations of a first order linear connection without torsion and curvature. Some of these results have been summarized in [6] and are prepublished in French, in the first part of the author's thesis [7]. If V^n is a differentiable manifold, $T_x(V^n)$ is the tangent vector space of V^n at x.

333
Part 1

HIGHER ORDER FRAMES

1. Semi-holonomic frames.

Let \(V_n \) be an \(n \)-dimensional \(C^\infty \)-differentiable manifold. A first order frame (or a 1-frame) of \(V_n \) at the point \(x \) is an invertible 1-jet of \(\mathbb{R}^n \) into \(V_n \) with source \(0 \in \mathbb{R}^n \) and target \(x \in V_n \). The manifold of all 1-frames of \(V_n \), denoted by \(H^1(V_n) \), forms a principal fibre bundle over \(V_n \) with natural projection \(\pi^1_0 \) which assigns to each 1-jet its target, the structure group being \(\text{GL}(n, \mathbb{R}) \). The trivial bundle \(H^1(\mathbb{R}^n) = \mathbb{R}^n \times \text{GL}(n, \mathbb{R}) \) can be identified with the group of all affine transformations on \(\mathbb{R}^n \). There is a distinguished element in \(H^1(\mathbb{R}^n) \), namely the 1-frame \(e_1 \) of \(\mathbb{R}^n \) defined by the 1-jet of the identity mapping of \(\mathbb{R}^n \) onto \(\mathbb{R}^n \) with source \(0 \).

Let \(b : H^1(V_n) \rightarrow H^1(V_n) \) be a local isomorphism. It induces a local diffeomorphism \(f \) of \(\mathbb{R}^n \) into \(V_n \) with \(f_0 \pi^1_0 = \pi^1_0 b \) (pseudo-products); we will denote all natural projections by the same symbol \(\pi \) with indices. We say that \(b \) is 1-admissible if the domain of \(b \) contains \(e_1 \) and \(b(e_1) = j^1_0 f \).

The manifold of 1-jets \(j^1_{e_1} b \), where \(b \) is a 1-admissible local isomorphism of \(H^1(\mathbb{R}^n) \) into \(H^1(V_n) \), will be denoted by \(H^2(V_n) \). There are two natural bundle structures on \(H^2(V_n) \):

i) \(H^2(V_n) \) forms a principal fibre bundle over \(H^1(V_n) \) with natural projection \(\pi^2_1 \) and structure group \(\text{M}^2_2 \) consisting of all 1-jets of 1-admissible local isomorphisms of \(H^1(\mathbb{R}^n) \) into \(H^1(\mathbb{R}^n) \) with source and target \(e_1 \). The structure group \(\text{M}^2_2 \) acts on \(H^2(V_n) \) on the right by the composition of jets. Moreover \(\pi^2_1(j^1_{e_1} b) = b(e_1) = j^1_0 f \).

ii) \(H^2(V_n) \) forms a principal fibre bundle over \(V_n \) with projection \(\pi^2_0 = \pi^1_0 \pi^2 \) and structure group \(\text{L}^2_2 \). Here \(\text{L}^2_2 \) is the fibre of \(H^2(\mathbb{R}^n) \) over the origin \(0 \in \mathbb{R}^n \). The multiplication in \(\text{L}^2_2 \) is given by: if \(g_1 = j^1_{e_1} b_1 \in \text{L}^2_2 \) and \(g_2 = j^1_{e_1} b_2 \in \text{L}^2_2 \), then the pseudo-product \(b_1 \circ b_2 \) is a 1-admissible local isomorphism and \(g_1 \cdot g_2 = j^1_{e_1}(b_1 \circ b_2) \) depends only on \(j^1_{e_1} b_1 \) and \(j^1_{e_1} b_2 \). Notice there is again a distinguished element in \(H^2(\mathbb{R}^n) = \mathbb{R}^n \times \text{L}^2_2 \).
namely the element \(e_2 \) defined by the \(l \)-jet of the identity mapping of \(H^1(\mathbb{R}^n) \) onto \(H^1(\mathbb{R}^n) \) with source \(e_1 \). An element \(z \in \overline{H}^2(V_n) \) will be called a semi-holonomic 2-frame of \(V_n \) at the point \(x = \pi_0^2(z) \).

We define by recurrence the principal fibre bundle \(\overline{H}^k(V_n) \) of semi-holonomic \(k \)-frames of \(V_n \). Let us assume that we have defined the principal fibre bundle \(\overline{H}^{k-1}(V_n) \) of semi-holonomic \((k-1) \)-frames of \(V_n \), with base space \(V_n \), structure group \(\overline{L}^k \) and projection \(\pi_{k-2} \) on \(\overline{H}^{k-2}(V_n) \). A local isomorphism \(u : \overline{H}^{k-1}(\mathbb{R}^n) \rightarrow \overline{H}^{k-1}(V_n) \) is said \((k-1)\)-admissible if:

1) \(u \) is \((k-2)\)-admissible, where \(v \) is the local isomorphism of \(\overline{H}^{k-2}(\mathbb{R}^n) \) into \(\overline{H}^{k-2}(V_n) \) induced by \(u \), such that \(v \circ \pi_{k-2} = \pi_{k-2} \circ u \).

2) \(u(e_{k-1}) = j_{e_{k-2}}^1 \), where \(e_{k-1} \) (resp. \(e_{k-2} \)) is the distinguished element in \(\overline{H}^{k-1}(\mathbb{R}^n) \) (resp. \(\overline{H}^{k-2}(\mathbb{R}^n) \)).

The set \(\overline{H}^k(V_n) \) of \(l \)-jets of the form \(j_{e_{k-1}}^1 u \), where \(u \) is a \((k-1)\)-admissible local isomorphism of \(\overline{H}^{k-1}(\mathbb{R}^n) \) into \(\overline{H}^{k-1}(V_n) \), forms a principal fibre bundle over \(V_n \) with structure group \(\overline{L}^k \); the underlying set of \(\overline{L}^k \) is just the fibre of \(\overline{H}^k(\mathbb{R}^n) \) over \(0 \in \mathbb{R}^n \). The space \(\overline{H}^k(V_n) \) can also be regarded as a principal fibre bundle over \(\overline{H}^{k-1}(V_n) \) with structure group \(\overline{M}^k = \text{Ker}(\overline{L}^k - \overline{L}^{k-1}) \). An element \(z \) of \(\overline{H}^k(V_n) \) will be called a semi-holonomic \(k \)-frame of \(V_n \) at the point \(x \), where \(x \) is the projection of \(z \) into \(V_n \).

For \(m < k \), the natural projection \(\pi_m^k \) of \(\overline{H}^k(V_n) \) onto \(\overline{H}^m(V_n) \) is compatible with the surjective homomorphism of \(\overline{L}^k \) onto \(\overline{L}^m \). The distinguished element \(e_k \) in \(\overline{H}^k(\mathbb{R}^n) = \mathbb{R}^n \otimes \overline{L}^k \) is defined by the \(l \)-jet of the identity mapping of \(\overline{H}^{k-1}(\mathbb{R}^n) \) with source \(e_{k-1} \).

2. Canonical form on \(\overline{H}^k(V_n) \).

An element \(u \in \overline{H}^k(V_n) \) can be written as \(u = j_{e_{k-1}}^1 b \), where \(b \) is a \((k-1)\)-admissible local isomorphism of \(\overline{H}^{k-1}(\mathbb{R}^n) \) into \(\overline{H}^{k-1}(V_n) \); it determines a linear isomorphism \(\tilde{u} \) of \(\overline{E}^{k-1} = T_{e_{k-1}}(\overline{H}^{k-1}(\mathbb{R}^n)) \) onto \(T_u(\overline{H}^{k-1}(V_n)) \) with \(u' = \pi_{k-1}^k(\mu) \in \overline{H}^{k-1}(V_n) \). Since \(\overline{H}^{k-1}(\mathbb{R}^n) = \mathbb{R}^n \otimes \overline{L}^{k-1} \), we have a canonical decomposition \(\overline{E}^{k-1} = \mathbb{R}^n \otimes \overline{O}^{k-1} \), where \(\overline{O}^{k-1} \) is the Lie algebra of \(\overline{L}^{k-1} \). From now on, we will identify \(\mathbb{R}^n \) with a vector subspace of \(\overline{E}^{k-1} \) given by the canonical decomposition. Since \(\tilde{u} \) is a linear isomorphism, \(\tilde{u}(\mathbb{R}^n) \) is an \(n \)-dimensional vector subspace of \(T_u(\overline{H}^{k-1}(V_n)) \).
transversal to the fibres, called the horizontal n-plane associated to the k'-frame u.

Let v be the projection of u under π^k_m. The following diagram

$$
\begin{array}{ccc}
\tilde{E}^{k-1} & \xrightarrow{\tilde{u}} & T_u^* (\tilde{H}^{k-1}(V_n)) \\
\downarrow & & \downarrow \\
\tilde{E}^{m-1} & \xrightarrow{\tilde{v}} & T_v^* (\tilde{H}^{m-1}(V_n))
\end{array}
$$

is commutative, where v' is the projection of v under π^m_{m-1} and where the vertical arrows are the natural projections.

Consider a vector $Z \in T_u(\tilde{H}^k(V_n))$. Its image $Z' = T \pi^k_{k-1}(Z)$ under the tangential map $T \pi^k_{k-1}$ is tangent to $\tilde{H}^{k-1}(V_n)$ at the point $u' = \pi^k_{k-1}(u)$.

The \tilde{E}^{k-1}-valued differential 1-form θ_k defined by

$$\theta_k(Z) = u^{-1}(T \pi^k_{k-1}(Z))$$

will be called the canonical form on $\tilde{H}^k(V_n)$. For $m < k$, we have the following commutative diagram

$$
\begin{array}{ccc}
T(\tilde{H}^k(V_n)) & \xrightarrow{\theta_k} & \tilde{E}^{k-1} \\
\downarrow & & \downarrow \\
T(\tilde{H}^m(V_n)) & \xrightarrow{\theta_m} & \tilde{E}^{m-1}
\end{array}
$$

where the vertical arrows are the natural projections.

The Lie group \tilde{L}_n^k acts naturally on \tilde{E}^{k-1} on the left. Each element g of \tilde{L}_n^k defines a linear isomorphism \tilde{g} of \tilde{E}^{k-1} onto $T_{g^*}(\tilde{H}^{k-1}(\mathbb{R}^n))$ with $g^* = \pi^k_{k-1}(g)$. The right translation $R_{g^*}^{-1} = R_g^{-1}(g^*)^{-1}$ determines a linear isomorphism $T R_{g^*}^{-1}$ of $T_{g^*}(\tilde{H}^{k-1}(\mathbb{R}^n))$ onto \tilde{E}^{k-1}. If we put $\rho(g) = T R_{g^*}^{-1}$, we obtain a linear representation ρ of \tilde{L}_n^k on the vector space \tilde{E}^{k-1}. For $m < k$,

$$
\begin{array}{ccc}
\tilde{E}^{k-1} & \xrightarrow{\rho(g)} & \tilde{E}^{k-1} \\
\downarrow & & \downarrow \\
\tilde{E}^{m-1} & \xrightarrow{\rho(\pi^k_m(g))} & \tilde{E}^{m-1}
\end{array}
$$
is a commutative diagram, where the vertical arrows are the natural projections.

Proposition I.1. The canonical form θ_k is a pseudo-tensorial 1-form on $\bar{H}^k(V_n)$ of type (ρ, \bar{E}^{k-1}), i.e.

$$\theta_k(TR_g(Z)) = \rho(g^{-1})\theta_k(Z)$$

for all $Z \in T(\bar{H}^k(V_n))$ and $g \in \Gamma_n^k$.

3. Holonomic Frames.

A diffeomorphism $f : V_n \to V'_n$ induces a principal fibre bundle isomorphism $f(k)$ of $\bar{H}^k(V_n)$ onto $\bar{H}^k(V'_n)$. This isomorphism $f(k)$ possesses the following properties:

- $i)$ $\pi^k_m \circ f(k) = f(m) \circ \pi^k_m$ for all $0 \leq m < k$;

- $ii)$ $f(k)$ is compatible with the canonical forms, i.e. $f(k)^*\theta_k = \theta_k$,

where θ_k (resp. θ_k') is the canonical form on $\bar{H}^k(V_n)$ (resp. $\bar{H}^k(V'_n)$).

Theorem 1.2. Let ϕ be a local diffeomorphism of $\bar{H}^k(V_n)$ into $\bar{H}^k(V'_n)$. Then locally $\phi = f(k)$ for some local diffeomorphism f of V_n into V'_n, if and only if ϕ is compatible with the canonical forms, i.e. $\phi^*\theta_k = \theta_k$.

It remains to show that the condition is sufficient. For this we will proceed by induction on k.

Lemma I.3. Let ϕ be a local diffeomorphism of $H^1(V_n)$ into $H^1(V'_n)$ with $\phi^*\theta_1 = \theta_1$. Then we can locally write $\phi = f(1)$ for some local diffeomorphism f of V_n into V'_n.

Consider a tangent vector $Z \in T_\xi(H^1(V_n))$ with $T\pi^1_0(Z) = 0$. The condition $\phi^*\theta_1 = \theta_1$ implies that $T\pi^1_0(T\phi(Z)) = 0$. Thus ϕ sends a tangent space to the fibre of $H^1(V_n)$ onto a tangent space to the fibre of $H^1(V'_n)$. This means that locally ϕ is a fibre map and induces a map f of V_n into V'_n satisfying $f_0\pi^1_0 = \pi^1_0\phi$. We want to show that $\phi = f(1)$. Thus we want to show that for any u with $\pi^1_0(u) = x$ we have $\phi(u) = j^1_x f_0 u$. Let $\xi \in \mathbb{R}^n$. Choose a vector $Z \in T_\xi(H^1(V_n))$ with $T\pi^1_0(Z) = \bar{u}(\xi)$. Then $(j^1_x f_0 Z)(\xi) = (T f_0 \bar{u})(\xi) = (T f_0 T\pi^1_0(Z)) = (T \pi^1_0 T\phi)(Z)$.

On the other hand, $(\phi(u))^{-1} T\pi^1_0 T\phi(Z) = (\bar{u}^{-1} T\pi^1_0)(Z) = \xi$. Thus
To prove the theorem for k we may assume that it has been established for $k-1$. Let $Z \in T_u(\widetilde{H}^k(V_n))$ with $T\pi^k_{k-1}(Z)=0$. The condition $\phi^*\theta^*_k=\theta_k$ implies $(T\pi^k_{k-1} \circ T\phi)(Z)=0$. Thus ϕ is a local fibre map with respect to the fibrations $\widetilde{H}^k(V_n) \to \widetilde{H}^{k-1}(V_n)$ and $\widetilde{H}^k(V'_n) \to \widetilde{H}^{k-1}(V'_n)$.

There exists a local diffeomorphism ψ of $\widetilde{H}^{k-1}(V_n)$ into $\widetilde{H}^{k-1}(V'_n)$ such that $\psi \circ \pi^k_{k-1} = \pi^k_{k-1} \circ \phi$. Since $\pi^k_{k-1} \circ \theta_{k-1} = T\pi^k_{k-2} \circ \theta_k$ (resp. $\pi^k_{k-1} \circ \theta'_{k-1} = T\pi^k_{k-2} \circ \theta'_{k}$), we have

$$
(\pi^k_{k-1} \circ \psi \circ \theta'_{k-1})(Z) = (\psi \circ T\pi^k_{k-1} \circ T\phi)(Z) = (T\pi^k_{k-1} \circ \theta'_{k-1} \circ T\phi)(Z) = (T\pi^k_{k-2} \circ \theta_k)(Z) = (\pi^k_{k-1} \circ \theta_{k-1})(Z)
$$

for all $Z \in T_u(\widetilde{H}^k(V_n))$. As π^k_{k-1} is surjective, we deduce that $\psi \circ \theta'_{k-1} = \theta_{k-1}$. By the induction hypothesis, there exists a local diffeomorphism f of V_n into V'_n such that locally $\psi = f^{(k-1)}$. We have thus $f^{(k-1)} \circ \pi^k_{k-1} = \pi^k_{k-1} \circ \phi$ locally. Now we are going to show that locally $\phi = f^{(k)}$. An element $u \in \widetilde{H}^k(V_n)$ determines a linear isomorphism $\widetilde{u} : \widetilde{E}^{k-1} \to T_u(\widetilde{H}^{k-1}(V_n))$ with $u' = \pi^k_{k-1}(u)$. Two elements u and v of $\widetilde{H}^k(V_n)$ are identical if and only if $\widetilde{u} = \widetilde{v}$. It suffices therefore to show that $\widetilde{\phi}(u) = f^{(k)}(u)$ for all $u \in \widetilde{H}^k(V_n)$. Let $\xi \in \widetilde{E}^{k-1}$. Choose a tangent vector $Z \in T_u(\widetilde{H}^k(V_n))$ with $\theta_k(Z) = \xi$. We have

$$
\theta_k(Z) = (\phi^*\theta^*_k)(Z) = (\phi^* \circ T\phi)(Z) = (\widetilde{\phi}(u)^{-1} \circ T\pi^k_{k-1} \circ T\phi)(Z).
$$

On the other hand, $\xi = \theta_k(Z) = (\widetilde{u}^{-1} \circ T\pi^k_{k-1})(Z)$. It follows that for all $\xi \in \widetilde{E}^{k-1}$,

$$
\widetilde{\phi}(u)(\xi) = (T\pi^k_{k-1} \circ T\phi)(Z) = (Tf^{(k-1)} \circ T\pi^k_{k-1})(Z) = (Tf^{(k-1)} \circ \widetilde{u})(\xi) = f^{(k)}(u)(\xi).
$$

We have therefore $\phi = f^{(k)}$ locally and our theorem is proved.
COROLLARY 1.4. Let \(\phi \) be a principal fibre bundle isomorphism of \(\widetilde{H}^k(V_n) \) onto \(\widetilde{H}^k(V'_n) \). Let \(f \) be the diffeomorphism of \(V_n \) onto \(V'_n \), induced by \(\phi \). Then \(\phi = f^{(k)} \) if and only if \(\phi_* \theta'_k = \theta_k \).

Consider a local diffeomorphism \(f \) of an open neighbourhood of \(0 \in \mathbb{R}^n \) onto an open set of \(V_n \). It induces a \((k-1)\)-admissible local isomorphism \(f^{(k-1)} : \widetilde{H}^{k-1}(\mathbb{R}^n) \to \widetilde{H}^{k-1}(V_n) \). It follows that \(u = j^{1}_{e^{k-1}} f^{(k-1)} \) is an element of \(\widetilde{H}^{k}(V_n) \). We say that \(u \in \widetilde{H}^{k}(V_n) \) is a holonomic \(k \)-frame of \(V_n \) if \(u \) can be written as \(u = j^{1}_{e^{k-1}} f^{(k-1)} \) for some local diffeomorphism \(f \) of \(\mathbb{R}^n \) into \(V_n \). A \(k \)-frame \(u \) of \(V_n \) is holonomic if and only if one can find a representative for \(u \) compatible with the canonical forms. The set of holonomic \(k \)-frames of \(V_n \) forms a principal fibre subbundle \(H^{k}(V_n) \) of \(\widetilde{H}^{k}(V_n) \). Its structure group is the subgroup \(L_n^k \) of \(L_n^k \) consisting of holonomic elements. Notice there is a group isomorphism between \(L_n^k \) and the group of all invertible \(k \)-jets of \(\mathbb{R}^n \) into \(\mathbb{R}^n \) with source and target \(0 \). The space \(H^{k}(V_n) \) can also be regarded as a principal fibre bundle over \(\widetilde{H}^{k-1}(V_n) \) with structure group \(M_n^k = M_n^k \cap L_n^k \), kernel of the surjective homomorphism \(L_n^k \to L_n^{k-1} \).

4. Relations between \(\widetilde{H}^{k}(V_n) \), \(\widetilde{P}^{k}(V_n) \) and \(\widetilde{J}^{k-1}(H^{1}(V_n)) \).

Let \(W \) and \(Y \) be two \(C^\infty \)-differentiable manifolds. We will denote by \(\tilde{J}^k(W, Y) \) the differentiable manifold of semi-holonomic \(k \)-jets of \(W \) into \(Y \). For the definition of semi-holonomic jets, see the works of Ehresmann. For \(m < k \), let \(p^k_m \) be the canonical projection of \(\tilde{J}^k(W, Y) \) onto \(\tilde{J}^m(W, Y) \). A jet \(X \in \tilde{J}^k(W, Y) \) is invertible if and only if \(p^k_1(X) \) is invertible. Let \(\tilde{J}^1(W, Y) \) denote the set of invertible jets in \(\tilde{J}^k(W, Y) \). This set is then the inverse image of \(\tilde{J}^1(W, Y) \) by the submersion \(p^k_1 \). Since \(\tilde{J}^1(W, Y) \) is an open submanifold of \(\tilde{J}^k(W, Y) \), it follows that \(\tilde{J}^k(W, Y) \) is an open submanifold of \(\tilde{J}^k(W, Y) \). Moreover, \(p^k_m : \tilde{J}^k(W, Y) \to \tilde{J}^m(W, Y) \) is a submersion.

A semi-holonomic \(k \)-frame (resp. holonomic \(k \)-frame) of \(V_n \) in the sense of Ehresmann is an invertible semi-holonomic \(k \)-jet (resp. invertible holonomic \(k \)-jet) of \(\mathbb{R}^n \) into \(V_n \) with source \(0 \in \mathbb{R}^n \). The set \(\tilde{P}^k(V_n) \) (resp.
$p^k(V_n)$ of semi-holonomic k-frames (resp. holonomic k-frames) of V_n in the sense of Ehresmann has a principal fibre bundle structure over V_n, the structure group being the group of all invertible semi-holonomic k-jets (resp. holonomic k-jets) of \mathbb{R}^n into \mathbb{R}^n with source and target $0 \in \mathbb{R}^n$. An element $u \in \bar{p}^k(V_n)$ can then be written as $u = j^1_0 f$, where f is a differentiable mapping of \mathbb{R}^n into $\bar{p}^{k-1}(V_n)$ satisfying the condition:

\[
 j^1_0(p^{k-1}_{k-2} \circ f) = f(0).
\]

Here we have also denoted by p^{k-1}_{k-2} the canonical projection of $\bar{p}^{k-1}(V_n)$ onto $\bar{p}^{k-2}(V_n)$.

Theorem 1.5. There exists a canonical diffeomorphism ν_k of $\bar{H}^k(V_n)$ onto $\bar{p}^k(V_n)$ satisfying the properties:

1. ν_k is a fibre map, i.e. $p^k_0 \circ \nu_k = \pi^k_0$,
2. for $m < k$,

\[
 \begin{array}{ccc}
 \bar{H}^k(V_n) & \xrightarrow{\nu_k} & \bar{p}^k(V_n) \\
 \downarrow \pi^k_m & & \downarrow p^k_m \\
 \bar{H}^m(V_n) & \xrightarrow{\nu_m} & \bar{p}^m(V_n)
\end{array}
\]

is a commutative diagram;

3. ν_k, restricted to $H^k(V_n)$, is a diffeomorphism of $H^k(V_n)$ onto $p^k(V_n)$.

We prove the theorem by induction on k. For $k = 1$, $H^1(V_n)$ is identical with $p^1(V_n)$ and ν_1 is just the identity map. Let $u = j^1_1 h$ be an arbitrary element in $\bar{H}^2(V_n)$. If γ_1 denotes the zero section* of $H^1(\mathbb{R}^n)$ the mapping $u \rightarrow \nu_2(u) = j^1_0(\nu_1 \circ h \circ \gamma_1)$ defines a diffeomorphism of $\bar{H}^2(V_n)$ onto $\bar{p}^2(V_n)$, because the composition of jets is a differentiable map. Let us assume there exists ν_{k-1} such that, for all $z \in \bar{H}^{k-1}(V_n)$, $\nu_{k-1}(z) = (j^1_z, \nu_{k-1}) \circ z \circ (j^1_0 \eta_{k-2})$ where $z' = \eta_{k-2}^{k-1}(z)$ and η_{k-2} is the zero section* of the trivial bundle $\bar{H}^{k-2}(\mathbb{R}^n) = \mathbb{R}^n \times \mathbb{R}^{k-2}$. Consider then an arbitrary element $y = j^1_1 g$ in $\bar{H}^k(V_n)$. If η_{k-1} is the zero section* of $\bar{H}^{k-1}(\mathbb{R}^n) = \mathbb{R}^n \times \mathbb{R}^{k-1}$, $g' = \nu_{k-1} \circ g \circ \eta_{k-1}$ defines a local diffeomorphism of \mathbb{R}^n to $\bar{p}^{k-1}(V_n)$. Since $j^1_0(p^{k-1}_{k-2} \circ g') = g'(0)$, the i-jet $j^1_0 g'$, which

*) corresponding to $\mathbb{R}^k \times \{e\}$, where e is the unit element.

340

YUEN PING CHENG
is independent of the choice of g for y, is an element in $\overline{P}^k(V_n)$. The mapping $y \mapsto \nu_k(y) = j_0^1g'$ defines a diffeomorphism ν_k of $\overline{H}^k(V_n)$ onto $\overline{P}^k(V_n)$. It is easy to check that ν_k has the desired properties.

Consider the case where $V_n = \mathbb{R}^n$. Let us recall that the underlying set of L^k_n is just the fibre of $\overline{H}^k(\mathbb{R}^n)$ over the origin 0. Since the multiplication in L^k_n is given by the composition of jets, the restriction of ν_k to L^k_n defines a group isomorphism of L^k_n onto the group of all invertible semi-holonomic k-jets of \mathbb{R}^n into \mathbb{R}^n with source and target 0. It is easy to see that the diffeomorphism ν_k of the above theorem is compatible with this group isomorphism. We have therefore the following corollary:

Corollary 1.6. The principal fibre bundle $\overline{H}^k(V_n)$ (resp. $\overline{H}^k(V_n)$) is canonically isomorphic to $\overline{P}^k(V_n)$ (resp. $\overline{P}^k(V_n)$).

Let E be a locally trivial fibre bundle over V_n. We will denote by J^kE the differentiable manifold of k-jets of local sections of E. Let $\tilde{J}^2E = J^1(J^1E)$. The k-th non-holonomic prolongation of E is defined by induction:

$$\tilde{J}^kE = J^1(\tilde{J}^{k-1}E).$$

We define also the semi-holonomic prolongation \tilde{J}^kE by restricting ourselves to those local sections such that, for all $0 < m < k$, the local section σ of V_n into \tilde{J}^mE satisfies the condition: $j_x^1(\pi^m_{m-1} \circ \sigma) = \sigma(x)$, where π^m_{m-1} is the natural projection of \tilde{J}^mE onto $\tilde{J}^{m-1}E$. We have

$$J^kE \subset \tilde{J}^kE \subset \tilde{J}^{k-1}(H^1(V_n)).$$

Theorem 1.7. There exists a canonical diffeomorphism μ_k of $\overline{H}^k(V_n)$ onto $\tilde{J}^{k-1}(H^1(V_n))$ satisfying the following properties:

1. For $k = 1$, μ_1 is just the identity map of $H^1(V_n)$;
2. μ_k is a fibre map; more explicitly

$$
\begin{array}{ccc}
\overline{H}^k(V_n) & \xrightarrow{\mu_k} & \tilde{J}^{k-1}(H^1(V_n)) \\
\downarrow & & \downarrow \\
V_n & \xrightarrow{id} & V_n
\end{array}
$$

is a commutative diagram;
for $0 < m < k$, the following diagram commutes.

\[
\begin{array}{ccc}
\overline{H}^k(V_n) & \xrightarrow{\mu_k} & \overline{f}^{k-1}(H^1(V_n)) \\
\downarrow & & \downarrow \\
\overline{H}^m(V_n) & \xrightarrow{\mu_m} & \overline{f}^{m-1}(H^1(V_n))
\end{array}
\]

We prove the theorem by induction on k. For $k = 1$, $j^0_0(H^1(V_n)) = H^1(V_n)$ by definition and μ_1 is just the identity map of $H^1(V_n)$. Let $u = j^1_1 b$ be an arbitrary element of $\overline{H}^2(V_n)$. Consider the local diffeomorphism f of \mathbb{R}^n into V_n defined by the condition: $\pi^1_0 f = j^1_0$. If η_1 is the zero section of $H^1(\mathbb{R}^n) = \mathbb{R}^n \times L_1^1$, the mapping

\[x \mapsto \sigma(x) = b \circ \eta_1 \circ f^{-1}(x)\]

defines a local section σ of V_n into $H^1(V_n)$. If we put $\mu_2(u) = j^1_x \sigma$ with $x = \pi^1_0(u)$, the mapping $u \mapsto \mu_2(u)$ defines an injection of $\overline{H}^2(V_n)$ into $\overline{f}^1(H^1(V_n))$. This differentiable mapping μ_2 is surjective. In fact let σ be a local section of V_n into $H^1(V_n)$ with $j^1_1 \sigma \in \overline{f}^1(H^1(V_n))$. The target $\sigma(x)$ can be written as $\sigma(x) = j^1_0 f$ for some local diffeomorphism f of \mathbb{R}^n into V_n. Let b be the local isomorphism of $H^1(\mathbb{R}^n)$ into $H^1(V_n)$ defined by the conditions:

i) $\pi^1_0 f = j^1_0$,

ii) $\eta_1 = \sigma \circ f$.

It is easy to check that b is l-admissible and $j^1_x \sigma = \mu_2(j^1_1 b)$. The mapping μ_2 gives then a diffeomorphism of $\overline{H}^2(V_n)$ onto $\overline{f}^1(H^1(V_n))$ with the desired properties. Now, let us assume there exists μ_{k-1} and μ_{k-2} such that, for all $u \in \overline{H}^{k-1}(V_n)$, we have

\[\mu_{k-1}(u) = (j^1_u, \mu_{k-2}) \circ \omega \circ (j^1_0 \eta_{k-2}) \circ \omega^{-1}\]

with $u' = \pi^k_{k-2}(u)$, $\omega = \pi^k_1(u')$ and where η_{k-2} is the zero section of $\overline{H}^{k-2}(\mathbb{R}^n) = \mathbb{R}^n \times L_1^{k-2}$. Let $z = j^1_0 b$ be an arbitrary element of $\overline{H}^k(V_n)$. Let f be the local diffeomorphism of \mathbb{R}^n into V_n induced by b. If we denote by η_{k-1} the zero section of $\overline{H}^{k-1}(\mathbb{R}^n) = \mathbb{R}^n \times L_1^{k-1}$, then
defines a local section of V_n into $\widetilde{T}^{k-2}(H^1(V_n))$ and γ_{k-1}' determines an element $\mu_k(x)$ of $\widetilde{T}^{k-1}(H^1(V_n))$ independent of the choice of the representative b for x. It is easy to verify that $x \mapsto \mu_k(x)$ defines a diffeomorphism μ_k of $\widetilde{H}^k(V_n)$ onto $\widetilde{T}^{k-1}(H^1(V_n))$ satisfying the required conditions of the theorem.

Corollary 1.8 [4c] $\overline{\mu}^k(V_n)$ and $\overline{T}^{k-1}(H^1(V_n))$ are canonically diffeomorphic.

5. Local coordinate systems in $\overline{H}^k(V_n)$.

Let $\{x^1, x^2, \ldots, x^n\}$ be the natural coordinate system in \mathbb{R}^n. Let U be a coordinate neighbourhood in V_n with a local coordinate system $\{y^1, y^2, \ldots, y^n\}$. Consider an element $u \in H^1(V_n)$ with projection

$$\pi^1_0(u) = y = (y^1, y^2, \ldots, y^n) \in U.$$

The 1-frame u is completely determined by the linear isomorphism

$$\tilde{u} : T_0(\mathbb{R}^n) \longrightarrow T_y(V_n).$$

In terms of local coordinates, \tilde{u} can be expressed by

$$\tilde{u} : v_i \longmapsto \sum_m y^m_i \tilde{v}_m \quad (1 \leq i \leq n, 1 \leq m \leq n),$$

where $v_i = \frac{\partial}{\partial x^i} \bigg|_0$, $\tilde{v}_m = \frac{\partial}{\partial y^m} \bigg|_y$ and $\det(y_i^m) \neq 0$.

The 1-frame u is therefore completely determined by the set of local coordinates (y^1, y^i_k) with $\det(y^i_k) \neq 0$. Thus we can take $\{y^i, y^i_k\}$ as a local coordinate system in $(\pi^1_0)^{-1}(U) \subset H^1(V_n)$. Similarly, we have a global coordinate system $\{x^1, x^i_k\}$ in $H^1(\mathbb{R}^n)$, with respect to which the distinguished element is given by $e_i = (0, \delta^i_k)$.

The $n + n^2$ vectors $\{s_i = (\frac{\partial}{\partial x^i})_1, s_k^i = (\frac{\partial}{\partial x^k})_j e_1\}$ form a basis for $E^1 = T_{e_1}(H^1(\mathbb{R}^n))$, and the $n + n^2$ local vector fields $\{\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^i_k}\}$ are linearly independent. Once again, any 2-frame ν is completely determined by the linear isomorphism $\tilde{\nu}$ associated to ν. In terms of local coordinates, we have

$$\tilde{\nu} : E^1 \longrightarrow T_u(H^1(V_n)) \text{ with } \pi^2_1(\nu) = u = (y^i, y^i_k)$$
where $s_m = \left(\frac{\partial}{\partial y^m} \right) u$, $s_p = \left(\frac{\partial}{\partial y^p} \right) u$ and T_u is the tangential map of u, u being considered as a differentiable map. Thus v is completely determined by the set of local coordinates $(y^i, y^i_1, y^i_{j_1} \ldots y^i_{j_k})$ with $\text{det}(y^i_{j_1} \ldots y^i_{j_k}) \neq 0$.

By iteration we have a coordinate neighbourhood $(\pi_k^k)^{-1}(U)$ in $\tilde{H}^k(V_n)$ with a local coordinate system $\{y^i, y^i_1, y^i_{j_1} \ldots y^i_{j_k}\}$ with $\text{det}(y^i_{j_1} \ldots y^i_{j_k}) \neq 0$. The natural projection of $\tilde{H}^k(V_n)$ onto $\tilde{H}^m(V_n)$ ($m < k$) is given by

$$(y^i, y^i_1, \ldots, y^i_{j_1} \ldots y^i_{j_k}) \rightarrow (y^i, y^i_{j_1}, \ldots, y^i_{j_1} \ldots y^i_{j_m}).$$

If $u = (a_i^1, a_i^1, \ldots, a_i^1 \ldots a_i^1) \in \tilde{H}^k(V_n)$, the associated linear isomorphism \tilde{u} can be expressed by

$$t_j \rightarrow \sum (a_i^i t_i + \frac{1}{2!} a_i^i t_i^j + \ldots + \frac{1}{k!} a_i^i \ldots a_i^i \ldots a_i^i \ldots a_i^i t_i^1 \ldots t_i^j\ldots t_i^k - 1)$$

$$i_i \rightarrow T_u^t (i_i^1 \ldots i_i^k)$$

$$i_i^1 \ldots i_k - 1 \rightarrow T_u^t (i_i^1 \ldots i_k - 1)$$

where

$$i_i^1 \ldots i_m = \left(\frac{\partial}{\partial x^i \ldots x_{j_1} \ldots x_{j_m}} \right) e_{k - 1}$$

$$i_i^1 \ldots i_m = \left(\frac{\partial}{\partial y^i_1 \ldots y^i_{j_1} \ldots y^i_{j_m}} \right) u^*,$$

and $u^* = \pi_k^k(u)$. The local coordinates a_i^j, \ldots, a_i^j are symmetrical with respect to the lower indices if and only if u is a holonomic k-frame of V_n [1c].

6. Holonomy Theorem.

Consider an arbitrary element u in $\tilde{H}^k(V_n)$. In this paragraph we
give a necessary and sufficient condition for u to be a holonomic k-frame. Let us recall that the horizontal n-plane defined by u is just the image of the R^n-component of $\mathbb{E}^{k-1} = R^n \oplus \mathbb{O}^{k-1}_n$ under the linear isomorphism \bar{u}. It is tangent to $H^{k-1}(V_n)$ at the point $u' = \pi_{k-1}^k(u)$, if u is holonomic.

For $k = 1$, there is no distinction between semi-holonomic frames and holonomic frames. For $k \geq 2$, $H^k(V_n) \subset \bar{H}^k(V_n)$.

Proposition 1.9. An element u of $\bar{H}^2(V_n)$ is a holonomic 2-frame if and only if the 2-form $d\Theta_1$ vanishes on the horizontal n-plane associated to u.

Let r_1, r_2, \ldots, r_n be a basis for R^n. The canonical form Θ_1 on $H^1(V_n)$ can be expressed as follows:

$$\Theta_1 = \sum \Theta^i r_i.$$

In terms of a local coordinate system $\{y^i, y^j\}$ in $H^1(V_n)$, the components Θ^i of Θ_1 are given by

$$\Theta^i = \sum z^i_j dy^j,$$

where (z^i_j) is the inverse matrix of (y^i_j). By exterior differentiation, we get

$$d\Theta^i = \sum \frac{\partial z^i_j}{\partial y^m} dy^m \wedge dy^j.$$

Let $u = (a^i, a^i_j, a^i_{jk}) \in \bar{H}^2(V_n)$. The horizontal n-plane Q_u associated to u is generated by the n vectors

$$X_i = \sum (\frac{\partial}{\partial y^j})_u + \sum \frac{1}{2^i} a^i_{kj} (\frac{\partial}{\partial y^k})_u \quad (1 \leq i \leq n),$$

with $u' = \pi^2_1(u) = (a^i, a^i_j)$. The 2-form $d\Theta_1$ vanishes on Q_u if and only if

$$d\Theta_1(X_j, X_k) = \sum (\frac{\partial z^i_j}{\partial y^m}, \frac{\partial z^i_k}{\partial y^m})_u^* \begin{vmatrix} 1 & a^p\delta_{ij} & a^m_j \\ \frac{1}{2^i} a^p q_j & a^m_j \\ \frac{1}{2^i} a^p q_k & a^m_k \end{vmatrix}$$

is zero for all $1 \leq i, j, k \leq n$. Since $(z^i_j)^{-1} = (y^i_j)^{-1}$, we have the relation $z^i_p y^p_k = \delta^i_k$. By differentiation, we get
where \((b_i^j) = (a_j^i)^{-1} \). It follows that

\[
d \Theta^i(X_j, X_k) = - \frac{1}{2!} \sum \left(b_m^q b_p^j \left(a_k^m a_p^q - a_j^m a_q^p \right) \right)
\]

\[
= - \frac{1}{2!} \sum \left(b_p^j (a_k^p - a_j^p) \right)
\]

Since \(\text{det}(b_i^j) \neq 0 \), we conclude that \(d \Theta^i(X_j, X_k) = 0 \) for all \(1 \leq i, j, k \leq n \) if and only if the \(a_j^i \) are symmetrical with respect to their lower indices.

Thus our proposition is proved.

For the general case where \(k > 2 \), we have the following «Holonomy Theorem»:

Theorem 1.10. An element \(u \in \widehat{H}^k(V_n) \) is a holonomic \(k \)-frame if and only if the following conditions are satisfied:

1. the horizontal \(n \)-plane \(Q_u \) associated to \(u \) is tangent to the submanifold \(H^{k-1}(V_n) \) of \(H_k(V_n) \);
2. the 2-form \(d \theta^{k-1} \) vanishes on \(Q_u \).

Let us assume that \(u \) is a holonomic \(k \)-frame. We can then write

\[u = j^1_{e_{k-1}} f^{(k-1)} \]

for some local diffeomorphism \(f \) of \(\mathbb{R}^n \) into \(V_n \). If \(\theta_{k-1} \) and \(\hat{\theta}_{k-1} \) are respectively the canonical form on \(\widehat{H}^{k-1}(V_n) \) and \(H^{k-1}(\mathbb{R}^n) \), we have

\[f^{(k-1)} \ast \theta_{k-1} = \hat{\theta}_{k-1} \].

It follows that \(f^{(k-1)} \ast d \theta_{k-1} = d \hat{\theta}_{k-1} \).

Now, the 2-form \(d \hat{\theta}_{k-1} \) vanishes on the \(\mathbb{R}^n \)-component of \(E^{k-1} = \mathbb{R}^n \oplus \mathbb{R}^{k-1} \). As a consequence, \(d \theta_{k-1} \) vanishes on \(Q_u \). The first condition is obviously necessary.

It remains to show that the conditions are sufficient. The first condition implies that \(u' = \pi_{k-1}^k(u) \) is a holonomic \((k-1)\)-frame, and that we can find a local coordinate system \(\{y^i, y^i_{j_1}, \ldots, y^i_{j_1 \ldots j_k}\} \) in \(\widehat{H}^k(V_n) \) such that \(u = (0, a^i_{j_1}, \ldots, a^i_{j_1 \ldots j_k}) \) where \(a^i_{j_1 \ldots j_m} \) are symmetrical with respect to their lower indices for \(2 \leq m \leq k-1 \) and \(a^i_{j_1 \ldots j_k} \) is symmetrical with respect to the first \(k-1 \) lower indices. By a change of local coordinate systems, we can even suppose that \(a^i_j = \delta^i_j \) and \(a^i_{j_1 \ldots j_m} = 0 \) for
Let \(\{ x^1, x^2, \ldots, x^n \} \) be the natural coordinate system in \(\mathbb{R}^n \). By iteration, we define a global coordinate system \(\{ x^{i_1}, x^{i_2}, \ldots, x^{i_{k-1}} \} \) in \(\mathbb{H}^m(\mathbb{R}^n) \). Let \(z^a = x^{i_1} \cdots x^{i_p} \) with \(a = in^{p-1} + \cdots + i_1 \). The vectors

\[
 t_a = \left(\frac{\partial}{\partial z^a} \right) e^{k-2} \quad (1 \leq a \leq n^{k-1} + n^{k-2} + \cdots + n)
\]

form a basis for \(\mathbb{E}^{k-2} \) and we can write

\[
 \theta_{k-1} = \sum_a \theta^a t_a.
\]

An element \(v = (y^i, y^{i_1}, \ldots, y^{i_{k-1}}) \in \mathbb{H}^{k-1}(V_n) \) defines a linear isomorphism \(\tilde{v} \) of \(\mathbb{E}^{k-2} \) onto \(\mathbb{T}_v'(\mathbb{H}^{k-2}(V_n)) \) with \(v' = \pi^{k-2}_{k-2}(v) \). In terms of local coordinate systems, \(\tilde{v} \) is given by

\[
 \tilde{v} : t_a \mapsto \sum_{\beta} A_{\alpha}^{\beta} \tilde{t}_\beta
\]

where \(1 \leq \alpha, \beta \leq n^{k-1} + n^{k-2} + \cdots + n \), \(t_a = \left(\frac{\partial}{\partial z^a} \right) v' \), with \(z^a = y^{i_1} \cdots y^{i_p} \). The matrix \(A = (A_{\alpha}^{\beta}) \) is of the form

\[
 A = \begin{pmatrix}
 A^{ij} & A^{i\omega} \\
 0 & J
 \end{pmatrix}
\]

where \(J \) is the matrix corresponding to the linear isomorphism \(\mathbb{T}_v' \). We have therefore

\[
 y^{i_1} \cdots y^{i_m} = A^{i_{j_1}}_{j_{m-1}} \quad \text{with} \quad \beta = in^{m-1} + \cdots + i_1 \].

Let \(B = (B_{\alpha}^{\beta}) \) be the inverse matrix of \(A = (A_{\alpha}^{\beta}) \). The components \(\theta^a \) of \(\theta_{k-1} \) can be expressed by

\[
 \theta^a = \sum_{\beta} B_{\alpha}^{\beta} d\tilde{z}^\beta.
\]

By exterior differentiation, we get

\[
 d\theta^a = \sum \left(\frac{\partial B_{\alpha}^{\beta}}{\partial z^\gamma} \right) d\tilde{z}^\gamma \wedge d\tilde{z}^\beta + \sum \left(\frac{\partial B_{\alpha}^{\beta}}{\partial y^{i_1} \cdots y^{i_{k-1}}} \right) dy^{i_1} \cdots dy^{i_{k-1}} \wedge d\tilde{z}^\beta.
\]

Since \(\sum B_{\mu}^\alpha A_{\mu}^{\nu} = \delta^\alpha_\nu \), we obtain by differentiation

\[
 \frac{\partial B_{\alpha}^{\beta}}{\partial z^\gamma} = \sum B_{\mu}^\alpha B_{\nu}^\beta \frac{\partial A_{\mu}^{\nu}}{\partial z^\gamma},
\]
\[
\frac{\partial B_\beta^\alpha}{\partial y_i^{j_1 \cdots j_{k-1}}} = -\sum B_\mu^\alpha B_\beta^\nu \left(\frac{\partial A_\mu^\nu}{\partial y_i^{j_1 \cdots j_{k-1}}} \right) ,
\]

hence

\[
d \theta^a = -\sum B_\mu^\alpha B_\beta^\nu \left(\frac{\partial A_\mu^\nu}{\partial \bar{z}_\beta} \right) d \bar{z}_\gamma \wedge d \bar{z}_\beta - \sum B_\mu^\alpha B_\beta^\nu \left(\frac{\partial A_\mu^\nu}{\partial y_i^{j_1 \cdots j_{k-1}}} \right) d y_i^{j_1 \cdots j_{k-1}} \wedge d \bar{z}_\beta .
\]

Let \(u = (0, \delta^i_1, 0, \ldots, a_{i_1 \cdots i_k}) \) and let \(Q_u \) be the horizontal \(n \)-plane of \(\mathcal{H}^{k-1}(V_n) \) associated to \(u \). \(Q_u \) is generated by the \(n \) vectors

\[
X_p = (\frac{\partial}{\partial y_p}) u' + \frac{1}{k!} \sum a_{i_1 \cdots i_{k-1}p} \left(\frac{\partial}{\partial y_{i_1 \cdots i_{k-1}}} \right) u' ,
\]

where \(u' = \pi_{k-1}^k(u) \) and \(1 \leq p \leq n \).

The nullity of \(d \theta^a_{k-1} \) on \(Q_u \) implies that \(d \theta^a(X_p, X_q) = 0 \) for all \(1 \leq p, q \leq n \) and \(1 \leq a \leq n^{k-1} + n^{k-2} + \ldots + n \). We have then

\[
0 = d \theta^a(X_p, X_q)
= \sum B_\mu^a(u') B_\beta^\nu(u') \left(\frac{\partial A_\mu^\nu}{\partial y_{i_1 \cdots i_{k-1}}} \right) u' ,
\]

\[
= \frac{1}{k!} \sum a_{i_1 \cdots i_{k-1}p} \frac{\partial A_\beta^\nu}{\partial y_{i_1 \cdots i_{k-1}}} - a_{i_1 \cdots i_{k+2}pq} - a_{i_1 \cdots i_{k-2}pq} \]
with \(\beta = i n^{k-2} + \ldots + j_1 \). Since \(\text{det}(B_\beta^\nu(u')) \neq 0 \), we obtain

\[
a_{i_1 \cdots i_{k-2}pq} = a_{i_1 \cdots i_{k-2}pq} .
\]

It follows that the \(a_{i_1 \cdots i_{k-1}} \) are symmetrical with respect to their lower indices and thus \(u \) is a holonomic \(k \)-frame.

Let us call \(u \in \mathcal{H}^k(V_n) \) a \textit{quasi-holonomic} \(k \)-frame if the horizontal \(n \)-plane \(Q_u \) of \(\mathcal{H}^{k-1}(V_n) \) associated to \(u \) is tangent to the submanifold \(H^{k-1}(V_n) \). We will denote by \(\mathcal{H}^k(V_n) \) the set of quasi-holonomic \(k \)-frames. We have obviously \(H^k(V_n) \subset \mathcal{H}^k(V_n) \subset \mathcal{H}^k(V_n) \). From the above theorem a quasi-holonomic \(k \)-frame \(u \) is a holonomic one if and only if \(d \theta^a_{k-1} \) vanishes on the horizontal \(n \)-plane \(Q_u \) associated to \(u \).
7. Some remarks on $\widetilde{H}^k(\mathbb{R}^n)$.

In the preceding paragraphs, $\mathbb{R}^n \times \widetilde{L}_n^k$ has been identified with $\widetilde{H}^k(\mathbb{R}^n)$. In this identification, a couple $(x, g) \in \mathbb{R}^n \times \widetilde{L}_n^k$ is identified with the element $t_x^{(k)}(g) \in \widetilde{H}^k(\mathbb{R}^n)$, where t_x denotes the translation in \mathbb{R}^n sending the origin 0 to the point x. The tangent space \widetilde{E}_k to $\widetilde{H}^k(\mathbb{R}^n)$ at the distinguished element e_k has a canonical Lie algebra structure. Let us say a few words on this Lie algebra structure. Let $u = (x, g) \in \widetilde{H}^k(\mathbb{R}^n)$. The translation t_x in \mathbb{R}^n induces an automorphism $t_x^{(k)}$ of $\widetilde{H}^k(\mathbb{R}^n)$ which commutes with the right translations of $\widetilde{H}^k(\mathbb{R}^n)$ on itself, i.e.

$$t_x^{(k)} \circ R_b = R_b \circ t_x^{(k)}$$

for all $b \in \widetilde{L}_n^k$. In particular, $t_x^{(k)} \circ R_g = R_g \circ t_x^{(k)}$ gives a diffeomorphism of $\widetilde{H}^k(\mathbb{R}^n)$ onto itself that we will denote by t_u. We call a vector field on $\widetilde{H}^k(\mathbb{R}^n)$ invariant if it is invariant with respect to all diffeomorphisms of the form t_u, where u is an arbitrary element of $\widetilde{H}^k(\mathbb{R}^n)$. There is a one-to-one correspondence between \widetilde{E}_k and the set of invariant vector fields on $\widetilde{H}^k(\mathbb{R}^n)$. If X, Y are two invariant vector fields on $\widetilde{H}^k(\mathbb{R}^n)$, so is the bracket $[X, Y]$. The vector space \widetilde{E}_k, endowed with this multiplication, becomes a Lie algebra over the field of real numbers. The Lie algebra \widetilde{O}_n^k of \widetilde{L}_n^k is a Lie subalgebra of $\widetilde{E}_k = \mathbb{R}^n \oplus \widetilde{O}_n^k$.

To every differentiable map f of a differentiable manifold W into $\widetilde{H}^k(\mathbb{R}^n)$, we can associate a differential 1-form $\omega_f = f^{-1} df$ with values in the Lie algebra \widetilde{E}_k defined by $\omega_f(X) = (T f^{-1}_o T f)(X)$ for all X in $T_x(W)$. In particular, if $W = \widetilde{H}^k(\mathbb{R}^n)$ and if f is the identity map of $\widetilde{H}^k(\mathbb{R}^n)$, we get a differential 1-form ω on $\widetilde{H}^k(\mathbb{R}^n)$ with values in \widetilde{E}_k, called the invariant form on $\widetilde{H}^k(\mathbb{R}^n)$.

Proposition 1.11. The invariant form ω on $\widetilde{H}^k(\mathbb{R}^n)$ satisfies the equation

$$d\omega + [\omega, \omega] = 0.$$

We recall that the form $[\omega, \omega]$ is defined by $[\omega, \omega](X, Y) = [\omega(X), \omega(Y)]$ for all vector fields X, Y on $\widetilde{H}^k(\mathbb{R}^n)$. Since the module of vector fields on $\widetilde{H}^k(\mathbb{R}^n)$ is generated by the invariant vector
fields, it suffices to prove the equation for two invariant vector fields X and Y. We have
\[
d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y]) \]
\[= -\omega([X, Y]) = -[\omega(X), \omega(Y)]
\]
proving the proposition.

Remark: We have adopted the following convention for the exterior product:
\[(\alpha \wedge \beta)(X_1, X_2, \ldots, X_{p+q}) = \sum (-1)^{\varepsilon} \alpha_{i_1, \ldots, i_p} \beta_{i_{p+1}, \ldots, i_{p+q}},
\]
where the summation runs over all permutations $i_1, \ldots, i_p, i_{p+1}, \ldots, i_{p+q}$ of $\{1, 2, \ldots, p+q\}$ and where ε denotes the signature of the corresponding permutation. With this convention, we have the following formula: if α is a p-form, then
\[d\alpha(X_1, \ldots, X_{p+1}) = \sum_{i=1}^{p+q} (-1)^{i+j} X_i \alpha(X_1, \ldots, \hat{X}_i, \ldots, X_{p+1}) + \sum_{i<j} (-1)^{i+j} \alpha([X_i, X_j], X_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_{p+1}).
\]

Kumpera pointed out to me that the above Lie algebra structure on E^k comes from a canonical Lie group structure on $\tilde{H}^k(\mathbb{R}^n)$. Since $(x, g) \in \mathbb{R}^n \times \tilde{L}_n^k$ is identified with $t_x^{(k)}(g) = t_x^{(k)}(R_g(e_k)) = R_g \circ t_x^{(k)}(e_k)$, we have $(t_x^{(k)}(R_g) \circ t_x^{(k)}(R_g)) \circ t_x^{(k)}(R_g \circ R_g) = t_x^{(k)}(R_g \circ R_g)$. Let L_n^k denote the underlying set of \tilde{L}_n^k endowed with the following multiplication: $g \ast b = bg$ where $g \ast b$ denotes the product in $t\tilde{L}_n^k$ and bg denotes the product in $\mathbb{R}^n \times t\tilde{L}_n^k$. With the identification $\tilde{H}^k(\mathbb{R}^n) = \mathbb{R}^n \times \tilde{L}_n^k$, $\tilde{H}^k(\mathbb{R}^n)$ becomes a Lie group isomorphic to $\mathbb{R}^n \times t\tilde{L}_n^k$. Moreover, if $u = (x, g), u' = (x', g')$, then
\[
u u' = (x + x', g' g) = t_{x+x'}^{(k)}(R_g, e_k)
\[= (t_{x'}^{(k)}(R_g) \circ t_{x'}^{(k)}(R_g))(e_k)
\[= (t_{x'}^{(k)}(R_g))(u') = t_u(u').
\]
where t_u is the diffeomorphism defined in the opening paragraph of this section. In fact, t_u is no other than the left translation defined by u in
the Lie group $\overline{H}^k(\mathbb{R}^n)$. The Lie algebra structure on \overline{E}^k defined above is precisely the Lie algebra of the Lie group $\overline{H}^k(\mathbb{R}^n)$. The invariant form ω is simply the Maurer-Cartan form of the Lie group $\overline{H}^k(\mathbb{R}^n)$.

Part II

HIGHER ORDER CONNECTIONS

1. Linear connections of order k.

An infinitesimal connection Γ^k in the principal fibre bundle of semi-holonomic k-frames $\overline{H}^k(V_n)$ over V_n will be called a linear connection of order k of V_n. Let ω_k be its connection form. We will sometimes say that ω_k is a linear connection of order k of V_n. If D is the exterior covariant differentiation relative to ω_k, the tensorial 2-form $\Theta_k = D \bar{\dot{\omega}}_k$ (resp. $\Omega_k = D \omega_k$) will be called the torsion form (resp. curvature form) of Γ^k or ω_k. For $Y, Z \in T(\overline{H}^k(V_n))$, $g \in \overline{E}^k_n$, we have

$$\Theta_k(TR_g(Y), TR_g(Z)) = \rho(g^{-1})\Theta_k(Y, Z).$$

where ρ is the linear representation of \overline{E}^k_n on \overline{E}^{k-1}_n defined in Part I. If Y or Z is a vertical vector, then $\Theta_k(Y, Z) = 0$.

The linear representation ρ induces a representation of \overline{L}^k_n on \overline{E}^{k-1}_n: if $A \in \overline{L}^k_n$, $\xi \in \overline{E}^{k-1}_n$, we put

$$A \xi = \lim_{t \to 0} \frac{1}{t}(\rho(a_t)\xi - \xi)$$

where $a_t = \exp tA$ is the t-parameter group of transformations of \overline{L}^k_n generated by A. In particular, if ξ is vertical, i.e. $\xi \in \overline{E}^{k-1}_n$, we have

$$A \xi = -[T\pi_{k-1}^k(A), \xi].$$

Theorem II.1 (structure equations) Let ω_k be a linear connection of order k. Then

$$\Omega_k = d\omega_k + \omega_k \wedge \omega_k$$

$$\Theta_k = d\bar{\dot{\omega}}_k + \omega_k \wedge \bar{\dot{\omega}}_k + 3 \left[T\pi_{k-1}^k \omega_k, T\pi_{k-1}^k \omega_k \right].$$
The first structure equation is well known. Let us show the second structure equation:

\[\Theta_k(X, Y) = d \vartheta_k(X, Y) + \omega_k(X) \vartheta_k(Y) - \omega_k(Y) \vartheta_k(X) \]

\[+ 3 \left[T \pi^{k}_{k-1} \circ \omega_k(X), T \pi^{k}_{k-1} \circ \omega_k(Y) \right] \]

for all vectors \(X \in T_u(\overline{H}^k(V_n)) \) and \(Y \in T_u(\overline{H}^k(V_n)) \). It is sufficient to verify the equality in the following three special cases:

i) \(X \) and \(Y \) are horizontal. In this case, \(\omega_k(X) = 0 \), \(\omega_k(Y) = 0 \) and the equation reduces to the definition of \(\Theta_k \).

ii) \(X \) and \(Y \) are vertical. Let \(X = A^* \) and \(Y = B^* \), where \(A^* \) and \(B^* \) are the fundamental vector fields on \(\overline{H}^k(V_n) \) corresponding to \(A = \omega_k(X) \) and \(B = \omega_k(Y) \) respectively. We have

\[\Theta_k(X, Y) = 0; \]

\[d \vartheta_k(X, Y) = X \vartheta_k(B^*) - Y \vartheta_k(A^*) - \vartheta_k(\left[A^*, B^* \right]_u) \]

\[= -\left[T \pi^{k}_{k-1}(A), T \pi^{k}_{k-1}(B) \right] ; \]

\[\omega_k(X) \vartheta_k(Y) = A \vartheta_k(B^*) \]

\[= -\left[T \pi^{k}_{k-1}(A), T \pi^{k}_{k-1}(B) \right] ; \]

\[\omega_k(Y) \vartheta_k(X) = -\left[T \pi^{k}_{k-1}(B), T \pi^{k}_{k-1}(A) \right] ; \]

and

\[\left[T \pi^{k}_{k-1} \circ \omega_k(X), T \pi^{k}_{k-1} \circ \omega_k(Y) \right] = \left[T \pi^{k}_{k-1}(A), T \pi^{k}_{k-1}(B) \right] . \]

The equality holds.

iii) \(X \) is vertical and \(Y \) is horizontal. Let \(X = A^*_u \) with \(A = \omega_k(X) \in \overline{L}^k_n \). We can extend \(Y \) to an invariant horizontal vector field \(\tilde{Y} \) on \(\overline{H}^k(V_n) \). We have then

\[d \vartheta_k(X, Y) = X \vartheta_k(\tilde{Y}) - Y \vartheta_k(A^*) - \vartheta_k(\left[A^*, \tilde{Y} \right]_u) . \]

Since \(\vartheta_k(A^*) \) is constant, \(Y \vartheta_k(A^*) = 0 \). As \(\tilde{Y} \) is an invariant horizontal vector field, \(\left[A^*, \tilde{Y} \right] = 0 \). Let \(a_t = \exp tA \) be the \(t \)-parameter group of transformations of \(\overline{L}^k_n \) generated by \(A \in \overline{L}^k_n \).

\[d \vartheta_k(X, Y) = A^*_u \vartheta_k(\tilde{Y}) \]

\[= \lim_{t \to 0} \frac{1}{t} (\rho(a_t^{-1}) \vartheta_k(\tilde{Y}) - \vartheta_k(\tilde{Y})) \]
Now, $\omega_k(Y) = 0$, $\Theta_k(X, Y) = 0$ and $\omega_k(X) \Theta_k(Y) = \Lambda \Theta_k(Y)$. The equality therefore holds.

The projection π^k_m of $\overline{H}^k(V_n)$ onto $\overline{H}^m(V_n)$ being compatible with the natural surjection of \overline{L}^k_n onto \overline{L}^m_n ($m < k$), any linear connection ω_k (of order k) induces a linear connection ω_m of order m, given by

$$\pi^k_m \ast \omega_m = T \pi^k_m \circ \omega_k.$$

Proposition II.2 Any linear connection ω_k of order k induces canonically a linear connection ω_m of order $m < k$ given by

$$\pi^k_m \ast \omega_m = T \pi^k_m \circ \omega_k.$$

We have the relations:

$$\pi^k_m \ast \Omega_m = T \pi^k_m \circ \Omega_k,$$

$$\pi^k_m \ast \Theta_m = T \pi^{k-1}_{m-1} \circ \Theta_k.$$

Let us verify only the last formula. We know that

$$\pi^k_m \ast \theta_m = \theta_m \circ T \pi^k_m = T \pi^{k-1}_{m-1} \circ \theta_k.$$

As a consequence, $\pi^k_m \ast d \theta_m = T \pi^{k-1}_{m-1} \circ d \theta_k$. From the second structure equation, we obtain

$$\pi^k_m \ast \Theta_m = \pi^k_m \ast d \theta_m + \pi^k_m \ast \omega_m \wedge \pi^k_m \ast \theta_m$$

$$= T \pi^{k-1}_{m-1} \circ d \theta_k + T \pi^k_m \circ \omega_k \wedge T \pi^{k-1}_{m-1} \circ \theta_k$$

$$+ 3 \left[T \pi^m_{m-1} \circ \pi^k_m \circ \omega_m, T \pi^m_{m-1} \circ \pi^k_m \ast \omega_m \right]$$

$$= T \pi^{k-1}_{m-1} \circ d \theta_k + T \pi^k_m \circ \omega_k \wedge T \pi^{k-1}_{m-1} \circ \theta_k$$

$$+ 3 \left[T \pi^k_{m-1} \circ \omega_k, T \pi^k_{m-1} \circ \omega_k \right]$$

$$= T \pi^{k-1}_{m-1} \circ \Theta_k.$$

Corollary II.3 If the torsion form (resp. the curvature form) of ω_k vanishes identically on $T(\overline{H}^k(V_n))$, the induced connection ω_m ($m < k$) is without torsion (resp. without curvature).

Let ω_k be a linear connection of V_n. We say that ω_k is quasi- ho-
loumonic if the connection form ω_k, restricted to $T(H^k(V_n))$, defines a connection in the principal fibre bundle $H^k(V_n)$ over V_n. If ω_k is quasi-holonomic, all induced connections $\omega_m (m < k)$ are quasi-holonomic. The canonical connection in $\mathcal{H}^k(R^n) = R^n \times L_n^k$ is quasi-holonomic.

2. Second order linear connections.

Let u be an element of $\mathcal{H}^2(V_n)$. Consider a coordinate neighbourhood U of $a_0 = \pi_0^2(u)$ with a system of local coordinates $\{x^1, x^2, \ldots, x^n\}$. The 2-frame u can be represented by a set of local coordinates (x^i, x^{ij}, x^{ijk}) with $\det(x^i) \neq 0$. Let U' be another coordinate neighbourhood of a_0 with a system of local coordinates $\{y^1, y^2, \ldots, y^n\}$. The same u is represented by (y^i, y^{ij}, y^{ijk}). The changes of local coordinates are given by

$$y^i = y^i(x)$$

$$y^j_i = \sum \left(\frac{\partial y^i}{\partial x^m} \right) y^m_j$$

$$y^{ijk} = \sum \left(\frac{\partial^2 y^m}{\partial x^i \partial x^k} \right) x^m_i + \sum \left(\frac{\partial y^p}{\partial x^i} \right) \left(\frac{\partial y^q}{\partial x^k} \right) x^i_p q.$$

An element $g \in L_2$ can be represented by $u = (a^i_j, a^{ijk})$ with $\det(a^i_j) \neq 0$. In terms of these coordinates, the multiplication in L_2 is given by

$$(a^i_j, a^{ijk}) \cdot (b^i_j, b^{ijk}) = (\Sigma a^i_m b^m_j + \Sigma a^i_j b^{jk} + \Sigma a^i_p q b^p b^q, a^{ijk} + \Sigma a^i_p q a^p a^q).$$

The action of L_2 on $\mathcal{H}^2(V_n)$ is given by

$$(x^i, x^{ij}, x^{ijk}) \cdot (a^i_j, a^{ijk}) = (x^i, \Sigma x^m_i a^m_j, \Sigma x^i a^{jk} + \Sigma x^i_p q a^p a^q).$$

Let α be the automorphism of L_2 defined by $\alpha(a^i_j, a^{ijk}) = (a^i_j, a^{ijk})$. It is evident that α leaves fixed every element in L_2. Moreover, $\alpha^2 = 1$.

Proposition 2.1 There exists an involutive automorphism α of L_2 such that L_2 is the subgroup of all the fixed points of α.

Theorem 2.2 The homogeneous space L_2^2 / L_2 is weakly reductive: there exists a vector subspace \mathfrak{m} of L_2^2 such that

$$L_2^2 = L_2^2 \oplus \mathfrak{m}$$

(identity sum),
LEMMA II.6 Let \(\alpha \) be an involutive automorphism of a Lie group \(\bar{G} \). The set of fixed points of \(\alpha \) forms a Lie subgroup \(G \) of \(\bar{G} \). Moreover, the homogeneous space \(\bar{G}/G \) is weakly reductive: there exists a vector subspace \(\mathfrak{M} \) of the Lie algebra \(\mathfrak{g} \) of \(\bar{G} \) such that
\[
\mathfrak{g} = \mathfrak{g} \oplus \mathfrak{M} \quad \text{(direct sum)}
\]
where \(\mathfrak{g} \) is the Lie algebra of \(G \). The vector space \(\mathfrak{M} \) can be given by
\[
\mathfrak{M} = \{ X \in \mathfrak{g} : T \alpha(X) = -X \}.
\]

Let \(\mathfrak{M} \) be the vector subspace of \(\mathfrak{Q}_n^2 \) defined by the above lemma. If \(X \in \mathfrak{M}, \ Y \in \mathfrak{M}, \ T \alpha(\ [X, Y]) = [T \alpha(X), T \alpha(Y)] = [-X, -Y] = [X, Y] \), showing that \([X, Y] \in \mathfrak{Q}_n^2 \), i.e. \([\mathfrak{M}, \mathfrak{M}] \subset \mathfrak{Q}_n^2 \). We have therefore the following result.

COROLLARY II.7 The homogeneous space \(\mathfrak{L}_n^2/\mathfrak{L}_n^2 \) is a symmetric space.

For the rest of this section, we fix once for all a decomposition \(\mathfrak{Q}_n^2 = \mathfrak{Q}_n^2 + \mathfrak{M} \), where \(\mathfrak{M} \) is the vector subspace defined in the theorem II.5. We denote by \(i \) the canonical injection of \(\mathfrak{H}^2(\mathfrak{V}_n) \) into \(\mathfrak{H}^2(\mathfrak{V}_n) \).

Let \(\bar{\omega}_2 \) be a connection form in \(\mathfrak{H}^2(\mathfrak{V}_n) \). We can write \(i^*\bar{\omega}_2 = \omega_2 + t \), where \(\omega_2 \) (resp. \(t \)) is the \(\mathfrak{Q}_n^2 \)-component (resp. \(\mathfrak{M} \)-component) of \(i^*\bar{\omega}_2 \). Since \(\text{ad}(\mathfrak{L}_n^2)\mathfrak{M} \subset \mathfrak{M} \), \(\omega_2 \) defines a connection in the principal fibre bundle \(\mathfrak{H}^2(\mathfrak{V}_n) \) over \(\mathfrak{V}_n \) and \(t \) is a \(\mathfrak{M} \)-valued tensorial 1-form on \(\mathfrak{H}^2(\mathfrak{V}_n) \), called the quasi-holonomic form of \(\bar{\omega}_2 \). Inversely, the couple \((\omega_2, t) \) determines a connection \(\bar{\omega}_2 \) in \(\mathfrak{H}^2(\mathfrak{V}_n) \). In fact, if \(\xi \in T_u(\mathfrak{H}^2(\mathfrak{V}_n)) \) with \(u \in \mathfrak{H}^2(\mathfrak{V}_n) \), we can write \(\xi = \xi' + \xi'' \), where \(\xi' \) is a horizontal vector with respect to the connection \(\omega_2 \) and \(\xi'' \) is a vertical vector. Let us put \(\bar{\omega}_2(\xi) = t(\xi') + u^{-1}(\xi'') \). Now, if \(\bar{\xi} \in T_v(\mathfrak{H}^2(\mathfrak{V}_n)) \) where \(v \notin \mathfrak{H}^2(\mathfrak{V}_n) \), there exist \(u \in \mathfrak{H}^2(\mathfrak{V}_n) \) and \(g \in \mathfrak{L}_n^2 \) such that \(v = ug \) and \(\bar{\xi} = TR_g(\xi) \) for
some $\xi \in T_u(\mathbb{H}^2(V_n))$. It is easy to check that $\bar{w}_2(\xi) = \text{ad}(g^{-1})\bar{w}_2(\xi)$ does not depend on the choice of u and g. The mapping $\xi \mapsto \bar{w}_2(\xi)$ gives the required connection form on $\mathbb{H}^2(V_n)$. Besides, $i^*\bar{w}_2 = \omega_2 + t$. We have thus established the following result.

PROPOSITION II.8 There is a one-to-one correspondence between the set of all second order connections \bar{w}_2 of V_n and the set of all couples (ω_2, t), where ω_2 is a connection form in $\mathbb{H}^2(V_n)$ and t is a \mathbb{R}-valued tensorial 1-form on $\mathbb{H}^2(V_n)$; the correspondence is given by

$$i^*\bar{w}_2 = \omega_2 + t.$$

COROLLARY II.9 A linear connection \bar{w}_2 is quasi-holonomic if and only if its associated quasi-holonomic form t vanishes identically on $\mathbb{H}^2(V_n)$.

Let ϕ be a tensorial form on $\mathbb{H}^2(V_n)$. From the structure equation

$$\bar{D}\phi = d\phi + \bar{w}_2 \wedge \phi$$

where $\bar{D}\phi$ is the exterior covariant derivative of ϕ with respect to \bar{w}_2, we deduce that

$$i^*(\bar{D}\phi) = i^*d\phi + i^*\bar{w}_2 \wedge i^*\phi$$

$$= d(i^*\phi) + i^*\bar{w}_2 \wedge i^*\phi$$

$$= d(i^*\phi) + \omega_2 \wedge i^*\phi + t \wedge i^*\phi.$$

The induced form $i^*\phi$ is a tensorial form on $\mathbb{H}^2(V_n)$. If D is the exterior covariant differentiation with respect to ω_2, we have

$$D(i^*\phi) = d(i^*\phi) + \omega_2 \wedge i^*\phi.$$

Thus

$$i^*(\bar{D}\phi) = D(i^*\phi) + t \wedge i^*\phi.$$

Let $\bar{\Omega}_2$ (resp. Ω_2) be the curvature form of \bar{w}_2 (resp. ω_2). From the structure equation

$$\bar{\Omega}_2 = d\bar{w}_2 + [\bar{w}_2, \bar{w}_2]$$

we have

$$i^*\bar{\Omega}_2 = i^*(d\bar{w}_2) + i^*[\bar{w}_2, \bar{w}_2]$$

$$= d(i^*\bar{w}_2) + [i^*\bar{w}_2, i^*\bar{w}_2]$$

856
The form $D t + [t, t]$ is a tensorial 2-form on $H^2(V_n)$. We may call it the quasi-holonomic curvature of ω_2.

From the structure equation

$$\bar{\Theta}_2 = d\Theta_2 + \omega_2 \wedge \Theta_2 + 3 \left[T\pi^2_{1 o} \omega_2, T\pi^2_{1 o} \omega_2 \right]$$

we have

$$i^* \bar{\Theta}_2 = i^* d\Theta_2 + i^* \omega_2 \wedge i^* \Theta_2 + 3 \left[T\pi^2_{1 o} i^* \omega_2, T\pi^2_{1 o} i^* \omega_2 \right]$$

$$= \Theta_2 + t \wedge i^* \Theta_2 + 3 \left[T\pi^2_{1 o} (\omega_2 + t), T\pi^2_{1 o} (\omega_2 + t) \right].$$

The form

$$T = t \wedge i^* \Theta_2 + 3 \left[T\pi^2_{1 o} (\omega_2 + t), T\pi^2_{1 o} (\omega_2 + t) \right]$$

$$- 3 \left[T\pi^2_{1 o} \omega_2, T\pi^2_{1 o} \omega_2 \right]$$

is a tensorial 2-form on $H^2(V_n)$, which may be called the quasi-holonomic torsion of ω_2.

If ω_2 is quasi-holonomic, its associated quasi-holonomic form t vanishes identically on $H^2(V_n)$. Therefore, the quasi-holonomic curvature and the quasi-holonomic torsion of ω_2 are zero.

3. E-connections.

Let u be an arbitrary element of L^1_{n}. There exists a unique automorphism f of the vector space \mathbb{R}^n such that $u = i^1_0 f$. The induced map $f^{(k-1)}: \bar{H}^{k-1}(\mathbb{R}^n) \to \bar{H}^{k-1}(\mathbb{R}^n)$ is a $(k-1)$-admissible isomorphism, and $i^1_{e_{k-1}} f^{(k-1)} \in L^k$. The mapping $u \mapsto \iota^k(u) = i^1_{e_{k-1}} f^{(k-1)}$ gives a canonical identification of L^1_{n} with a subgroup of L^k_{n} (hence of \bar{L}^k_{n}). For $m < k$, $\iota^m = \pi^k_m \circ \iota^k$.

An invariant section of the fibration $\bar{H}^{k+1}(V_n) \to H^{k}(V_n)$, i.e. a lift ϕ_{k+1} of $H^{k}(V_n)$ into $\bar{H}^{k+1}(V_n)$ compatible with the canonical homomorphism $\iota^{k+1} : L^1_{n} \to \bar{L}^{k+1}_{n}$, will be called an E-connection of order k of V_n. It is given by a reduction of the structure group of $\bar{H}^{k+1}(V_n)$ from \bar{L}^{k+1}_{n} to L^1_{n}. There is a one-to-one correspondence between the set of all E-connections (of order k) of V_n and the set of all semi-holonomic connections (of order k) defined in the sense of Ehresmann on the principal
We say that an E-connection \(\phi_{k+1} \) is symmetrical or holonomic (resp. quasi-holonomic) if
\[
\phi_{k+1}(H^1(V_n)) \subseteq H^{k+1}(V_n) \quad \text{(resp. } \phi_{k+1}(H^1(V_n)) \subseteq \tilde{H}^{k+1}(V_n))\).
\]
If \(\phi_{k+1} \) is symmetrical (resp. quasi-holonomic), all projections \(\pi_{m+1} \circ \phi_{k+1} \) of \(\phi_{k+1} \) are symmetrical.

Consider an open set \(U \) of \(V_n \) with a system of local coordinates \(\{x^1, x^2, \ldots, x^n\} \). In terms of the induced local coordinates, a lift \(\phi_{k+1} \) of \(H^1(V_n) \) into \(H^{k+1}(V_n) \) can be expressed by
\[
(x^i, x^j) \rightarrow (x^i, \ldots, x^i_{l_1l_2 \ldots l_{k+1}}).
\]
If \(\phi_{k+1} \) is invariant, the functions \(x^i_{l_1l_2 \ldots l_{k+1}} \) can be written in the form
\[
x^i_{l_1l_2} = -\sum \Gamma^i_{m_1m_2} x^m_1 x^m_2,
\]n
\[
x^i_{l_1l_2l_3} = -\sum \Gamma^i_{m_1m_2m_3} x^m_1 x^m_2 x^m_3,
\]
\[
\vdots
\]
\[
x^i_{l_1l_2 \ldots l_{k+1}} = -\sum \Gamma^i_{m_1m_2 \ldots m_{k+1}} x^m_1 x^m_2 \ldots x^m_{k+1}
\]
where \(\Gamma^i_{m_1m_2 \ldots m_{k+1}} \) are differentiable functions defined on \(U \). These are the Christoffel symbols of the \(\xi \)-connection \(\phi_{k+1} \). They are not entirely arbitrary; they have to satisfy certain conditions when we change the local coordinates system. It is clear that \(\phi_{k+1} \) is symmetrical if and only if all the Christoffel symbols are symmetrical with respect to their lower indices.

Let us consider some particular cases:

\textbf{case (i): } \(k = 1 \).

Let \(\Gamma^i_{rs} \) (resp. \(\tilde{\Gamma}^i_{rs} \)) be the Christoffel symbols of a first order \(\xi \)-connection \(\phi_2 \) relative to a coordinate neighbourhood \(U \) (resp. \(\tilde{U} \)) with a local coordinates system \(\{x^1, x^2, \ldots, x^n\} \) (resp. \(\{\tilde{x}^1, \tilde{x}^2, \ldots, \tilde{x}^n\} \)). If \(U \cap \tilde{U} \neq \emptyset \), we obtain easily the classical formula for the Christoffel symbols of a linear connection.
The quantities Γ^i_{jk} define then a linear connection of V_n. On the other hand, if $u \in H^1(V_n)$, the lift $O_2(u)$ of u determines a horizontal n-plane $Q\phi_2(u)$ of $H^1(V_n)$ at u. Since ϕ_2 is compatible with $\iota^2 : l^1_n \rightarrow l^2_n$, it is easy to check that the distribution $u \rightarrow Q\phi_2(u)$ defines an infinitesimal connection on $H^1(V_n)$, thus a linear connection ω_1 of V_n. The quantities Γ^i_{jk} are simply the classical Christoffel symbols of the associated linear connection ω_1. In fact, if $X_i = \sum x^i_j \frac{\partial}{\partial x^j}$ $(1 \leq i \leq n)$ is a basis for $T_x(V_n)$, with $x \in U$, the horizontal lift of X_i at $u = (x^i, x^j) \in H^1(V_n)$ with respect to ω_1, is given by

$$X^*_i = \sum x^i_j \frac{\partial}{\partial x^j} u + \sum x^i_j \frac{\partial}{\partial x^i} u$$

where $x^i_j = -\sum \Gamma^i_{rs} x^r x^s$. Let $y^i_j = (\frac{\partial}{\partial x^j}) e_1$ $(1 \leq i, j \leq n)$ be a basis for Ω^1_n. The components of $\omega_1 = \sum \omega^i_j r^i_j$ can be expressed by

$$\omega^i_j = \sum y^i_k \left(dx^k + \sum c^k_{mp} x^p dx^m \right)$$

where (y^i_j) is the inverse matrix of (x^i_j) and c^k_{mp} are the classical Christoffel symbols of the linear connection ω_1. Consequently, $\omega^i_j (X^*_k) = 0$ for all indices $1 \leq i, j, k \leq n$. It follows that

$$x^i_j = -\sum \Gamma^i_{rs} x^r x^s = -\sum c^i_{rs} x^r x^s.$$

Since $det(x^i_j) \neq 0$, we have $\Gamma^i_{jk} = c^i_{jk}$.

Proposition II.10 [4a] (i) There is a one-to-one correspondence between the set of first order linear connections of V_n and the set of invariant sections of $H^1(V_n)$ into $H^2(V_n)$.

(ii) Two linear connections of V_n have the same torsion if and only if the images of $H^1(V_n)$ by the corresponding invariant sections are contained in a principal subbundle of $H^2(V_n)$ having the structure group L^2_n.

It remains to prove the second part of the proposition. Let $\phi_2, \bar{\phi}_2$
be two invariant sections of $H^1(V_n)$ into $\widetilde{H}^2(V_n)$. In terms of local coordinates, these E-connections are given by
\[
(x^i, x_j^i) \rightarrow \phi_2(x^i, x_j^i) = (x^i, x_j^i, -\Sigma_{rs}^{i} x^r_{j k}^s),
\]
\[
(x^i, x_j^i) \rightarrow \widetilde{\phi}_2(x^i, x_j^i) = (x^i, x_j^i, -\Sigma_{rs}^{i} x^r_{j k}^s).
\]
where Γ_{jk}^{i}, $\widetilde{\Gamma}_{jk}^{i}$ are the corresponding Christoffel symbols. As $\phi_2(x^i, x_j^i)$ and $\widetilde{\phi}_2(x^i, x_j^i)$ are on the same fibre of $\widetilde{H}^2(V_n)$, there exists an element $(\delta_j^{i}, g_{j k}) \in \tilde{M}^2_n = \text{Ker}(\tilde{L}_n^2 - \tilde{L}_n^1)$ such that
\[
(x^i, x_j^i, -\Sigma_{rs}^{i} x^r_{j k}^s) = (x^i, x_j^i, -\Sigma_{rs}^{i} x^r_{j k}^s)(\delta_j^{i}, g_{j k}).
\]
It follows that
\[
\Sigma_{rs}^{i} x^r_{j k}^s = \Sigma_{rs}^{i} x^r_{j k}^s - \Sigma_{m}^{i} x^m_{j k} g_{j k}.
\]
Consequently, we have
\[
(*) \quad \Sigma_{rs}^{i} (\Gamma_{rs}^{i} - \Gamma_{sr}^{i}) x^r_{j k} = \Sigma_{rs}^{i} (\Gamma_{rs}^{i} - \Gamma_{sr}^{i}) x^r_{j k} - \Sigma_{m}^{i} (g_{jk}^m - g_{jk}^m).
\]
If the two linear connections have the same torsion, that is if $\Gamma_{rs}^{i} - \Gamma_{sr}^{i} = \Gamma_{rs}^{i} - \Gamma_{sr}^{i}$, we have $\Sigma_{m}^{i} (g_{jk}^m - g_{jk}^m) = 0$. Since $\text{det}(x^i_m) \neq 0$, we get $g_{jk}^m = g_{jk}^m$, which shows that $(\delta_j^{i}, g_{j k}) \in M^2_n = \tilde{M}^2_n \cap L^2_n$. Hence the condition is necessary.

If ϕ_2 and $\widetilde{\phi}_2$ map $H^1(V_n)$ into the same principal subbundle of $\widetilde{H}^2(V_n)$ having the structure group L^2_n, we still have the formula $(*)$ with $g_{jk}^m = g_{jk}^m$. Consequently,
\[
\Sigma_{rs}^{i} (\Gamma_{rs}^{i} - \Gamma_{sr}^{i}) x^r_{j k} = \Sigma_{rs}^{i} (\Gamma_{rs}^{i} - \Gamma_{sr}^{i}) x^r_{j k}.
\]
Since $\text{det}(x^i_j) \neq 0$, we get
\[
\Gamma_{rs}^{i} - \Gamma_{sr}^{i} = \Gamma_{rs}^{i} - \Gamma_{sr}^{i}.
\]
Hence the connections have the same torsion, proving that the condition is sufficient.

Case (ii): $k = 2$

An element of L^3_n can be represented by a set of coordinates $(a^i_j, a^i_{jk}, a^i_{jkm})$ with $\text{det}(a^i_j) \neq 0$. The multiplication is given by
\[
(a^i_j, a^i_{jk}, a^i_{jkm})(b^i_j, b^i_{jk}, b^i_{jkm}) = (\delta_{r}^i b^r_{j}, \Sigma_{rs}^{i} b^r_{j} b^s_{j k} + \delta_{r}^i b^r_{j k}).
\]
If \(u = (x^i, x^j, x^i_{jk}, x^i_{jkm}) \in \mathcal{H}^3(V_n) \), the action of \(L_3^n \) on \(\mathcal{H}^3(V_n) \) can be expressed by

\[
\Sigma (a^i_{rst}, b^s_{jk}, a^i_{jkm}) + a^i_{rs} b^s_{jk} + a^i_{jkm} + a^i_{jkm} b^s_{jk} \).
\]

Consider an \(E \)-connection \(\phi_3 \) of order 2. In terms of local coordinates, \(cP \) is given by

\[
\sum (x^i, x^j, x^i_{jk}, x^i_{jkm})(a^i_{jk}, a^i_{jkm}) = (x^i, \sum x^i a^i_{jk}, \Sigma (x^i a^i_{jk} + x^i a^i_{jkm})),
\]

where \(\Gamma^i_{rs}, \Gamma^i_{rst} \) are the Christoffel symbols. If \(\bar{\Gamma}^i_{rs}, \bar{\Gamma}^i_{rst} \) are the Christoffel symbols of \(\phi_3 \) in an other local coordinates system, we have

\[
\bar{\Gamma}^i_{rst} = \sum (\frac{\partial \bar{x}^r}{\partial x^j})(\frac{\partial \bar{x}^s}{\partial x^k})(\frac{\partial \bar{x}^t}{\partial x^a}) + \sum (\frac{\partial^2 \bar{x}^r}{\partial x^j \partial x^k})(\frac{\partial x^a}{\partial x^r}).
\]

By direct computations, we have the following result:

Proposition II.11 Let \(\Gamma^i_{jk}, \Gamma^i_{jkm} \) be the Christoffel symbols of a second order \(E \)-connection of \(V_n \). If the induced first order \(E \)-connection is symmetrical, then the following quantities

\[
A^i_{jkm} = \Gamma^i_{jkm} - \Gamma^i_{kjm},
\]

\[
B^i_{jkm} = \Gamma^i_{jkm} - \Gamma^i_{mkj},
\]

\[
C^i_{jkm} = \Gamma^i_{jkm} - \Gamma^i_{jmk}
\]

are respectively the components of a \((1,3) \)-tensor on \(V_n \). The given \(E \)-connection is symmetrical if and only if these three tensors are zero.

4. Linear connections and \(E \)-connections.

The Lie group \(L_{n+1}^k \) (resp. \(L_{n+1}^k \)) acts linearly on \(E^k \) (resp. \(E^k = T_e \mathcal{H}^k(\mathbb{R}^n) \)) on the left. We denote by \(\bar{S}^k T \) (resp. \(S^k T \)) the associa-
ted vector bundle of $\widetilde{H}^{k+1}(V_n)$ (resp. $H^{k+1}(V_n)$) with standard fibre \widetilde{E}^k (resp. E^k) and structure group \widetilde{L}^{k+1} (resp. L_n^{k+1}). For $k = 0$, $S^0T = T(V_n)$.

PROPOSITION 11.12 The vector bundle \widetilde{S}^kT (resp. S^kT) is canonically isomorphic to the vector bundle $T(\widetilde{H}^k(V_n))/\widetilde{L}^k_n$ (resp. $T(H^k(V_n))/L^k_n$).

An element $u \in \widetilde{H}^{k+1}(V_n)$ determines a linear isomorphism \tilde{u} of \widetilde{E}^k onto $T_{u'}(\widetilde{H}^k(V_n))$ with $u' = \pi^{k+1}_0(u)$. On the other hand, u can be considered as a linear isomorphism of \widetilde{E}^k onto the fibre $(\widetilde{S}^kT)_x$ over x, where x is the projection of u on V_n. We have then a linear isomorphism \tilde{u}_o^{-1} of $(\widetilde{S}^kT)_x$ onto $T_{u'}(\widetilde{H}^k(V_n))$. If v is another element of $\widetilde{H}^{k+1}(V_n)$ with projection $x = \pi^{k+1}_0(v)$, we can write $v = u g$ for a unique $g \in \widetilde{E}^{k+1}$. Similarly, we have a linear isomorphism $\tilde{v}_o^{-1} : (\widetilde{S}^kT)_x \rightarrow T_{v'}(\widetilde{H}^k(V_n))$, where $v' = \pi^{k+1}_0(v)$. Now, $v = u_o \rho(g)$ and $\tilde{v} = T_{g} \tilde{u}_o \rho(g)$ with $g' = \pi^{k+1}_0(g) \in \widetilde{E}^k$. Consequently, $\tilde{v}_o^{-1} = T_{g'} \tilde{u}_o u^{-1}$. Since $\widetilde{H}^{k+1}(V_n) \rightarrow \widetilde{H}^k(V_n)$ is surjective, we get an isomorphism of \widetilde{S}^kT onto $T(\widetilde{H}^k(V_n))/\widetilde{L}^k_n$. Similarly, one establishes an isomorphism of S^kT onto $T(H^k(V_n))/L^k_n$.

P. Libermann showed that $T(\widetilde{H}^k(V_n))/\widetilde{L}^k_n$ (resp. $T(H^k(V_n))/L^k_n$) is canonically isomorphic to \tilde{j}^kT (resp. j^kT), the k-th semi-holonomic (resp. holonomic) prolongation of the vector bundle $T(V_n)$. Thus, we have an isomorphism of \widetilde{S}^kT (resp. S^kT) onto \tilde{j}^kT (resp. j^kT).

$H^{k+1}(V_n)$ being a principal fibre subbundle of $\widetilde{H}^{k+1}(V_n)$ and the action of L_n^{k+1} on E^k being the restriction of that of \widetilde{L}^{k+1} on \widetilde{E}^k, the vector bundle S^kT can be considered as a vector subbundle of \widetilde{S}^kT.

The projection π^{k+1}_m of $\widetilde{H}^{k+1}(V_n)$ onto $\widetilde{H}^{m+1}(V_n)$ induces a surjection p_m^k of \widetilde{S}^kT onto \widetilde{S}^mT. Moreover, the restriction of p_m^k to each fibre of \widetilde{S}^kT is linear. Similarly, we have a projection of S^kT onto S^mT for $m < k$.

An \tilde{E}-connection $\varphi_{k+1} : H^1(V_n) \rightarrow \widetilde{H}^{k+1}(V_n)$ induces a splitting of the following exact sequence of vector bundles

$$0 \rightarrow N^k \rightarrow \widetilde{S}^kT \rightarrow T(V_n) \rightarrow 0$$

where N^k is the kernel of the projection $\widetilde{S}^kT \rightarrow T(V_n)$. More precisely, we have the following result:
THEOREM II.13 There exists a one-to-one correspondence between the set of E-connections of order k of \(V_n\) and the set of splittings of the exact sequence of vector bundles over \(V_n\):

\[
0 \rightarrow \overline{N}^k \rightarrow \overline{S}^k T \rightarrow T(V_n) \rightarrow 0.
\]

Let us first prove two lemmas:

LEMMA II.14 Let \(\overline{E}^k = R^n \oplus \overline{O}^k_n\) be the canonical decomposition of \(\overline{E}^k\) defined by the canonical connection in \(\overline{H}^k(R^n) = R^n \times \overline{L}^k_n\). For every other decomposition of \(\overline{E}^k\) of the form \(E^k = Q^k \oplus \overline{Q}^k_n\), there exists a unique \(g \in \overline{M}^{k+1} = \text{Ker } (T_n^{k+1} \rightarrow L_n^1)\) such that \(\rho(g)(R^n) = Q^k\).

We prove the lemma by induction on \(k\). For \(k = 1\), we have the canonical decomposition \(E^1 = R^n \oplus Q^1_n\). Let \(E^1 = Q^1 \oplus Q^1_n\) be another decomposition of \(E^1\). Consider a local section \(\sigma_1\) of \(H^1(R^n) \rightarrow R^n\) such that \(\sigma_1(0) = e_1\) and \(T \sigma_1(R^n) = Q^1\). Let \(f\) be the admissible local isomorphism of \(H^1(R^n)\) into \(H^1(R^n)\) defined by the condition: \(f \circ \eta_1 = \sigma_1\), where \(\eta_1\) is the «zero section» of \(H^1(R^n) = R^n \times L_n^1 \rightarrow R^n\). The 1-jet \(j^1_{e_1} f = g\) defines an element \(g \in \overline{M}^2_n = \text{Ker } (T_n^2 \rightarrow L_n^1)\) satisfying the property: \(\rho(g)(R^n) = Q^1\). Uniqueness follows from the fact that the neutral element is the only element of \(\overline{M}^2_n\) leaving stable the two components of \(E^1 = R^n \oplus Q^1_n\).

Let us assume that the lemma is proved for \(m \leq k - 1\). If \(\overline{E}^k = Q^k \oplus \overline{Q}^k_n\) is a decomposition of \(\overline{E}^k\), we may consider a local section \(\sigma_k\) of \(\overline{H}^k(R^n) \rightarrow R^n\) satisfying the conditions: \(\sigma_k(0) = e_k\) and \(T \sigma_k(T_0(R^n)) = Q^k\). Now,

\[
\overline{E}^{k-1} = T \pi_n^{k-1}(\overline{E}^k) = T \pi_n^{k-1}(Q^k) \oplus T \pi_n^{k-1}(\overline{Q}^k_n) = T \pi_n^{k-1}(Q^k) \oplus \overline{O}^{k-1}_n.
\]

From the induction hypothesis, there is a unique \(g' \in \overline{M}^k = \text{Ker } (T_n^k \rightarrow L_n^1)\) such that \(\rho(g')(R^n) = T \pi_n^{k-1}(Q^k)\). Let \(h\) be the admissible local isomorphism of \(\overline{H}^k(R^n)\) into \(\overline{H}^k(R^n)\) defined by the condition: \(h \circ \eta_k = R_{g'} \circ \sigma_k\), where \(\eta_k\) is the «zero section» of \(\overline{H}^k(R^n) = R^n \times \overline{L}^k_n \rightarrow R^n\). The 1-jet \(j^1_{e_k} h\) defines an element \(g\) of \(\overline{M}^{k+1} = \text{Ker } (T_n^{k+1} \rightarrow L_n^1)\) such that \(\rho(g)(R^n) = Q^k\). Suppose that there is another \(\tilde{g} \in \overline{M}^{k+1}\) satisfying the condition: \(\rho(\tilde{g})(R^n) = Q^k\). We have then \(\rho(\pi_n^{k+1}(\tilde{g}))(R^n) = T \pi_n^{k-1}(Q^k)\). Consequently, \(g' = \pi_n^{k+1}(\tilde{g})\). We can write \(\tilde{g} = g m_0\) where \(m_0\) is an ele-
ment of $\text{Ker}(\overline{L}_n^{k+1} \rightarrow \overline{L}_n^k)$. Since the neutral element is the only element of $\text{Ker}(\overline{L}_n^{k+1} \rightarrow \overline{L}_n^k)$ leaving stable the two components of $\overline{E}^k = \mathbb{R}^n \oplus \overline{L}_n^k$, we conclude that $\overline{g} = g$ proving the uniqueness of g.

Lemma II.15 The Lie group $\iota^{k+1}(L^1_n)$ is the largest subgroup of \overline{L}_n^{k+1} which leaves invariant the two direct summands of $\overline{E}^k = \mathbb{R}^n \oplus \overline{L}_n^k$.

It is easy to check that $\iota^{k+1}(L^1_n)$ leaves invariant the two direct summands of $\overline{E}^k = \mathbb{R}^n \oplus \overline{L}_n^k$. Now, consider an element $g \in \overline{L}_n^{k+1}$ such that $\rho(g)(\mathbb{R}^n) = \mathbb{R}^n$. Let $g_0 = \iota^{k+1}(g)$; the action of $\iota^{k+1}(g_0), g^{-1}$ on $\mathbb{R}^n \subset \overline{E}^k$ is trivial. Consequently, we have $g = \iota^{k+1}(g_0) \in \iota^{k+1}(L^1_n)$ in virtue of the preceding lemma.

Let us go back to the proof of the theorem. We have seen that there is a mapping F of the set of \mathcal{E}-connections of order k of V_n into the set of splittings of the exact sequence of vector bundles over V_n:

$$0 \rightarrow \overline{N}^k \rightarrow \overline{S}^k T \rightarrow T(V_n) \rightarrow 0.$$

This mapping F is injective. Let us consider two \mathcal{E}-connections ϕ_{k+1} and ψ_{k+1} which induce the same splitting

$$F(\phi_{k+1}) = F(\psi_{k+1}) : T(V_n) \rightarrow \overline{S}^k T.$$

If $y \in T(V_n)$, we can write $y = q_1(u, \xi)$, where $u \in H^1(V_n)$, $\xi \in \mathbb{R}^n$ and q_1 is the natural projection of $H^1(V_n) \times \mathbb{R}^n$ onto $T(V_n)$. The condition $F(\phi_{k+1})(y) = F(\psi_{k+1})(y)$ implies that

$$q_{k+1}(\phi_{k+1}(u), \xi) = q_{k+1}(\psi_{k+1}(u), \xi),$$

where we have denoted by q_{k+1} the natural projection of $\overline{H}^{k+1}(V_n) \times \overline{E}^k$ onto $\overline{S}^k T$. From the above lemma, we deduce that $\phi_{k+1}(u) = \psi_{k+1}(u)$ for all $u \in H^1(V_n)$. Let us show that F is surjective. Consider a splitting of the exact sequence

$$0 \rightarrow \overline{N}^k \rightarrow \overline{S}^k T \rightarrow T(V_n) \rightarrow 0$$

given by the lift $\sigma : T(V_n) \rightarrow \overline{S}^k T$. Let x be an arbitrary element of V_n. An element u of the fibre of $\overline{H}^{k+1}(V_n)$ over x determines a linear isomorphism of \overline{E}^k onto $(\overline{S}^k T)_x$. The image $u^{-1}(\sigma(T_x(V_n)))_x$ is a vector subspace of \overline{E}^k. More exactly, we have $\overline{E}^k = u^{-1}(\sigma(T_x(V_n)))_x \oplus \overline{L}_n^k$. From
the lemma II.14, there exists a $g \in \overline{M}^{k+1} = \text{Ker}(\overline{L}^{k+1}_n \to \overline{L}^{1}_n)$ such that $\rho(g)(R^n) = u^{-1}(\sigma(T_x(V_n)))$. The element $v = ug \in \overline{H}^{k+1}(V_n)$ defines therefore a linear isomorphism of $\overline{k} = R^n \oplus \overline{S}_n^k$ onto $(\overline{k}T)_x$, mapping R^n onto $\sigma(T_x(V_n))$. Every element of $\overline{H}^{k+1}(V_n)$ lying on the fibre over x and having the same property is of the form $v g_0$ with $g_0 \in \iota^{k+1}(L^{1}_n)$. Since x is arbitrary, we obtain in this way a principal subbundle of $\overline{H}^{k+1}(V_n)$ with structure group $\iota^{k+1}(L^{1}_n)$, hence the E-connection that we are looking for.

The vector bundle $T(\overline{H}^{k}(V_n))/L^{k}_n$ is isomorphic to $\overline{k}T$. We have therefore a one-to-one correspondence between the set of linear connections of order k of V_n and the set of splittings of the exact sequence of vector bundles

$$0 \to \overline{H}^{k} \to \overline{k}T \to T(V_n) \to 0.$$

From the preceding result, we have

Theorem II.16 There is a one-to-one correspondence between the set of linear connections of order k and the set of E-connections of the same order.

Consider an E-connection $\phi_{k+1} : H^1(V_n) \to \overline{H}^{k+1}(V_n)$. Let $\phi_k = \eta^{k+1}_k \circ \phi_{k+1}$. If $u \in H^1(V_n)$, $\phi_{k+1}(u)$ determines a horizontal n-plane of $\overline{H}^k(V_n)$ at $\phi_k(u) \in \overline{H}^k(V_n)$. We obtain thus a field of n-planes of $\overline{H}^k(V_n)$ defined on $\phi_k(H^1(V_n))$. It is easy to check that this local field is invariant with respect to the right translations defined by the elements of $\iota^k(L^{1}_n)$ on $\overline{H}^k(V_n)$. Consequently, we can extend it to a global field of n-planes of $\overline{H}^k(V_n)$ invariant with respect to the right translations of L^{k}_n on $\overline{H}^k(V_n)$. We obtain thus a linear connection ω_k of order k of V_n. This correspondence $\phi_{k+1} \to \omega_k$ is exactly the one we have established in the above theorem. For $k = 1$, we have a one-to-one correspondence between the set of symmetrical linear connections of V_n and the set of invariant sections of $H^1(V_n)$ into $H^2(V_n)$ (cf. Prop. I.9 and Prop. II.10). Let us assume that there is a one-to-one correspondence between the set of symmetrical E-connections of order m ($m \leq k - 1$) and the set of quasi-holonomic linear connections of the same order having zero torsion. If ϕ_{k+1} is a
symmetrical \(\mathcal{E} \)-connection of order \(k \), the corresponding linear connection \(\omega_k \) is quasi-holonomic and without torsion (cf. Theorem I.10). Inversely let \(\omega_k \) be a quasi-holonomic linear connection having zero torsion and let \(\phi_{k+1} \) be the corresponding \(\mathcal{E} \)-connection established in the above theorem. The connection projection \(\omega_{k-1} \) (of order \(k-1 \)) of \(\omega_k \) is a quasi-holonomic connection without torsion. From the induction hypothesis, the corresponding \(\mathcal{E} \)-connection \(\phi_k \) is symmetrical. It is easy to check that \(\phi_k = \pi_k^{k+1} \circ \phi_{k+1} \). Hence \(\phi_{k+1}(\Lambda^1(V_n)) \subset H^{k+1}(V_n) \) from the Holonomy Theorem. We have thus established the following result:

Corollary II.17 There is a one-to-one correspondence between the set of symmetrical \(\mathcal{E} \)-connections and the set of quasi-holonomic linear connections without torsion.

5. **Pseudo-connections and multi-connections.**

A pseudo-connection of order \(k \) of \(V_n \) is a couple \((\psi_{k+1}, \Psi_{k+1})\), where \(\Psi_{k+1} \) is a homomorphism of \(\overline{L}_k \) into \(\overline{L}_{k+1} \) and \(\psi_{k+1} \) is a differentiable lift of \(\overline{H}^k(V_n) \) into \(\overline{H}^{k+1}(V_n) \) such that

\[
\psi_{k+1}(ug) = \psi_{k+1}(u) \Psi_{k+1}(g)
\]

for all \(u \in \overline{H}^k(V_n) \) and \(g \in \overline{L}_n \). It follows that \(\Psi_{k+1} \) is a lift of \(\overline{L}_k \) into \(\overline{L}_{k+1} \). The condition of compatibility implies that an invariant vector field of \(\overline{H}^k(V_n) \) can be lifted to an invariant vector field of \(\overline{H}^{k+1}(V_n) \). We obtain thus an infinitesimal connection in the principal fibre bundle \(E^{k+1} \rightarrow E^k(V_n) \), or equivalently, a splitting of the exact sequence of vector bundles over \(V_n \)

\[
0 \rightarrow \overline{N}_k^{k+1} \rightarrow \overline{S}^{k+1} \rightarrow \overline{S}^k \rightarrow 0
\]

where \(\overline{N}_k^{k+1} \) is the kernel of \(\overline{S}^{k+1} \rightarrow \overline{S}^k \).

Consider a pseudo-connection \((\psi_{k+1}, \Psi_{k+1})\) of \(V_n \). The lift \(\psi_{k+1} \) of \(\overline{H}^k(V_n) \) into \(\overline{H}^{k+1}(V_n) \) defines an absolute parallelism on \(\overline{H}^k(V_n) \). If \(Z \in T_u(\overline{H}^k(V_n)) \), we put \(\alpha(Z) = \overline{\psi}_{k+1}^{-1}(u) \). The mapping \(Z \mapsto \alpha(Z) \) defines a differentiable 1-form \(\alpha \) on \(\overline{H}^k(V_n) \) with values in \(\overline{E}^k \). There is an induced linear representation of \(\overline{L}_k \) on \(\overline{E}^k \) given by

\[
\sigma = \rho \circ \Psi_{k+1}.
\]
where we have denoted by ρ the linear representation of L_n on E^k.

If $Z \in T(\overline{H}^k(V_n))$, we have $\alpha(TR_g(Z)) = \sigma(g^{-1})\alpha(Z)$, i.e. α is a pseudotensorial 1-form on $\overline{H}^k(V_n)$, called the pseudo-connection form of (ψ_{k+1}, Ψ_{k+1}).

A multi-connection of order k of V_n is given by a sequence of pseudo-connections (ψ_{m+1}, Ψ_{m+1}), $m = 1, 2, \ldots, k$ such that $\Psi_{m+1} \circ \iota^m = \iota^{m+1}$. The composite map $\phi_{k+1} = \psi_{k+1} \circ \psi_{k} \circ \ldots \circ \psi_2$ defines an \mathcal{E}-connection of V_n. Inversely, given a sequence of homomorphisms $\Psi_{m+1}: L_n^m \rightarrow L_n^{m+1}$ such that $\Psi_{m+1} \circ \iota^m = \iota^{m+1}$ ($m = 1, 2, \ldots, k$), an \mathcal{E}-connection $\phi_{k+1}: H^k(V_n) \rightarrow \overline{H}^{k+1}(V_n)$ determines a multi-connection of order k of V_n.

We are going to define a natural sequence of group homomorphisms

\[L_n^1 \xrightarrow{\Lambda_2} L_n^2 \xrightarrow{\Lambda_3} \ldots \xrightarrow{\Lambda_{k+1}} L_n^k \xrightarrow{\iota^1} L_n^{k+1} \xrightarrow{\iota^2} \ldots \]

satisfying the conditions: $\pi_{k+1}^{k+1} \circ \Lambda_{k+1} = \text{identity}$, $\Lambda_{k+1} \circ \iota^k = \iota^{k+1}$ for $k = 2, 3, \ldots$. We put $\Lambda_2 = \iota^2$, the canonical injection of L_n^1 into L_n^2. It induces a lift of $H^1(\mathbb{R}^n) = \mathbb{R}^n \times L_n^1$ into $H^2(\mathbb{R}^n) = \mathbb{R}^n \times L_n^2$. We will denote this lift by the same symbol Λ_2. Let $u = j_{e_1}f \in L_n^2$, where f is an admissible local isomorphism of $H^1(\mathbb{R}^n)$ into $H^1(\mathbb{R}^n)$. Consider the local isomorphism b of $\overline{H}^2(\mathbb{R}^n)$ into $\overline{H}^2(\mathbb{R}^n)$ defined by the condition:

\[b \circ \eta_2 = R_u \circ \Lambda_2 \circ R_u^{-1} \circ f \circ \eta_1, \]

where $u' = \pi_2^1(u)$ and η_i ($i = 1, 2$) are the «zero sections». The 1-jet $j_{e_2}^1 b$ depends uniquely on u and the mapping $u \rightarrow \Lambda_3(u) = j_{e_2}^1 b$ defines a group homomorphism of L_n^2 into L_n^3 satisfying the required conditions. Let us assume that we have defined homomorphisms $\Lambda_2, \Lambda_3, \ldots, \Lambda_k$ satisfying the required conditions. Let $v = j_{e_{k-1}}^1 b \in L_n^k$, where b is an admissible local isomorphism of $\overline{H}^{k-1}(\mathbb{R}^n)$ into $\overline{H}^{k-1}(\mathbb{R}^n)$. Consider the admissible local isomorphism g of $\overline{H}^k(\mathbb{R}^n)$ into $\overline{H}^k(\mathbb{R}^n)$ defined by the condition:

\[g \circ \eta_k = R_v \circ \Lambda_k \circ R_v^{-1} \circ b \circ \eta_{k-1}, \]

with $v' = \pi_{k-1}^{k-1}(v)$ and η_i ($i = k-1, k$) are the «zero sections». It is easy to check that the mapping $v \rightarrow \Lambda_{k+1}(v) = j_{e_k}^1 g$ defines a group homomorphism of L_n^k into L_n^{k+1} with the desired properties. We obtain thus a natural sequence of group homomorphisms.
PROPOSITION II.18 There is a one-to-one correspondence between the set of \mathcal{E}-connections of order k of V_n and the set of multi-connections of the form $\{(\lambda_m, \Lambda_m)\}_{2 \leq m \leq k}$, where the Λ_m are the homomorphisms of the natural sequence.

6. Prolongations of linear connections.

We have seen that a linear connection of order 1 of V_n can be given by an invariant section ϕ_2 of $H^1(V_n)$ into $H^2(V_n)$. We are going to construct a lift of $\phi_2(H^1(V_n))$ into $H^3(V_n)$. Let $u = j_{e_1}^1 f \in \phi_2(H^1(V_n))$, where f is an admissible local isomorphism of $H^1(R^n)$ into $H^1(V_n)$. Let h be the admissible local isomorphism of $H^2(R^n)$ into $H^2(V_n)$ defined by: $b \circ \eta_2 = \phi_2 \circ f \circ \eta_1$. The mapping $u \mapsto \phi_3^3(u) = j_{e_1}^2 h$ defines a lift of $\phi_2(H^1(V_n))$ into $H^3(V_n)$. The composite mapping $\phi_3 = \phi_3^3 \circ \phi_2$ defines an invariant section of $H^1(V_n)$ into $H^3(V_n)$. The \mathcal{E}-connection ϕ_3 obtained by this way or the corresponding linear connection of order 2 will be called the first prolongation of ϕ_2. The principal subbundle $\phi_3(H^1(V_n))$ of $H^3(V_n)$, possesses the following property: for every $v \in \phi_3(H^1(V_n))$, there exists an admissible local isomorphism g of $H^2(R^n)$ into $H^2(V_n)$ such that $v = j_{e_2}^1 g$ and that g maps the (local) zero section of $H^2(R^n)$ into $\phi_2(H^1(V_n))$. By means of this property, we can construct a lift ϕ_4^3 of $\phi_3(H^1(V_n))$ into $H^4(V_n)$ and the composite mapping $\phi_4 = \phi_4^3 \circ \phi_3$ defines an \mathcal{E}-connection of order 3, called the second prolongation of ϕ_2. Notice that the projections of ϕ_4 are respectively ϕ_3 and ϕ_2. By iterations, we construct the k-th prolongation of ϕ_2.

If we consider only the prolongations of linear connections of order 1 of V_n, we do not obtain all the linear connections of higher order of V_n. A linear connection of order k is called simple if it is the $(k-1)$-th prolongation of a first order linear connection of V_n.

Let ω_k (resp. ω_k') be a linear connection of order k of V_n (resp. V'_n). We will say that ω_k is equivalent to ω_k' if there exists a diffeomorphism f of V_n onto V'_n such that $f^{(k)} \ast \omega_k' = \omega_k$.
A linear connection ω_k is called locally flat if it is locally equivalent to the canonical connection in the trivial bundle $H^k(\mathbb{R}^n) = \mathbb{R}^n \times L^k$.

Theorem II.19 A linear connection of order k is locally flat if and only if it is simple, without torsion and without curvature.

It is well known that a first order connection is locally flat if and only if its torsion and curvature are zero. For $k > 1$, the conditions are obviously necessary, because the canonical connection in $H^k(\mathbb{R}^n)$ is simple, without torsion and without curvature. Let us show that the conditions are sufficient. Consider such a linear connection ω_k. The connection projection ω_1 of order 1 of ω_k is locally flat, because its torsion and its curvature are both zero. Since ω_k is simple, we can obtain ω_k by taking the successive prolongations of ω_1. Let ϕ_{k+1} be the invariant section of $H^1(V_n)$ into $\widetilde{H}^{k+1}(V_n)$ corresponding to ω_k. We put $\phi_k = \eta_k \circ \phi_{k+1}$.

For all $y \in H^1(V_n)$, the horizontal n-plane of $\widetilde{H}^k(V_n)$ associated to the $(k+1)$-frame $\phi_{k+1}(y)$ is tangent to $\phi_k(H^1(V_n))$, because ω_k is simple. From the «Holonomy Theorem», we have $\phi_{k+1}(H^1(V_n)) \subset H^{k+1}(V_n)$.

On the other hand, the nullity of the curvature form of ω_k implies that the distribution of n-planes of $\widetilde{H}^k(V_n)$ defined by ω_k is involutive. Let W be the maximal integral submanifold passing through $u \in \phi_k(H^1(V_n))$. The canonical form θ_k (resp. $\bar{\theta}_k$) of $\widetilde{H}^k(V_n)$ (resp. $\widetilde{H}^k(\mathbb{R}^n)$), restricted to W (resp. $Q = \eta_k(\mathbb{R}^n)$), will be denoted by θ_W (resp. $\bar{\theta}_Q$). These forms θ_W and $\bar{\theta}_Q$ have their values in $\mathbb{R}^n \subset E^{k-1}$. Consider the 1-form $\beta = p_1^* \theta_W - p_2^* \bar{\theta}_Q$ on the product manifold $W \times Q$, where p_i ($i = 1, 2$) are the projections on W and Q respectively. In terms of a basis $\{a^1, a^2, ..., a^n\}$ for \mathbb{R}^n, the components β_i of β are linearly independent. Consider now the module \mathfrak{M} of vector fields X on $W \times Q$ such that $\beta_i(X) = 0$ for $i = 1, 2, ..., n$. If $X \in \mathfrak{M}$, $Y \in \mathfrak{M}$, we have

$$d\beta(X, Y) = X \beta(Y) - Y \beta(X) - \beta([X, Y]) = -\beta([X, Y]).$$

On the other hand, $d\beta(X, Y) = 0$. Consequently, $[X, Y] \in \mathfrak{M}$ showing that \mathfrak{M} is involutive. Therefore, there exists a maximal integral submanifold M of dimension n passing through $(u, e_k) \in W \times Q$. For any non-zero vector Z tangent to $p_2^{-1}(e_k)$, $\beta(Z) \neq 0$. We can find an open neighbourhood U of e_k in Q and a differentiable section λ of U into $W \times Q$ such that we
have $\lambda(U) \subset M$. Let $b = p_1 \circ \lambda$. The form β vanishes identically on M, we have $\lambda^* \beta = 0$, showing that $\hat{\theta}_h = b^* \tilde{\theta}_w$. We can now extend b to a local isomorphism \tilde{b} of $\overline{H}^k(\mathbb{R}^n)$ into $\overline{H}^k(V_n)$ satisfying $\hat{\theta}_h = \tilde{b}^* \tilde{\theta}_w$. In virtue of theorem 1.2, we can find an open neighbourhood N (resp. N') of $0 \in \mathbb{R}^n$ (resp. $x = \pi^k_0(u) \in V_n$) and a diffeomorphism f of N onto N' such that locally $\tilde{b} = f(x)$. Consequently, ω_k is locally flat.

Département de Mathématiques, Tour 55,
Université Paris 7,
2 Place Jussieu
75- PARIS (5e)
References.

 (c) Connexions d’ordre supérieur et tenseurs de structure, Atti del Convegno Internazionale di Geometria Differenziale, Bologna (1967).

