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1, 2

and Agnieszka Ka�lamajska
3

Abstract. We consider the lower semicontinuous functional of the form If (u) =
∫
Ω

f(u)dx where u
satisfies a given conservation law defined by differential operator of degree one with constant coefficients.
We show that under certain constraints the well known Murat and Tartar’s Λ-convexity condition for
the integrand f extends to the new geometric conditions satisfied on four dimensional symplexes.
Similar conditions on three dimensional symplexes were recently obtained by the second author. New
conditions apply to quasiconvex functions.
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1. Introduction

Let Ω ⊆ R
n be a bounded domain, f : R

n×m → R be a continuous function and consider the variational
functional

If (u) =
∫

Ω

f(∇u)dx, (1.1)

where u belongs to the Sobolev space W 1,∞(Ω, Rm). It was proved by Morrey in 1952, [50] that the func-
tional If (u) is sequentially lower semicontinuous with respect to weak-∗ convergence in W 1,∞

(i.e. lim infν→∞ If (uν) ≥ If (u) provided that uν → u in L1(Ω, Rm) and ∇uν ⇀ ∇u weakly-∗ in L∞(Ω, Rn×m))
if and only if f is quasiconvex, which is by definition∫

Q

f(A + ∇v)dx ≥ f(A) (1.2)

for every cube Q ⊆ R
n, every matrix A ∈ R

n×m and every function v ∈ C∞
0 (Q, Rm). The quasiconvexity

condition is very hard to verify in practice. It is easier to verify the so-called rank-one convexity condition which
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is a consequence of quasiconvexity. This condition means that every mapping of the form R � t �→ f(A+ ta⊗ b)
is convex for arbitrary A ∈ R

n×m and arbitrary rank one matrix a ⊗ b = (aibj)i=1,...,n;j=1,...m ∈ R
n×m. (see

e.g. [17, 50, 51, 56, 65]). Those two notions agree if min{n, m} = 1, in such cases every quasiconvex function is
even convex, or when f is a quadratic form (see e.g. [17, 50, 53], Sect. 3, [80], Th. 11).

It has been conjectured by Morrey in 1952 [50] that rank-one convexity does not imply quasiconvexity. This
conjecture has been confirmed by Šverák 40 years later in [77] in dimensions n ≥ 2, m ≥ 3 with the example of
a polynomial of degree four which is rank-one convex but not quasiconvex. The conjecture is still open in the
remaining dimensions n ≥ 2, m = 2.

However, an alternative to (1.2) algebraic description of quasiconvex functions is known (see [14]), and some
numerical approaches to face Morrey’s rank-one conjecture are known (see e.g. [18,19]), but it is still not possible
in general to verify it in practice. There are so far few ways to investigate the quasiconvexity condition directly.
It is known that in dimensions n ≥ 2, m ≥ 3 this condition is nonlocal (see [39]). In the same dimensions it
is also not invariant with respect to the transposition [40, 58]. For some other related approaches we refer e.g.
to [1, 5, 10, 25, 33, 34, 48, 53, 64, 68, 69, 73, 75, 76, 78, 83, 84], and references therein. None of the above mentioned
properties except the rank-one condition can be described in geometric way.

Recently, the second author has found necessary geometric conditions for quasiconvexity satisfied on certain
three dimensional symplexes in R

n×m, [34]. Roughly speaking these conditions, defined as tetrahedral convexity
conditions, express the following property: if f agrees with a certain polynomial A on the tetrahedron D from
certain class of tetrahedrons in R

n×m on its vertices and three more other points (where the polynomial and
those points are determined by D) then f ≤ A inside D. Then the natural question is whether we can
expect similar geometric conditions holding on four dimensional symplexes in R

n×m. In particular in the case
n = m = 2 the dimension of the symplex is the same as the dimension of the domain of f . In this paper we find
such conditions. It is worth pointing out that the polynomials in our conditions are of degree no bigger than
two. Both mentioned geometric conditions (three and four dimensional) are similar to the familiar convexity
conditions, as every convex function which agrees with an affine function in the endpoints of the interval is not
bigger than this affine function in its interior. Obviously an interval is a one-dimensional symplex. Note also
that our conditions are convenient for a numerical treatment and they are between quasiconvexity and rank-one
convexity (three dimensional geometric conditions obtained in [34] have been numerically verified in [74]).

Let us mention that our geometric conditions generalize the so-called Λ-convexity conditions due to Murat
an Tartar appearing in the following more general problem. Let P = (P1, . . . , PN ) : C∞(Ω, Rm) → C∞(Ω, RN )
be a differential operator with constant coefficients, given by

Pku =
∑

i=1,...,n,j=1,...,m

ak
i,j

∂uj

∂xi
, k = 1, . . . , N, (1.3)

and let f : R
m → R be a continuous function. Consider instead of (1.1) the functional

If (u) =
∫

Ω

f(u(x)) dx, u ∈ ker P ∩ L∞(Ω, Rm), (1.4)

where ker P is the distributional kernel of the operator P .
In particular, when P = curl is applied to each column of u (and u ∈ R

k
n, k · n = m) in a simply connected

domain, we recover the classical functional of the calculus of variations.
In general the necessary and sufficient conditions for a function f to define a lower semicontinuous functional

with respect to sequential weak-∗-convergence in L∞(Ω, Rm)∩ker P are not known (we refer e.g. to, [16], p. 26,
[25, 33, 53], Sect. 3, [57, 66, 80], Th. 11, [82] for special cases). The only known general condition is so-called
Λ-convexity necessary condition due to Murat and Tartar (see e.g. [16], Th. 3.1, [52], Th. 2.1, [53], [65], Th.
10.1, [81], Cor. 9). It reads as follows.
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Theorem 1.1. Define

V =

⎧⎨
⎩(ξ, λ) : ξ ∈ R

n, ξ �= 0, λ ∈ R
m,
∑
i,j

ak
i,jξiλj = 0, for k = 1, . . . , N

⎫⎬
⎭ ,

Λ = {λ ∈ R
m : there exists ξ ∈ R

n, ξ �= 0, such that (ξ, λ) ∈ V }.

If If given by (1.4) is lower semicontinuous (continuous) with respect to L∞-weak ∗-convergence in L∞(Ω, Rm)∩
ker P , then f is Λ-convex (Λ-affine), which means that for every A ∈ R

m and every λ ∈ Λ the function
R � t �→ f(A + tλ) is convex (affine).

We try to contribute to both approaches: the general one and the special variational one. As a result
we obtain a general condition stated in Theorem 4.2 and its special case related to the variational approach
(Th. 4.3).

Let us mention that the rank-one problem is strongly related to an important and long standing problem in
the theory of quasiconformal mappings, as has been recently pointed out by Iwaniec and Astala [4, 29].

The paper is organized as follows. At first we study functionals of the form: If (u) =
∫

[0,1]2 f(u1(τ1), u2(τ2),
u3(τ1 + τ2), u4(τ1 − τ2)dτ1dτ2 and after some preparations made in Sections 2 and 3 we see in Section 4 that if
If is lower semicontinuous then f satisfies certain conditions on four dimensional symplexes in R

4. Then the
general functional given by (1.4) is reduced to that special one after restricting it to subspaces in the kernel of
the operator P of the form {A +

∑4
i=1 ui(< x, ξi >)λi}, where (ξi, λi) ∈ V and V is defined in Theorem 1.1.

The main result and the discussion are presented in Sections 4 and 5 respectively. The technically complicated
part (proof of Lem. 3.2) is given in the Appendix.

The results of this paper and that of [34] are the continuation of the approach started by the second author
mainly in [33] where she studied functionals of the general form (1.4) for systems like (1.3) where the kernel of
P is the solution of the system of equations like

∂Vj uj = 0 for j = 1, . . . , m, (1.5)

V1, . . . , Vm are linear subspaces of R
n and the condition ∂V u = 0 means that for every v ∈ V we have

∂vu = 0. The knowledge about lower semicontinuous functionals on solutions of (1.5) should yield new
conditions in the Compensated Compactness Theory and Calculus of Variations. This is because subspaces
like (1.5) can be found in kernels of generally defined operators like (1.3), so we can restrict our general
functional to such subspaces. The main result of [34] is based on investigation of functional like If (u) =∫

[0,1]2 f(u1(τ1), u2(τ2), u3(τ1 + τ2))dτ1dτ2, while here the special role is played by the functional If (u) =∫
[0,1]2

f(u1(τ1), u2(τ2), u3(τ1 + τ2), u4(τ1 − τ2)dτ1dτ2. Both studied models bring new geometric conditions for
lower semicontinuous functionals in the general model (1.4).

Some of the ideas exploited and developed here and in the paper [34] can be tracked back to Murat [54] and
Pedregal [66].

We believe that the number of various versions of geometric convexity-like conditions for quasiconvex functions
like ours will decrease with the time. They require systematic investigation. Perhaps one of them will lead to
the confirmation of Morrey’s conjecture in some cases, or perhaps unpossibility to find an example of a rank-one
convex function which does not satisfy a geometric condition in the remaining cases of the rank-one conjecture
of Morray or will encourage someone to find the proof that quasiconvexity is the same as rank-one convexity.

2. Notation and preliminaries

2.1. The basic notation

For a measurable function u : [0, 1) → R we denote by û its periodic extension outside [0, 1). If A ⊆ [0, 1]
is any subset, we write A1 = A and A0 = [0, 1] \ A. Let [s]1 stand for the non integer part of s ∈ R. In the
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sequel we will assume that Ω ⊆ R
n is an open bounded domain. If A is a measurable subset of R

n, by |A| we
denote its Lebesgue’s measure, while Hs is the s-dimensional Hausdorff measure. By n-dimensional cube in R

n

we mean an arbitrary set of the form I1 × · · · × In where the Ik’s are closed intervals. If X is a topological
space, by C0(X) we denote the space of continuous functions on X . By e1, . . . , en we denote the standard basis
in R

n, while < ·, · > stands for the inner product. If ξ ∈ R
n and a ∈ R

m by ξ⊗a we denote the rank one matrix
(ξiaj)i=1,...,n,j=1,...,m. By χB we denote the characteristic function of the set B. Let j = (j1, . . . , jk) ∈ {0, 1}k.
We describe its length by |j| =

∑k
i=1 ji. If H is a given group of transformations of R

n and f : R
n → R is a

mapping, we denote fh(x) := f(hx). By R
n×m we denote the space of n × m matrices.

2.2. Combinatorial objects

By Sk we define the space of sequences with indices in {0, 1}k. As {0, 1}k consists of 2k elements, it follows
that the space Sk is isomorphic to R

N with N = 2k.
Let i ∈ {1, . . . , l}, ε ∈ {0, 1}, and let us define the transformation of indices sε

i : {0, 1}l−1 → {0, 1}l by putting
ε on the i-th place. Namely, for j = (j1, . . . , jl−1) ∈ {0, 1}l−1 we define

sε
1(j) := (ε, j1, . . . , jl−1), sε

l (j) := (j1, . . . , jl−1, ε), and
sε

i(j) := (j1, . . . , ji−1, ε, ji, . . . , jl−1) for 1 < i < l.

However the above transformation depends also on l, but for abbreviation we omit this dependence in the
notation.

Then we define the three related operators Π0
i , Π

1
i , Πi : Sl → Sl−1 by

(Πε
i{h})j = hsε

i (j), Πi{h} = Π0
i {h} + Π1

i {h}.

For example when i = l we have (Πl{h})j = h(j,0) + h(j,1), for every j ∈ {0, 1}l−1.
Let us identify {h} ∈ Sl with the mapping from {0, 1}l to R. Then operator Πε

i restricts {h} to the subset of
those j ∈ {0, 1}l which have ε on the i-th place and identifies the new mapping with an element of Sl−1. The
operator Πi can be regarded as discrete directional integration of {h} in the given i-th direction, with respect
to the counting measure.

The following lemma summarizes obvious but useful properties of the operators Πi and Πε
i . Its proof is left

to the reader as a simple exercise.

Lemma 2.1.

1) For every {h} ∈ Sk we have

Π1 ◦ · · · ◦ Πk{h} =
∑

j∈{0,1}k

hj.

2) The operator Πi preserves the sum: if {h} ∈ Sk sums up to A, then also {Πi{h}} sums up to A, which
is expressed by ∑

j∈{0,1}k−1

(Πi{h})j =
∑

j∈{0,1}k

hj .

If Ω is the subset of R
n, by Sk(Ω) we will denote the space of all measurable functions {h} : Ω → Sk. If

{h} ∈ Sk(Ω) is the given function, and G : Sl �→ Sr we use the same expression: G to denote the mapping
from Sl(Ω) to Sr(Ω) induced by G, namely (G({h}))(x) = G({h(x)}).
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2.3. Algebraic and geometric objects

Polynomials and projections

By A we denote the 11 dimensional subspace of polynomials in R
4 spanned by {1, xi, xixj : i, j ∈ {1, 2, 3, 4},

i �= j}. Let us describe the following operator P : C0(R4) → A expressed in terms of differences of f :
∆if(x) = f(x + ei) − f(x):

Pf(x) = f(0, 0, 0, 0) +
4∑

i=1

∆if(0, 0, 0, 0)xi

+
∑

(i,j)∈{(1,3),(1,4),(2,3)}
∆i∆jf(0, 0, 0, 0)xixj + ∆1∆2f(0, 0, 1, 0)x1x2

+∆2∆4f(1, 0, 1, 0)x2x4 +
1
2

(
∆3∆4f(0, 0, 0, 0) + ∆3∆4f(1, 0, 0, 0)

)
x3x4

:= Qf(x) +
1
2
(R1f(x) + R2f(x)), (2.1)

where x = (x1, x2, x3, x4), R1f(x) = ∆3∆4f(0, 0, 0, 0)x3x4, the projectors R1, R2 are defined by R2f(x) =
∆3∆4f(1, 0, 0, 0)x3x4, and Qf(x) is the remaining term in the expression above.

We have the following lemma. Its simple proof is left to the reader.

Lemma 2.2.
1) The operator Pf coincides with f in the following 9 vertices of the cube Q = [0, 1]4: (0, 0, 0, 0), (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 1, 0).
2) Pf depends only on values of f in 12 vertices of the cube Q: nine vertices described above and: (1, 0, 1, 1),

(1, 1, 1, 1), (0, 0, 1, 1).
3) If f ∈ A we have Pf = f , in particular Pf is the projection operator onto the space A.

Remark 2.1. Note that the class of projection operators from C0(R4) to A is large. For example we can define
it by taking an arbitrary f ∈ C0(R4) and prescribing to it the uniquely defined polynomial which agrees with f
in the following 11 vertices of the cube Q: the first one taken arbitrary and the remaining ones linked with
the first one by at most two edges of the cube. As convex combination of arbitrary two projection operators is
again a projection operator, it follows that the set of projection operators from C0(R4) to A is convex.

Remark 2.2. Let us look at the projection operator Pf from Lemma 2.2 more closely. Note that Pf is the
convex combination with weights 1/2 of the projection operators: P1f = Qf +R1f , and P2f = Qf +R2f . The
operator P2 agrees with f in the given 11 vertices of the cube Q: 9 vertices described in part 1) of Lemma 2.2
and two more: (1, 0, 1, 1) and (1, 1, 1, 1). The first operator agrees with f in 10 vertices of the cube Q only:
the 9 described in part 1) of Lemma 2.2 and in (0, 0, 1, 1).

Special group of invariances

We will consider the group G of linear transformations of R
4 generated by the following ones:

• translations: y �→ b + y where b, y ∈ R
4;

• dilations: y = (y1, y2, y3, y4) �→ (t1y1, t2y2, t3y3, t4y4) where t1, . . . , t4 ∈ R;
• permutations π1,2 and π3,4 defined by π1,2(x1, x2, x3, x4) = (x2, x1, x3, x4), and π3,4(x1, x2, x3, x4) =

(x1, x2, x4, x3).
The group G described above will be called the special group of invariances.

We will consider also its subgroup G̃ consisting of isometries of [0, 1]4. It is generated by the following
6 transformations: 4 symmetries si: xi �→ 1− xi where i ∈ {1, . . . , 4} and two permutations: π12 and π34 (note
that every its element is of order 2). It is easy to see that the subgroup H1 of G̃ generated by two symmetries
s1, s2, and permutation π12 is the normal subgroup of G̃. Moreover, the quotient group G̃/H1 is isomorphic to
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(0, 0, 0)
(0, 1, 0)

( 1
2 , 1, 0)

(0, 1
2 , 1

2 )

(0, 1
2 , 0)

x4

x2

x3

Figure 1. T = R1 ∩ {x1 = 1
2} ⊂ T3.

the subgroup H2 of G̃ generated by symmetries s3, s4 and the permutation π34, and both subgroups H1 and H2

consist of 8 elements. Then G̃ is isomorphic to G̃/H1 ⊗ H1, hence it is isomorphic to H2 ⊗ H1 (see e.g. [42],
Prop. 1 on p. 12). This implies that the group G̃ consists of 64 elements.

The principal symplex and its G-similar cousins

The following symplex in R
4 will play a special role in our development:

R1 = {x ∈ Q : x3 > x1 + x2, x1 ≤ 1/2, 2x1 > x3 + x4, x2 ≥ 0, x4 ≥ 0}. (2.2)

The symplex R1 will be called the principal symplex.
Let H be a given group of transformations of R

4 and D ⊆ R
4 be a subset. We will say that the subset

D̃ ⊆ R
4 is H-similar to D if there is such h ∈ H that D̃ = h(D). Let us denote by Caus(D, H) the set

of all H-similar to D subsets of R
4. This set will be called the set of H-cousins of D. Let us consider the

set Caus(R1, G) where R1 is the principal symplex and G is the special group of invariances. One may ask
what kind of symlexies will be found there. Obviously, every such symplex is of the form D ◦ Tr(R), where R

if G̃-cousin of R1 (note that the set Caus(R1, G̃) consists of 64 symplexis), Tr is some translation and D is
some dilation in R

4. Let us denote vertices of R1 by: W1 = (0, 0, 0, 0), W2 = (1/2, 0, 1, 0), W3 = (1/2, 0, 1/2, 0),
W4 = (1/2, 0, 1/2, 1/2), and W5 = (1/2, 1/2, 1, 0) (note that only W1 is the vertex of the cube Q = [0, 1]4). Then
R1 is the convex Minkowski’s combination of two sets: the tetrahedron T ⊆ R

4 spanned by W2, W3, W4, W5,
and W1, which means that R1 = {tx + (1 − t)W1 : t ∈ [0, 1], x ∈ T }.

The tetrahedron T (see Fig. 1) lives on the hyperplane x1 = 1/2 (so x1 = const.) and has three axes
perpendicular to each other: W2W5 is parallel to e2, W2W3 is parallel to e3, W3W4 is parallel to e4. Those axes
form the polyline in R

4: W5W2W3W4 which uniquely defines the symplex T . Now if we apply the dilation on
R

4 we see that the new polyline obtained by this dilation again has three axes parallel to e2, e3, e4 respectively,
moreover, the new tetrahedron obtained from T by dilation also lives on the hyperplane x1 = const. Obviously,
those mentioned properties: R1 = conv{W, T }, where a) W is one of the vertices of Q and b) T lives on the
hyperplane xi = const . for some i and has three axes perpendicular to each other, remain unchanged under the
action of G (where instead of Q we consider its G-cousin).
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2.4. The functional setting

The special functional

Let Q = [0, 1]2 be the unit cube, and f : R
4 → R be continuous. The functional

If (u) =
∫

Q

f(u1(x1), u2(x2), u3(x1 + x2), u4(x1 − x2) dx1dx2, (2.3)

where u = (u1, u2, u3, u4) and ui ∈ L∞(R) for i = 1, 2, 3, 4 will play an essential role in our investigations. For
this reason such functionals will be called special.

We have the following lemma.

Lemma 2.3. Let f ∈ C0(R4), let ξ1, ξ2 ∈ R
n be two independent vectors and consider the functional

Jf,Ω,ξ(u) =
∫

Ω

f(u1(〈x, ξ1〉), u2(〈x, ξ2〉), u3(〈x, ξ1 + ξ2〉), u4(〈x, ξ1 − ξ2〉)) dx, (2.4)

where ξ = (ξ1, ξ2), u = (u1, u2, u3, u4) with ui ∈ L∞(R) for i = 1, . . . , 4. The following statements are equivalent:
1) For an arbitrary bounded domain Ω ⊆ R

n with n ≥ 2 the functional Jf,Ω,ξ(·) given by (2.4) is lower
semicontinuous with respect to the weak ∗ convergence of the ui’s in L∞(R).

2) The special functional If (·) given by (2.3) is lower semicontinuous with respect to the weak ∗ convergence
of the ui’s in L∞(R).

Proof. The implication 1) ⇒ 2) is obvious. Hence, we prove the implication 2) ⇒ 1) only. The proof follows
by steps: 1) we assume that Ω is a ball. 2) We prove 2) ⇒ 1) for an arbitrary domain Ω.
Proof of step 1. At first we note that if 2) holds then Q can be replaced by any cube with edges parallel do the
axes. Let us set y1 = 〈x, ξ1〉 and y2 = 〈x, ξ2〉.

We will apply the coarea formula (see e.g. Ths. 3.2.12 and 3.2.22 in [24] for its variants):

∫
Rm

(∫
Φ−1(y)

ω(x)Hn−m(dx)

)
Hm(dx) =

∫
Ω

ω(x)|JmΦ(x)|dx, (2.5)

whenever Ω ⊆ R
n is an open bounded subset, Φ : Ω → R

m is a lipshitz transformation of variables (in particular
m ≤ n), JmΦ is the [

(
n
m

)(
n
m

)
]-tuple of m×m minors of the Jacobi matrix of Φ, and ω is an integrable function

on Ω.
Applying this with m = 2, Φ(x) = (〈x, ξ1〉, 〈x, ξ2〉) and

ω(x) = f(u1(〈x, ξ1〉), u2(〈x, ξ2〉), u3(〈x, ξ1 + ξ2〉), u4(〈x, ξ1 − ξ2〉)),

we observe that

c = |J2Φ(x)| does not depend on x,

Φ−1(y1, y2) = {x ∈ Ω : y1 = 〈x, ξ1〉 and y2 = 〈x, ξ2〉} := Ω(y1,y2), and

ω(x) ≡ f(u1(y1), u2(y2), u3(y1 + y2), u4(y1 − y2)) on Φ−1(y1, y2).

Let us set Ω̃ = {(y1, y2) ∈ R
2 : Ω(y1,y2) �= ∅}. Then by (2.5) we have

cJf,Ω,ξ(u) = c

∫
Ω

ω(x)dx

∫
Ω

ω(x)|J2Ψ(x)|dx =

=
∫

Ω̃

Hn−2(Ω(y1,y2))f(u1(y1), u2(y2), u3(y1 + y2), u4(y1 − y2)) dy1dy2 =: Jf (u).
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Hence, the functional Jf,Ω,ξ is lower semicontinuous if and only if the functional Jf (u) is lower semicontinuous.
Note that under our assumptions the set Ω(y1,y2) is a (n − 2)-dimensional ball contained in an affine subspace
of codimension 2. It is easy to see that the radius of Ω(y1,y2) moves continuously as (y1, y2) ranges through the
open set Ω̃. In particular the mapping Ω̃ � y �→ Hn−2(Ω(y)) is continuous. Let us cover the set Ω̃ by countable
family of disjoint cubes Qi = Qi(yi) where yi = (yi

1, y
i
2) whose edges are parallel to the axes and consider the

functional

JN
f (u) =

N∑
i=1

Hn−2(Ω(yi))
∫

Qi

f(u1(y1), u2(y2), u3(y1 + y2), u4(y1 − y2)) dy1dy2.

If the diameter of each Qi is small enough, then the continuity of f and continuity of the mapping y �→
Hn−2(Ω(y)) yields: for all ε > 0 and N sufficiently large

|JN
f (u) − Jf (u)| < ε

for all functions u ∈ L∞ with ‖u‖∞ ≤ R. This and the lower semicontinuity of JN
f complete the proof of step 1.

Proof of step 2. Let Ω be an arbitrary open, bounded set. Since we deal with bounded sequences, without loss
of generality we may assume that f ≥ 0. Choose a countable family of disjoint, open balls {Bh}h that cover Ω
up to a null set. Then, according to the previous step, we have:

Jf,Bh,ξ(u) ≤ lim inf
k→∞

Jf,Bh,ξ(uk),

for every h, whenever uk ⇀ u weakly ∗ in L∞. Hence and using Fatou’s lemma, we have

Jf,Ω,ξ(u) =
∑

h

Jf,Bh,ξ(u)

≤
∑

h

lim inf
k→∞

Jf,Bh,ξ(uk) ≤ lim inf
k→∞

∑
h

Jf,Bh,ξ(uk) = lim inf
k→∞

Jf,Ω,ξ(uk).

This ends the proof of step 2. �
Now we are going to concentrate on obtaining some basic properties of special functionals.
Let M be the set of all continuous functions on R

4 which define lower semicontinuous special functional,
and C be the space of those integrands which define weakly continuous special functionals (with respect to the
sequential weak-∗ convergence of the ui’s in L∞).

One can easily check that the following property holds.

Lemma 2.4. The set M is invariant with respect to the action of the special group of invariances G (see
Sect. 2.3). This means that if g ∈ G is taken arbitrary and f ∈ M then the mapping fg(y) = f(gy) also belongs
to M.

Remark 2.3. We will see later that C = A.

The following lemma describes the restriction of special functional to the set of periodic extensions of char-
acteristic functions of cubes in R

4.

Lemma 2.5. Let x = (x1, x2, x3, x4) ∈ Q = [0, 1]4, ui(σ, x) = χ̂[0,xi](σ) where σ ∈ R, i ∈ {1, 2, 3, 4} and
u : R

2 ×Q → R
4 be defined by u(τ, x) = (u1(τ1), u2(τ2), u3(τ1 + τ2), u4(τ1 − τ2)) where τ = (τ1, τ2) ∈ R

2. Define

hj(x) = |{(τ1, τ2) ∈ [0, 1]2 : τ1 ∈ [0, x1]j1 , τ2 ∈ [0, x2]j2 ,

[τ1 + τ2]1 ∈ [0, x3]j3 , [τ1 − τ2]1 ∈ [0, x4]j4}|

where j = (j1, j2, j3, j4) ∈ {0, 1}4 and [0, s]1 = [0, s], [0, s]0 = (s, 1].
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Then the following properties hold.

i) For every continuous function f : R
4 → R we have

∫
[0,1]2

f(u(τ, x)) dτ =
∑

j∈{0,1}4

hj(x)f(j).

ii) Functions {hj(x)} define the distribution of the probability measure concentrated in 16 points j ∈ {0, 1}4,
in particular all the hj’s are nonnegative.

iii) For every j ∈ {0, 1}4 the mapping x �→ hj(x) is continuous.

Some further properties of functions {hj(x)} and the computation of their values in selected subregions of
the cube Q will be presented in Section 3 and in the Appendix. From now functions {hj(x)} and their shift-
ings {hi

j(x)} = {Πih(x)}j will be called special distributions of measures (note that the shiftings also define
distributions of probability measures).

The key point in our argumentation will be the following lemma.

Lemma 2.6. Assume that f ∈ C0(R4) and f defines the special functional, which is lower semicontinuous
with respect to the weak-∗ convergence of the ui’s in L∞(Ω). Then if u1, u2, u3, u4 are bounded and periodic of
period 1, we have

∫
[0,1]2

f(u1(τ1), u2(τ2), u3(τ1 + τ2), u4(τ1 − τ2))dτ1dτ2 ≥ f

(∫ 1

0

u1(τ)dτ, . . . ,

∫ 1

0

u4(τ)dτ

)
.

Proof. This follows from the Riemann–Lebesgue’s Theorem applied to functions uν(x) = u(νx), where u =
(u1, u2, u3, u4) and fν(x) = f(uν(x)) (see e.g. Lem. 1.2 on p. 8 in [16]). It only remains to check that∫

[0,1]2 u3(τ1 + τ2)dτ1dτ2 =
∫ 1

0 u3(τ)dτ and
∫

[0,1]2 u4(τ1 − τ2)dτ1dτ2 =
∫ 1

0 u4(τ)dτ . �

3. Special distributions of measures

3.1. Invariances

Through this section we assume that Q = [0, 1]4 is the unit cube and hj ’s are the same as in Lemma 2.5.
Let {hi

j(x)}j∈{0,1}3 = {Πih(x)}j∈{0,1}3 . Note that whereas formally {h} as well as {Πih} depend on all four
coordinates x1, . . . , x4, but every component hi

j of {Πih} depends on at most three coordinates among x1, . . . , x4,
namely those xk with k �= i. Therefore we will treat the mapping x �→ {hi

j(x)}j∈{0,1}3 as the function defined
on [0, 1]3. On the other hand in some places we will denote coordinates of x ∈ [0, 1]3 in hi

j(x) in the following
way: in h1

j(x) by (x2, x3, x4), in h2
j(x) by (x1, x3, x4), in h3

j(x) by (x1, x2, x4), in h4
j(x) by (x1, x2, x3) to indicate

that in fact hi
j’s are functions of four variables, but we forget about the given one. The choice of the notation

will be obvious from the context.
Let k ∈ N and A : R

k → R
k be an arbitrary affine transformation such that A restricted to {0, 1}k is

a bijection. Then A preserves the whole cube Q = [0, 1]k and A defines the mapping Sk(Q) → Sk(Q) by
expression

A{hj(x)}j∈{0,1}k = {hAj(Ax)}j∈{0,1}k . (3.1)

Our goal is to look for those affine transformations of R
3 and R

4 which leave the distributions {hi
j(x)}j∈{0,1}3

and {hj(x)}j∈{0,1}4 invariant. We start with the following lemma.
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Lemma 3.1 (Lemma about invariances). The distributions {hi
j(x)}j∈{0,1}3 ’s and {hj(x)}j∈{0,1}4 are invariant

with respect to the following isometries of R
3 and R

4 respectively.

1) {h4
j(x)}j∈{0,1}3 is invariant under the permutation of axes π12(x1, x2, x3) = (x2, x1, x3), and symmetry

with respect to the point (1/2, 1/2, 1/2), S(x1, x2, x3) = (1 − x1, 1 − x2, 1 − x3).
2) {h1

j(x)}j∈{0,1}3 is invariant with respect to isometries of R
3, B1, B2 : R

3 → R
3 given by B1(x1, x2, x3) =

(x1, 1 − x3, 1 − x2), B2(x1, x2, x3) = (1 − x1, x3, x2).
3) Let C3 : R

3 → R
3 be the affine isometry given by C3(x1, x2, x3) = (x1, 1 − x2, x3). Then for every

x ∈ [0, 1]3 and every j ∈ {0, 1}3 we have

h3
j(x) = h4

C3j(C3x).

In particular {h3
j(x)}j∈{0,1}3 is invariant with respect to mappings

D1(x1, x2, x3) = C3π12C3(x1, x2, x3) = (1 − x2, 1 − x1, x3) and S.

4) Let C1 : R
3 → R

3 be an affine isometry given by C1(x1, x2, x3) = (x1, x2, 1 − x3). Then for every
x ∈ [0, 1]3 and every j ∈ {0, 1}3 we have

h2
j(x) = h1

C1j(C1x).

In particular {h2
j(x)}j∈{0,1}3 is invariant with respect to the following permutation of axes

π23(x1, x2, x3) = (x1, x3, x2) and the mapping S ◦ π23.
5) {hj(x)}j∈{0,1}4 is invariant with respect to orientation preserving isometries of R

4 given by

A1(x) = (1 − x1, x2, 1 − x4, 1 − x3), A2(x) = (x2, x1, x3, 1 − x4),

where x = (x1, x2, x3, x4).

Proof. This follows from the following changes of variables in the calculation of {hj}’s: 1) τ1 = τ2, τ2 = τ1, and
τ1 = 1 − τ1, τ2 = 1 − τ2; 2) τ1 = 1 − τ1, τ2 = τ2, and τ1 = τ1, τ2 = 1 − τ2; 3) τ1 = τ1, τ2 = 1 − τ2; 4) τ1 = τ2,
τ2 = τ1; 5) τ1 = 1 − τ1, τ2 = τ2 and τ1 = τ2, τ2 = τ1. �

Let us introduce the following definition.

Definition 3.1. We will say that the set D ⊆ [0, 1]4 is A-regular if there is a decomposition D = ∪r
i=1Di

for some r ∈ N, where for every i ∈ {1, . . . , r} the set Di is connected and the mapping Di � x �→ hj(x) is
represented by an element of A for every j ∈ {0, 1}4. Sets Di will be called regular components of D.

We will say that D ⊆ [0, 1]4 is maximal A-regular subset of [0, 1]4 if D is A-regular, and an arbitrary A-regular
subset of [0, 1]4 is contained in D.

We are in the position to formulate the following result.

Lemma 3.2. The maximal A-regular subset of Q = [0, 1]4 equals R = ∪8
i=1Ri, where symplexes Ri are regular

components of R, R1 is the principal symplex given by (2.2) R2, . . . , R8 are obtained by the condition Rj =
Ej(R1) where Ej’s are isometries given by E1 = id, E2 = A1, E3 = A2, E4 = A2 ◦ A1, E5 = (A1 ◦ A2)2,



74 K. CHE�lMIŃSKI AND A. KA�lAMAJSKA

E6 = (A1 ◦ A2)2 ◦ A1, E7 = A1 ◦ A2 ◦ A1, E8 = A1 ◦ A2, and A1 and A2 are the same as in Lemma 3.1. The
functions hj(x) on the set R1 are described in the table below.

(0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0)
1 − (x1 + x2 + x3

+x4) + x1x3 + x1x4

+x2x3 + 1/2x3x4

x1 − x1x3

−x1x4 + 1
2x3x4

x2(1 − x3)
x3 − x1x3 − x2x3

− 1
2x3x4 + x1x2

(0, 0, 0, 1) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
x4 − x1x4

− 1
2x3x4

0
x1x3 − x1x2

− 1
2x3x4 + x2x4

x1x4 − 1
2x3x4

(0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1) (1, 1, 1, 0)
x2x3 − x1x2 0 1

2x3x4 x1x2 − x2x4

(0, 1, 1, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1)
0 1

2x3x4 − x2x4 0 x2x4

Functions hj defined on R1.
The functions hj(x) for x ∈ Ri and i ∈ {2, . . . , 8} are obtained from those on R1 according to the rule given in
Lemma 3.1: hj(x) = hEij(Eix).

Proof of the above lemma is given in the Appendix.

4. The main result

We start with the following lemma.

Lemma 4.1. Let us define the following operator

C0(R4) � f �→
∑

j∈{0,1}4

hj(x)f(j) ∈ C0(R4), (4.1)

where hj = hj|R1 , hj’s are described by Lemma 3.2, and R1 is the principal symplex given by (2.2). Then the
operator described above is the projection operator onto the space A, and agrees with the operator Pf described
by (2.1).

Proof. The fact that the range of the operator given by (4.1) is contained in the space A follows directly from
Lemma 3.2. Now it suffices to describe the operator given by (4.1) in the basis of space A. �

Remark 4.1. Note that for j = (1, 1, 1, 1) we have h1111(1, 1, 1, 1) = 1 but not all other coefficients hj(1, 1, 1, 1)
are equal to zero. In particular Pf(1, 1, 1, 1) �= f(1, 1, 1, 1).

The following lemma will be crucial to obtain our main results.

Lemma 4.2. Let G be the special group of invariances, R1 be the principal symplex (see Sect. 2.3), and assume
that the symplex R ⊆ R

4 is G-similar to R1, that is R = g(R1) for some g ∈ G. Suppose that f defines a special
functional which is lower semicontinuous with respect to the weak-∗ convergence of the ui’s in L∞. Then for
every x ∈ R we have

f(x) ≤ (g∗Pf)(x),

where g∗Pf(x) =
∑

j∈{0,1}4 hj(g−1x)f(gj), P is the same as in (2.1), hj = hj |R1 , hj’s are described by
Lemma 3.2.

Proof. The proof follows by steps: 1) we obtain the result for R = R1 and 2) we complete the proof of the
theorem.
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Proof of step 1. Let x ∈ R1 and u(τ, x) be the same as in Lemma 2.5. According to Lemma 2.6 we have

f(x) ≤
∫

[0,1]2
f(u(τ, x))dτ.

Using Lemmas 2.5 and 3.2 we see that the right hand side equals
∑

j∈{0,1}4 hj(x)f(j).

Proof of step 2. Let fg(y) = f(gy). By Lemma 2.4 and by step 1 applied to fg we get fg(y) ≤ Pfg(y) for every
y ∈ R1. Now it suffices to substitute x = gy ∈ R. �

Remark 4.2. Let G̃ ⊆ G be the subgroup of G of isometries of [0, 1]4 introduced in Section 2.3. It consists
of 64 elements, let us denote them by g1, g2, . . . , g64, where gk = Ek, for k = 1, . . . , 8, Ek’s are the same as in
Lemma 3.2, and g9, . . . , g64 are the remaining elements of G̃ written in an arbitrary order. Define Ri = gi(R1)
for i = 1, . . . , 64. According to Lemma 4.2 the inequality f(x) ≤ (g∗i Pf)(x) holds for every x ∈ Ri and for every
i ∈ {1, . . . , 64}. Note that Lemma 3.2 guarantees such inequality only for i = 1, . . . , 8, as coefficients hj(x)
belong to the space A only for x being in symplexis R1, . . . , R8. In particular the application of Lemma 2.4
gives stronger result than that which follows directly from Lemmas 3.2 and 2.5.

As a corollary we obtain the following result.

Corollary 4.1. If we assume additionally in Lemma 4.2 that f ∈ C then we have f(x) = (Pf)(x) for every
x ∈ R

4, and consequently the space C agrees with A.

First proof of Corollary 4.1. At first we note that for arbitrary open and bounded set U ⊆ R
4 we will find

g ∈ G such that U ⊂ g(R1). Thus according to Lemma 4.2 applied to f and −f we see that f agrees in U
with a certain polynomial belonging to the space A. As two polynomials which agree on an open subset of R

n

must be the same, we see that f ∈ A. This implies C ⊆ A. The reverse inclusion is obtained by direct
computation. �

The above result could also be obtained as the consequence of the following known result due to Murat and
Tartar (see e.g. [16], Th. 3.3 on p. 27, [53], Th. 5.1, [80], Th. 18).

Theorem 4.1. Assume that f : R
m → R defines a weakly continuous functional If given by (1.4). Then f is

a polynomial of degree min{n, m}, moreover, the following property is satisfied:

⎧⎨
⎩

Given arbitrary r ∈ N and (ξ1, λ1), . . . , (ξr, λr) ∈ V such that
rank{ξ1, . . . , ξr} ≤ r − 1, we have for arbitrary s ∈ R

m

f (r)(s)(λ1, . . . , λr) = 0.
(4.2)

Second proof of Corollary 4.1. It reminds to note that in our case we have Λ = ∪4
i=1span{ei} ⊆ R

4, and
V ⊆ R

2 × R
4. Hence C ⊆ A, while the reverse inclusion is obtained by direct computation. �

Let us introduce the following definition.

Definition 4.1. Let P : C0(R4) → A be the projection operator defined by (2.1), R1 be the principal symplex
given by (2.2) and G be the special group of invariances. We will say that f ∈ C0(R4) is a sub A-function with
respect to the projection operator P on G-similar sets to R1 (in short sub(A, P, R1, G)) if the inequality

f(x) ≤ (g∗Pf)(x)

holds for every g ∈ G and every x ∈ g(R1) where (g∗Pf)(x) =
∑

j∈{0,1}4 hj(g−1x)f(gj).

Remark 4.3. In other words the above definition means that the inequality f(x) ≤ (Pf)(x) is satisfied for
every x ∈ R1 and the same inequality is satisfied for fg, for every g ∈ G.
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Remark 4.4. Note that the above definition is related to the classical definition of convexity. Let us take
instead of A the space of affine functions on R and denote it by A. Take R = [0, 1], and let P be the projection
operator from C0(R) to A, given by

Pf(x) = (1 − x)f(0) + xf(1) := h1(x)f(0) + h2(x)f(1),

and consider the group G1 of transformations of R generated by translations x �→ a + x and dilations x �→ bx.
Then one could define in analogous way the class of sub A-functions with respect to the projection operator P
on G1-similar sets to R by saying that f ∈ sub(A, P, R, G1) if the inequality

f(x) ≤ (h1(g−1(x))f(g(0)) + h2(g−1(x))f(g(1))

holds for every g ∈ G1 and x ∈ g(R) where g ∈ G1. As an arbitrary g ∈ G1 is of the form: g(t) = a + bt, the
above inequality is equivalent to the inequality:

f((1 − t)a + t(a + b)) ≤ (1 − t)f(a) + tf(a + b),

which holds for arbitrary a, b ∈ R, and t ∈ [0, 1]. But this is nothing else than convexity.

Now we are in the position to state our main result.

Theorem 4.2. Assume that f ∈ C0(Rm) defines a weakly lower semicontinuous functional If given by (1.4),
V and Λ are the same as in Theorem 1.1. Then f satisfies the following condition:
Let (ξ1, λ1), (ξ2, λ2), (ξ3, λ3), (ξ4, λ4) ∈ V are such that λi’s are linearly independent, ξ1 and ξ2 are linearly
independent, ξ3 = ξ1 + ξ2 and ξ4 = ξ1 − ξ2. Then for arbitrary A ∈ R

m the mapping

R
4 � x = (x1, x2, x3, x4) �→ f̃(x) = f

(
A +

4∑
i=1

xiλi

)

is a sub(A, P, R1, G) function.
In the case when f defines a weakly continuous functional If the described mapping above belongs to the

space A.

Proof. It suffices to note that for arbitrary ui ∈ L∞(R) (i = 1, 2, 3, 4) the set {A +
∑4

i=1 ui(< x, ξi >)λi} is the
subset of ker P . In particular f̃ defines special functional which is lower semicontinuous with respect to the
weak-∗ convergence of the ui’s in L∞. �
Remark 4.5. Obviously, the second statement can be deduced directly from Theorem 4.1. A similar result
for f̃ depending on three variables only is given in Theorem 3.2 in [34].

Our next results apply directly to the variational case. As the consequence of Theorem 4.2 we obtain the
following theorem.

Theorem 4.3. Assume that Ω ⊆ R
n is a bounded domain, and f ∈ C0(Rn×m) defines a sequentially weakly-∗

lower semicontinuous functional on the Sobolev space W 1,∞(Ω, Rm): Ĩf (w) =
∫

Ω f(∇w(x))dx, where w : Ω →
R

m. Let us take A ∈ R
n×m, two independent vectors: ξ1, ξ2 ∈ R

n, and a1, a2, a3, a4 ∈ R
m and define λi = ξi⊗ai

for i ∈ {1, 2} and λ3 = (ξ1 + ξ2)⊗a3, λ4 = (ξ1 − ξ2)⊗a4, where ξ⊗a = (ξiaj)i=1,...,n,j=1,...,m ∈ R
n×m. Assume

that all λi’s are linearly independent. Then the mapping

R
4 � x = (x1, . . . , x4) �→ f̃(x) = f

(
A +

4∑
i=1

xiλi

)

is a sub(A, P, R1, G) function.
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Figure 2. D+
(0,0,1) and D−

(0,0,1).

Proof. In this case the manifold V consists of pairs (ξ, ξ ⊗ a) where ξ ∈ R
n \ {0} and a ∈ R

m. Hence the result
follows directly from Theorem 4.2. �

Remark 4.6. Continuity assumptions can be violated in all our statements. It suffices to assume that f is
Borel measurable and locally bounded. The argument is the following. Assume at first that f : R → R is
Borel measurable, locally bounded and defines the lower semicontinuous functional If (u) =

∫
[0,1]

f(u(x))dx

defined on the class of measurable and bounded functions u : R → R. Let u(x) be the periodic extension of
χ[0,t]A + χ[t,1]B where t ∈ (0, 1) and A, B ∈ R are taken arbitrary, and let uν(x) = u(νx) where ν ∈ N. If we
apply lower semicontinuity assumption to this sequence we see (the argument follows directly from Riemann–
Lebesgue’s Theorem, see e.g. Lem. 1.2 in [16]) that f must be convex, so also continuous. This argument can
be used in the proof of Theorem 1.1, where one restricts the general functional If to the subspace in ker P
given by {A + v(< x, ξ >)λ, v ∈ L∞} where (ξ, λ) ∈ V . In particular, every Borel measurable and bounded
integrand which defines a lower semicontinuous functional given by (1.4) must be Λ-convex, so also continuous
in all Λ-directions. In particular if Λ spans all of R

m then f must be continuous. In our arguments we study
the behaviour of f along subspaces spanned by Λ only (starting from an arbitrary point in R

m), so continuity
assumption is satisfied there. This remark was presented to us by Pietro Celada.

5. Final conclusions and remarks

There are a series of questions and remarks naturally arising after following these results. We state them
below with the hope that the proposed research program will contribute to further development of this research
field.

Three dimensional conditions

Remark 5.1. Let D be an arbitrary tetrahedron in R
3 with three edges parallel to the axes. It is obtained by

translation and dilation I of the cutted corner of the standard cube Q = [0, 1]3 (see Fig. 2).
Let us denote D = I(D+

(0,0,1)), where D+
(0,0,1) = conv{(0, 0, 1), (0, 1, 1), (1, 0, 1), (0, 0, 0)}. Let P +

D f be the
only polynomial from 7 dimensional space of polynomials span{1, xi, xixj : i, j ∈ {1, 2, 3}, i �= j}, which equals
with f in 7 corners of the cube Q̃ = I(Q), all except I(1, 1, 0).
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Let f ∈ C0(R3) and consider the following functional

If (u) =
∫

[0,1]2
f(u1(x1), u2(x2), u3(x1 + x2))dx1dx2, (5.1)

where ui ∈ L∞(R).
It was proved in [34] that if the functional If is lower semicontinuous then the following inequality

f(x) ≤ P +
D f(x) (5.2)

holds for every x ∈ D.
Obviously, such an inequality implies analogous inequalities for integrands defining lower semicontinuous

functionals having the general form (1.4), satisfied on three dimensional symplexes, see Theorem 3.2 in [34]. We
do not know if it is possible to obtain three dimensional conditions analogous to (5.2) as the direct consequence
of our new four-dimensional conditions obtained in Lemma 4.2 and Theorem 4.2.

Remark 5.2. Three dimensional conditions (5.2) obtained in Theorem 3.1 in [34] were satisfied on all cutted
corners of the standard cube [0, 1]3 (as for example D+

(0,0,1) under notation of Rem. 5.1). Our new four dimen-

sional conditions obtained in Lemma 4.2 are satisfied on R1 and his G̃ similar cousins. None of this symplexes
is the cutted corner of the standard cube in R

4.

Remark 5.3. Assume that f ∈ C0(R3) defines a lower semicontinuous functional of the general form (1.3).
The calculations in Section 3.4 suggest that there is a whole family of new conditions of the form f(x) ≤ Pf(x),
where P is a certain projection operator onto the space of sufficiently good polynomials, which are satisfied on
three dimensional symplexes. We can easily deduce such one’s with similar but different statements to (5.2) on
symplexes obtained by transformations of T2 in Lemma 6.6 (see the Appendix). This shows that even three
dimensional conditions still require further investigations.

Perspectives for further geometric conditions

Remark 5.4. We think that if one considers functionals of the form

If (u) =
∫

Ω

f(u1(A1x), . . . , um(Amx))dx (5.3)

where ui : R → R and Ai : R
n → R are some linear operators then additional geometric conditions will appear.

These conditions will be satisfied on symplexes with the specially prescribed geometry and probably will have a
form of inequality between f on the symplex and some projection operator onto the space of weakly continuous
functionals given by (5.3) like in Lemma 4.2. The relation between the structure of the Ai’s, the geometry of
these symplexes and the projection operators in this relation requires systematic study. Such issue should lead
to the generalization of Theorems 4.2, 4.3 and Theorem 3.2 in [34].

New conditions and CW-structures

Remark 5.5. Note that the new geometric conditions have CW-structural nature: they are given inside
symplexes, and on their lower order skeleton’s. For example Λ-convexity condition is the condition given on the
subset of the 1-skeleton of the symplex.

Some other estimates

Remark 5.6. In [34] also other conditions were obtained. It was shown in Theorem 3.2 there that under
notations of Remark 5.1 we have for every x ∈ D− = I(D−

(0,0,1))

f(x) ≤ (P−
D f)(x), (5.4)
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where D−
(0,0,1) = conv{(1/2, 1/2, 1/2), (1/2, 0, 1/2), (0, 1/2, 1/2), (1/2, 1/2, 1)}, and P−

D f(x) is the disturbation
of P +

D f(x): P−
D f(x) = P +

D f(x) + Rf(x), where Rf(x) = dist(x, D)2 · ∆3f , dist(x, D) is the distance function,
and ∆3f is certain combination of values of f in corners of Q̃ (the exact definition is given in [34]). In
particular P−

D f(x) does not define weakly continuous special functional of the form (5.1), as it was the case
of P +

D f(x). It would be interesting to know if one may obtain (5.4) as the consequence of inequalities like (5.2).
One can also obtain variants of (5.4) on four dimensional symplexes (they cannot be relatives to the nobel R1),

with regular term disturbed by square roots of distances from walls of those symplexes. We have seen this in
our calculations when writing this paper, but because of technical difficulties we did not take care about their
exact form.

Geometric conditions and elliptic systems

Remark 5.7. Let us look at the inequality in Definition 4.1: f(x) ≤ (g∗Pf)(x) more closely. Its right hand side,
h = g∗Pf , is the solution to the elliptic system: ∂2

∂x2
i
h = 0 for i ∈ {1, 2, 3, 4}, ∂

∂xi

∂
∂xj

∂
∂xk

h = 0 for different i, j, k,
and h agrees with f on certain given set (related to g(R1), it consists of corners of g(Q) where Q is the standard
cube). Inequality holds in the certain set of dimension 4. We think we have to do with a kind of subsolutions
to elliptic systems. Recall that if one deals with a single elliptic equation then the subsolution has the property
that if it coincides with the solution to this equation on the boundary of the sufficiently regular set Ω then
inside Ω it is less or equal than this solution (see e.g. [26, 28]). Here we deal with similar property. We refer
e.g. to [2,3,12,13,27,44,47,49], and their references for various maximum principles for solutions of linear and
nonlinear elliptic systems.

Numerical treatment and Morrey’s conjecture

Remark 5.8. In the literature there are several of examples of functions which are known to be rank-one
convex but it is not confirmed whether they are quasiconvex (see e.g. [1,10,18,19,29,75]). Now one could check
at least numerically if those functions satisfy the new three and four dimensional geometric conditions obtained
in [34] and in Theorem 4.2. The numerical verification of three dimensional conditions was done in [74].

Šverák’s example and locality

Remark 5.9. It was shown in [34] that the rank-one convex function which is not quasiconvex constructed by
Šverák in his famous paper [77] does not satisfy the new geometric conditions on three dimensional symplexis
(see Rem. 4.1 in [34]). It is possible to verify that also four dimensional conditions of our Theorem 4.3 cannot
be satisfied by this function either. The sketch of the proof is the following. If we relax the dependence of f
on x4 in Lemma 4.2 we arrive at the same inequality as (5.2) but on a subsymplex of D. Now we can use
the same arguments as in Remark 4.1 in [34] and show that Šverák’s function (after the slight modification to
make it strongly rank-one convex) does not satisfy this three dimensional condition. Thus it cannot satisfy the
four dimensional conditions either. This shows also that our four dimensional conditions cannot be local: there
exists strongly rank-one convex function which is not quasiconvex and does not satisfy this condition. But as
was shown by Kristensen (see [39] for details) every strongly rank-one convex function agrees with quasiconvex
functions on balls covering R

n×m. As each of them satisfies four dimensional conditions, it follows that our
conditions restricted to functions defined on n × m matrices where n ≥ 2 and m ≥ 3 cannot be local (see also
Rem. 4.5 in [34]).

New conditions and null-Lagrangians

Remark 5.10. It is known that if f : R
n×m → R defines weakly continuous variational functional given by

(1.1) then f is a null-lagrangian, that is f belongs to the linear space spanned by {1, λij, mI,J} where mI,J

are minors of matrices in R
n×m (see e.g. [5, 6, 11, 16, 17, 23, 80, 81]). In particular if n = m = 2 the space of

null-lagrangians is 6 dimensional. As the determinant function is affine along every rank-one direction and is the
polynomial of degree 2, we see that under the notation of Theorem 4.3 the function f̃ belongs to A for arbitrary
four rank-one matrices λ1, . . . , λ4 like in Theorem 4.3. Since A is 11 dimensional space, we do not think we
can expect that for an arbitrary quasiconvex function f̃ the mapping P f̃ will be a null-largangian. It would be
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interesting to understand the relations between projections P f̃ of quasiconvex integrands and null-lagrangians.
We refer e.g. to [30–32,45, 55, 71, 85] and their references for selected results on null-lagrangians.

Are our conditions sufficient for lower semicontinuity?

Remark 5.11. Let us consider the variational case. If we deal with gradients of scalar functions of two variables,
that is m = 1 under the notation of (1.1) then quasiconvexity condition is equivalent to the usual convexity. It
would be interesting to know what is the answer on two related questions:

1. Is it true that if we deal with second gradients of scalar functions of two variables, that is ∇u ∈ R
2×2

and ∇u is symmetric, then rank-one tetrahedral convexity condition (the condition on three dimensional
symplexes) of Theorem 4.1 in [34] is equivalent to quasiconvexity?

2. Is it true that in the case n = m = 2 (gradients are 2 × 2 matrices) our new geometric necessary
conditions on four dimensional symplexes are also sufficient for quasiconvexity?

For answers on both questions it would be helpful to know if our new convexity conditions on three and four
dimensional symplexes from Theorem 3.1 in [34] and Lemma 4.2 are also sufficient for lower semicontinuity
of functionals If (u) =

∫
[0,1]2

f(u1(τ1), u2(τ2), u3(τ1 + τ2))dτ and If (u) =
∫

[0,1]2
f(u1(τ1), u2(τ2), u3(τ1 + τ2),

u4(τ1 − τ2))dτ respectively.

Hulls, envelops and other remarks

Remark 5.12. Let f ≥ 0 and f qc and f rc be the quasiconvex and rank-one convex envelop of f , that is
the largest quasiconvex and rank-one convex minorant of f respectively. By the Fundamental Relaxation
Theorem we know that the minimum value of If given by (4.3) is the same as the minimum of Ifqc in the
class {u ∈ W 1,∞(Ω, Rm) : u ≡ Fx on ∂Ω} (see e.g. [16, 72]). It is not known how to compute in general the
quasiconvex envelop of f (see e.g. [36,37,43,70] for some of the very few results), but as quasiconvexity implies
rank-one convexity we have f qc ≤ f rc ≤ f . Hence the minimum of If is the same as the minimum of Ifrc and
it becomes important to be able to compute the rank-one convex envelop of f when one looks for minimum of
If . Now we can introduce envelopes of f which will be related to the new geometric conditions. Let us denote
them by fx. As these conditions imply rank-one convexity condition we will have f qc ≤ fx ≤ f rc ≤ f , so fx

will be closer to the quasiconvex envelope of f than f rc. Perhaps the new envelopes will be more helpful for
numerical computations, for example it will be easier to find the minimizing sequence for Ifx than for Ifrc .
We refer e.g. to [9, 20, 21, 36, 37, 46, 67] and their references for the approach related to rank-one convex and
quasiconvex envelopes and their computation.

Remark 5.13. Let K ⊆ R
n×m be the closed subset. In variational problems of martenstic phase transitions and

material microstructures, in the general theory of Partial Differential Inclusions solved by the method of Convex
Integration due to Gromow and its applications to construct wild solutions of nonlinear elliptic and parabolic
systems (see e.g. [7,8,15,35,59–63,79]) one introduces various semiconvex hulls of sets. Those hulls are defined
as quasiconvex, rank-one convex and lamination convex hulls respectively. The first two hulls are defined as
cosets of quasiconvex and rank-one convex functions respectively (see e.g. [79, 86] for details). The lamination
convex hull is defined as the smallest set K̂ with the following property: K ⊆ K̂ and for all A, B ∈ K̂ which
satisfy rank(A−B) = 1 where the interval [A, B] is also contained in K̂. Now one can define hulls described with
the help of new geometric conditions. For example instead of adding the rank-one intervals in the construction
of rank-one convex hulls one can add symplexes instead and obtain richer sets. Perhaps this new hulls will be
helpful in the computation of quasiconvex hulls of sets. We refer e.g. to [22, 38, 41, 86] and their references for
the related works.

Remark 5.14. Some other questions related to three dimensional conditions for integrands defying lower
semicontinuous functionals were stated in [34]. One can forward them and use four dimensional conditions
instead.
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6. Appendix

This section is devoted to find a possibly shorter way to compute special distributions of measures stated in
Lemma 3.2. The result will be achieved in several steps presented successively in the proceeding subsections.

6.1. Properties of the Sk spaces

Although our point of interest is the case k ∈ {3, 4} only, the calculations for this special cases are not
essentially shorter.

We will deal with compositions of operators Πε
i and Πi.

At first let us describe the superpositions of operators si
ε. For 1 ≤ i1 ≤ · · · ≤ it ≤ l and ε1, . . . , εt ∈ {0, 1}

we define the transformation of indices by putting ε1, . . . , εt on place i1, . . . , it. Namely, the operator sε1,...,εt

i1,...,it
:

{0, 1}l−t → {0, 1}l is given by
sε1,...,εt

i1,...,it
(j) = si1 ◦ · · · ◦ sit(j).

This operation induces the mapping Πε1,...,εt

i1,...,it
: Sl → Sl−t, given by

(Πε1,...,εt

i1,...,it
{h})j := {h}s

ε1,...,εt
i1,...,it

(j) = (Πε1
i1

◦ · · · ◦ Πεt

it
{h})j .

The above definition makes sense for arbitrary l ≥ it and l is not included in the notation. We also set

Π1
i1,...,it

:= Π1,...,1
i1,...,it

and Π0
i1,...,it

:= Π0,...,0
i1,...,it

.

For example if {h} ∈ S3 then Π1
1,2{h} = {h(1,1,j)}j∈{0,1} ∈ S1. Note that in most situations Πε

1,2 = Πε
1 ◦ Πε

2 �=
Πε

2 ◦ Πε
1.

We introduce operators of discrete integration in i1, . . . , it direction:

Πi1,...,it := Πi1 ◦ · · · ◦ Πit : Sl → Sl−t,

where 1 ≤ i1 ≤ · · · ≤ it ≤ l.
We will also deal with compositions of operators Π0

r1,...,rt
, Π1

l1,...,ls
and Πt1,...,tm .

Namely, let A = {r1, . . . , rt}, B = {l1, . . . , ls} and C = {t1, . . . , tm} be disjoint subsets of {1, . . . , k}, r1 ≤
· · · ≤ rt, l1 ≤ · · · ≤ ls, t1 ≤ · · · ≤ tm (in particular t + s + m = N ≤ k). For i ∈ A ∪ B ∪ B we define operators
ΠA,B,C

i by

ΠA,B,C
i =

⎧⎨
⎩

Πi if i ∈ A
Π1

i if i ∈ B
Π0

i if i ∈ C.

As their domain one can consider Sl with an arbitrary l such that for the given i we have: i ≤ l.
Let us write the numbers: r1, . . . , rt, l1, . . . , ls, t1, . . . , tm in an increasing order: a1 < a2 < · · · < aN . Then

we define
©Πr1,...,rtΠ

1
l1,...,lsΠ

0
t1,...,tm

= ΠA,B,C
a1

◦ · · · ◦ ΠA,B,C
aN

: Sk → Sk−N . (6.1)

The described above operators will be sometimes also denoted by ©Πi∈AΠ1
i∈BΠ0

i∈C .
For example if {h} ∈ S7, we have (©Π2,3Π1

1,5Π0
4,6{h})j =

∑
ε1,ε2∈{0,1} h(1,ε1,ε2,0,1,0,j), where j ∈ {0, 1}. In

other words, the operator ©Πi∈AΠ1
i∈BΠ0

i∈C{h} restricts {h} (treated as mapping defined on {0, 1}k) to the
subset of those j ∈ {0, 1}k which have 1 in all places from B and 0 on each places from C, then integrates such
restricted {h} in all directions from the set A, with respect to the counting measure.
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6.2. The T k spaces

Let r, k ∈ N and r ≤ k. By s(r, k) we denote the set of all subsets of {1, . . . , k} consisting of r elements; we
will identify this subsets with ordered sequences: l1 . . . lr where 1 ≤ l1 < · · · < lr ≤ k. This set consists of

(
k
r

)
elements.

By T r,k we denote all functions from s(r, k) to R, that is all finite sequences {ts}s∈s(r,k). Note that the
space T r,k is isomorphic to R

N with N =
(
k
r

)
, in particular T k,k can be identified with R. For our convenience

we also denote T 0,k = R.
Let j = (j1, . . . , jk) ∈ {0, 1}k. If |j| = r and j has 1 on place t1, . . . , tr where t1 < t2 < · · · < tr, we denote

d(j) = {t1, . . . , tr} ∈ s(r, k); in particular every j ∈ {0, 1}k determines uniquely an element of s(|j|, k).
Let us introduce the special subsets of s(r, k):

s(r, k, j) = {s ∈ s(r, k) : d(j) ⊂ s}

(note that s(r, k, j) = ∅ if |j| > r), and define the following operations on the space T r,k: if A = {As}s∈s(r,k) ∈
T r,k, we set ∑

A =
∑

s∈s(r,k)

As,

+j∑
A =

∑
s∈s(r,k,j)

As (6.2)

(if |j| > r the second sum is zero).
We set T k = T 0,k × T 1,k × · · · × T k,k. As this space is isomorphic to R

N with N = 2k, it follows that
it is also isomorphic to Sk. Elements {A} ∈ T k will be identified with long vectors {A} = {Ar}k

r=0 where
Ar = {Ar

s}s∈s(r,k) ∈ T r,k.

6.3. Special isomorphism

Our techniques will be based on the lemma about isomorphism presented below.

Lemma 6.1 (Lemma about isomorphism). Let k ∈ N, {A} = {Ar}r=0,...,k ∈ T k, ©Πi�∈sΠ1
i∈s{h} be as in (6.1)

and
∑+j be as in (6.2), and consider the system of 2k linear equations with unknown {h} ∈ Sk:{

Π1,...,k{h} = A0,
©Πi�∈sΠ1

i∈s{h} = Ar
s, r ∈ {1, . . . , k}, s ∈ s(r, k). (6.3)

The solutions to this system are uniquely determined by the formulae

hj = (−1)|j|
k∑

r=|j|
(−1)r

+j∑
Ar. (6.4)

Proof. Let B : Sk → T k be the linear mapping associated to the system (6.3), so that (6.3) reads as B{h} = {A}.
Let j0 ∈ {0, 1}k, and {δj0} ∈ Sk be such that (δj0)j = 0 if j �= j0 and (δj0)j = 1 if j = j0. Obviously,
vectors {δj}j∈{0,1}k form the basis in Sk. Moreover, an easy calculation shows that B{δj0} = {A(j0)} where

(A(j0))r
s =

⎧⎨
⎩

1 if r = 0
1 if r ≥ 1 and s ⊆ d(j0)
0 if r ≥ 1 and s �⊆ d(j0),

for r ∈ {0, . . . k} and s ∈ s(r, k), in particular vectors {A(j0)}j0∈{0,1}k are linearly independent. This implies
that B is the isomorphism. To justify that the formulae (6.4) holds true at first we write it in the form:
C{A} = {h} where {A} ∈ T k and {h} ∈ Sk; then we show that C = B−1. This will be done if we prove that

C{A(j0)} = {δj0} for every j0 ∈ {0, 1}k, (6.5)
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as this implies that C agrees with B−1 on the basis {A(j0)}j0∈{0,1}k of T k. The justification of (6.5) follows by
easy calculations which are left to the reader. �
Remark 6.1. For the reader’s convenience we list the solutions to the system (6.3) for k = 3 and k = 4 in
tables below, putting for simplicity A3

123 = A3 and A4
1234 = A4.

j hj

(0, 0, 0) A0 −∑A1 +
∑

A2 − A3

d(j) = {s} A1
s −∑{j1j2:s∈{j1,j2}} A2

j1j2 + A3

d(j) = {s1, s2} A2
s1s2 − A3

j = (1, 1, 1) A3

Solutions for k = 3.

j hj

(0, 0, 0, 0) A0 −
∑

A1 +
∑

A2 −
∑

A3 + A4

d(j) = {s} A1
s −

∑
{j1j2:s∈{j1,j2}} A2

j1j2 +
∑

{j1j2j3:s∈{j1,j2,j3}} A3
j1j2j3 − A4

d(j) = {s1, s2} A2
s1s2

−
∑

{j1j2j3:s1,s2∈{j1,j2,j3}} A3
j1j2j3

+ A4

d(j) = {s1, s2, s3} A3
s1s2s3

− A4

j = (1, 1, 1, 1) A4

Solutions for k = 4.

Our further calculations will be based on the following observation.

Corollary 6.1. Suppose that {h} ∈ S4(Q) is unknown, but that we know all expressions:
∑

j hj(x) = A0(x),∑
j:jk=1 hj(x) = A1

k(x) where k ∈ {1, 2, 3, 4},
∑

j:js1=1,js2=1 hj(x) = A2
s1s2

(x) where s1 < s2 and si ∈ {1, 2, 3, 4},∑
j:js1=1,js2=1,js3=1 hj(x) = A3

s1s2s3
(x) where s1 < s2 < s3 and si ∈ {1, 2, 3, 4}, and h1111(x) = A4(x). Then

all the values of hj’s can be reconstructed from the formulae (6.4) (and the table given in Rem. 6.1) from the
given quantities.

6.4. Some preliminary calculations

In this and the remaining subsections we will calculate expressions Ai(x) in Corollary 6.1 for i ∈ {1, 2, 3, 4}
in the selected subregions of Q. We will be interested in those regions only where all those quantities agree with
special polynomials from the space A. Let us start with the following lemma.

Lemma 6.2. Functions hj defined by Lemma 2.5 satisfy the following relations:

i)
∑

j∈{0,1}4

hj(x) = 1, ii) ∀l ∈ {1, 2, 3, 4}
∑

j∈{0,1}4, jl=1

hj(x) = xl,

iii) ∀k, l ∈ {1, 2, 3, 4} k �= l
∑

j∈{0,1}4, jk=1, jl=1

hj(x) = xkxl.

Proof. In the same manner as in Lemma 3.2 in [34] part i) follows from substitution f(λ) = 1, part ii) from
substitution f(λ) = λl and part iii) from substitution f(λ) = λkλl. (The case (k, l) = (3, 4) is geometrically
explained in Fig. 3.) �

As a corollary we obtain the following fact.

Corollary 6.2. Let D ⊆ Q be such subregion that all expressions hi
111(x) (where i ∈ {1, 2, 3, 4}) and h1111(x)

agree with polynomials from the space A when x ∈ D. Then for every j ∈ {0, 1}4 the function D � hj(x) agrees
with a function from the space A.

Proof. Combine Lemmas 6.2 and 6.1. �
Remark 6.2. However for every j ∈ {0, 1}4 the function hj(x) is a piecewise polynomial function of degree
not bigger than two, in general it does not belong to the space A in the region where it behaves polynomially.
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Figure 3. 2 · x3√
2

x4√
2

= x3x4.

Now we will compute the expressions h3
111(x) and h4

111(x), leaving the more complicated calculations for
h1

111(x), h2
111(x) and that of h1111(x) to remaining subsections.

Lemma 6.3. The mapping x = (x1, x2, x3) �→ h4
j(x) belongs to A for every j ∈ {0, 1}3 if and only if x ∈ D4 =

{(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 < 1, x3 > x1 + x2} or x ∈ S(D4). The respective values of {h4
j(x)} in the sets D4

and S(D4) are given in the two tables below.

j (0, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 1)

h4
j(x) (1 − x3)(1 − (x1 + x2))

x3(1 − x1)
+x2(x1 − x3)

(1 − x3)x1 (x3 − x2)x1

j (0, 1, 0) (0, 1, 1) (1, 1, 0) (1, 1, 1)
h4

j(x) (1 − x3)x2 x2(x3 − x1) 0 x1x2

h4
j in the set D4

j (0, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 1)
h4

j(x) (1 − x1)(1 − x2) 0 (1 − x2)(x1 − x3) x3(1 − x2)
j (0, 1, 0) (0, 1, 1) (1, 1, 0) (1, 1, 1)

h4
j(x) (1 − x1)(x2 − x3) x3(1 − x1)

(1 − x2)(x3 − x1)
+(1 − x3)x1

x3(x1 + x2 − 1)

h4
j in the set S(D4)

The proof of this fact is given in [34], but for the reader’s convenience we include the sketch.

Proof. According to Lemmas 6.1 and 6.2 it suffices to calculate h4
111(x) and use table given in Remark 6.1 for

k = 3. Then we use the result about invariances (Lem. 3.1), which shows that calculations can be reduced to
the region {x1 + x2 < 1, x1 > x2}. �

Our next lemma immediately follows from Lemmas 3.1 and 6.3.

Lemma 6.4. We have x = (x1, x2, x4) �→ h3
j(x) ∈ A for every j ∈ {0, 1}3 if and only if x ∈ D3 or x ∈ S(D3),

where D3 = (x1, x2, x4) ∈ [0, 1]3 : x1−x2 < 0, x4 > x1+1−x2} and there we have h3
111(x) = h4

101(x1, 1−x2, x4) =
(x4 + x2 − 1)x1, while for x ∈ S(D3) the value of h3

111(x) equals x2x4.

6.5. The computation of h1
111 and h2

111

We are now computing the functions h1
111 and h2

111 in the selected regions of [0, 1]3. The values of h1
111 are

obtained with the help of the following lemma.
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(0,0,1) (0,1,1)

(0,1,0)(0,0,0)

(1,0,0)

(1,1,1)

(1,1,0)

( 1
2 ,0,1)

( 1
2 ,1,0)

�

�
�

x2

x3x4

T1

T2

T3

T4

Figure 4. The tetrahedrons T1, T2, T3, T4.

Lemma 6.5. The mapping x = (x2, x3, x4) �→ h1
111(x) belongs to the space A if and only if x ∈

⋃4
k=1 Tk,

where Tk for k = 1, 2, 3, 4 are disjoint tetrahedrons

T1 =
{

(x2, x3, x4) ∈ [0, 1]3 : x2 > 1 +
x3 − x4

2

}
,

T2 = T1 −
(

1
2
, 0, 0

)
=
{

1
2

> x2 >
1 + x3 − x4

2

}
, T3 = S(T1), T4 = S(T2).

Under the above notation we have

h1
111(x2, x3, x4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x3(x4 + x2 − 1) if (x2, x3, x4) ∈ T1

x3

(
x2 − 1 − x4

2

)
if (x2, x3, x4) ∈ T2

x2x4 if (x2, x3, x4) ∈ T3

x4

(
x2 − 1 − x3

2

)
if (x2, x3, x4) ∈ T4.

Remark 6.3. The figure presented below shows the position of sets Ti in the cube [0, 1]3.

Proof. The proof follows by steps: 1) We assume that x3 ≤ x4, x3 + x4 < 1. 2) We complete the proof of the
lemma.

Proof of step 1. Let us denote for simplicity I = h1
111(x2, x3, x4), and consider the following five sets

A0 = {(τ1, τ2) : τ1 + τ2 < x3}
A1 = {(τ1, τ2) : 0 < τ1 + τ2 − 1 < x3}
B0 = {(τ1, τ2) : 0 < τ1 − τ2 < x4}
B1 = {(τ1, τ2) : 0 < 1 + τ1 − τ2 < x4}
H2 = {(τ1, τ2) : τ2 ∈ [0, x2]}.

Figure 5 represents geometrically the position of the sets A0, A1, B0 and B1 in the cube [0, 1]2. �



86 K. CHE�lMIŃSKI AND A. KA�lAMAJSKA

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

.....................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


...........................................................................................................

...............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..................................................................................................................................................................................................................................................................................................................

...........
...........
...........
...........
............
...........
............
...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
...

...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
...........
............
...

...........
...........
...........
...........
............
...........
............
...........
............
...........
...........
............
...........
............
.

........

........

........

........

........

........

........

........

........

....

............................................................................�

�

�

�

�

�
A0

A1
B0

B1

τ1

τ2

x3 x3

x4 x4

x3 < x4

x3 + x4 < 1

Figure 5. The sets A0, A1, B0, B1.

Then I = I1+I2+I3+I4 where I1 = |A0∩B0∩H2|, I2 = |A0∩B1∩H2|, I3 = |A1∩B0∩H2|, I4 = |A1∩B1∩H2|.
As for every a, b, c, d, α, β ∈ R, we have

L(a, b, c, d, α, β) =
∫ b

a

(∫ d+βτ2

c+ατ2

dτ1

)
dτ2 = (b − a)

[
(d − c) +

1
2
(β − α)(b + a)

]
. (6.6)

After easy computation we find that

I1 =
∫ min{x2,

x3
2 }

0

(∫ x3−τ2

τ2

dτ1

)
dτ2 =

⎧⎨
⎩

x2x3 − x2
2 if x2 ≤ x3

2
x2
3

4 if x2 >
x3

2
·

To calculate I2 we observe that A0 ∩ B1 = ∅, so immediately I2 = 0.
Let us calculate I3. Subtracting the inequalities defining sets A1 and B0 we get 1−x4 < 2τ2, so for 2x2 < 1−x4

we obtain I3 = 0. Now, for x2 > (1 − x4)/2 we conclude that I3 has the following form

I3 =
∫ min{x2,

1+x3
2 }

1−x4
2

(∫ min{x3+1−τ2,x4+τ2}

max{τ2,1−τ2}
dτ1

)
dτ2.

Let us decompose [0, 1] into 5 subintervals Ci = [ai−1, ai] where i ∈ {1, . . . , 5}, with the help of 6 ordered
numbers: a0 = 0 < a1 = (1 − x4)/2 < a2 = (1 + x3 − x4)/2 < a3 = 1/2 < a4 = (1 + x3)/2 < a5 = 1. Then

max{τ2, 1 − τ2} =

{
1 − τ2 on C1 ∪ C2 ∪ C3

τ2 on C4 ∪ C5,
while

min{x3 + 1 − τ2, x4 + τ2} =

{
x4 + τ2 on C1 ∪ C2

x3 + 1 − τ2 on C3 ∪ C4 ∪ C5.

Now using (6.6) we easily compute the values of I3 on every set Ci and present them in table below.

Cj [0, 1−x4
2 ] [1−x4

2 , 1+x3−x4
2 ] [1+x3−x4

2 , 1
2 ] [1

2 , 1+x3
2 ] [1+x3

2 , 1]

I3 0 (x2 + x4−1
2 )2 −x2

3
4 +

x3(x2 − 1−x4
2 )

x3x4
2 −

(1+x3
2 − x2)2

x3x4
2
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In a similar manner we calculate I4. First we observe that for all (τ1, τ2) ∈ A1 ∩ B1 we have 2 − x4 < 2τ2, so
for 2x2 < 2 − x4 we have I4 = 0, while for x2 > (2 − x4)/2

I4 =
∫ x2

1− x4
2

(∫ min{x4−1+τ2,1+x3−τ2}

1−τ2

dτ1

)
dτ2.

After the simple calculation based on (6.6) we find the values of I4 on subintervals Di of [0, 1], and present them
in table below

Dj [0, 1 − x4
2 ] [1 − x4

2 , 1 − x4
2 + x3

2 ] [1 − x4
2 + x3

2 , 1]

I4 0 (x2 + x4
2 − 1)2 −x2

3
4 + x3(x2 − 1 + x4

2 )

Adding all pieces together we obtain the following result

I = I1 + I2 + I3 + I4 ∈ A ⇔ x2 > 1 +
x3 − x4

2
and I = x3(x4 + x2 − 1)

or
1 + x3 − x4

2
< x2 ≤ 1

2
and I = x3

(x4

2
+ x2 − 1

2

)
·

Proof of step 2. Using Lemmas 6.2 and 6.1 for k = 3 we calculate all the h1
j ’s in the regions T1 ∩ {x3 ≤

x4} ∩ {x3 + x4 ≤ 1} and T2 ∩ {x3 ≤ x4} ∩ {x3 + x4 ≤ 1}. The obtained values are presented in the next two
tables below. �

j (0, 0, 0) (0, 0, 1)
h1

j(x) (1 − x2)(1 − x4) (1 − x2)(x4 − x3)
j (1, 0, 0) (1, 0, 1)

h1
j(x) (1 − x4)(x2 − x3) x2(x4 − x3) + x3(1 − x4)
j (0, 1, 0) (0, 1, 1)

h1
j(x) 0 x3(1 − x2)
j (1, 1, 0) (1, 1, 1)

h1
j(x) x3(1 − x4) x3(x4 + x2 − 1)

h1
j(x2, x3, x4) in the set T1.

j (0, 0, 0) (0, 0, 1)
h1

j(x) (1 − x4)(1 − x2 − x3
2 ) x4(1 − x3

2 − x2) + x3(x2 − 1
2 )

j (1, 0, 0) (1, 0, 1)
h1

j(x) (1 − x4)(x2 − x3
2 ) x2(x4 − x3) + x3

2 (1 − x4)
j (0, 1, 0) (0, 1, 1)

h1
j(x) x3

2 (1 − x4) 1
2x3x4 + x3(1

2 − x2)
j (1, 1, 0) (1, 1, 1)

h1
j(x) x3

2 (1 − x4) 1
2x3x4 − x3(1

2 − x2)

h1
j(x2, x3, x4) in the set T2.

Now we use Lemma 3.1. Since the isometry B1(x2, x3, x4) = (x2, 1−x4, 1−x3) transforms the region {x3 ≤ x4}
into itself and the region {x3 + x4 < 1} into {x3 + x4 > 1}, we find the whole region where h1

111 ∈ A in
the set {x3 ≤ x4}. It is easy to see (Rem. 6.3) that this is the set T1 ∪ T2. Moreover, using the identity
hj(x) = hB1j(B1x) we obtain the formulas for all h1

j in T1 ∪ T2. Those formulas are the same as presented in
the two tables above. Now having described the whole region where h1

111 ∈ A in the set {x3 ≤ x4} we use the
symmetry with respect to the point (1/2, 1/2, 1/2): S = B1◦B2, and according to the formulae h1

j(x) = h1
Sj(Sx)
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we find all functions h1
j in sets T3 and T4. Obviously, T1, T2, T3 and T4 are the only regions where we have

hj ∈ A for all j’s.

j (0, 0, 0) (0, 0, 1)
h1

j(x) (1 − x3)(1 − x2 − x4) (1 − x3)x4

j (1, 0, 0) (1, 0, 1)
h1

j(x) (1 − x3)x2 0
j (0, 1, 0) (0, 1, 1)

h1
j(x) (1 − x2)(x3 − x4) + x4(1 − x3) x4(x3 − x2)
j (1, 1, 0) (1, 1, 1)

h1
j(x) x2(x3 − x4) x2x4

h1
j(x2, x3, x4) in the set T3.

j (0, 0, 0) (0, 0, 1)

h1
j(x) (1 − x3)(1 − x2 − x4

2 ) 1
2x4(1 − x3)

j (1, 0, 0) (1, 0, 1)

h1
j(x) (1 − x3)(x2 − x4

2 ) 1
2x4(1 − x3)

j (0, 1, 0) (0, 1, 1)

h1
j(x) (1 − x2)(x3 − x4) + 1

2x4(1 − x3) x4(1
2 − x2 + x3

2 )

j (1, 1, 0) (1, 1, 1)

h1
j(x) (x2 − 1

2 )(x3 − x4) + 1
2x3(1 − x4) x4(x2 − 1

2 + x3
2 )

h1
j(x2, x3, x4) in the set T4.

�

Now we will calculate h2
j(x1, x3, x4). We have

Lemma 6.6. The mapping x �→ h2
j(x) belongs to the space A for every j if and only if x ∈ ∪4

i=1Ŝ(Ti) where Ti

are the tetrahedrons from Lemma 6.5 and Ŝ denotes the symmetry with respect to the plane {x4 = 1
2}. Moreover,

we have

h2
111(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3x4 if x ∈ Ŝ(T1) = {x1 >
x3 + x4 + 1

2
}

1
2
x3x4 if x ∈ Ŝ(T2) = {1

2
> x1 >

x3 + x4

2
}

x1(x3 + x4 − 1) if x ∈ Ŝ(T3) = {x1 <
x3 + x4 − 1

2
}

(x1 − 1
2
)(x3 + x4 − 1) +

1
2
x3x4 if x ∈ Ŝ(T4) = {1

2
< x1 <

x3 + x4

2
}

where x = (x1, x3, x4).
Proof. This follows immediately from Lemmas 3.1 and 6.5. �
6.6. The computation of h1111 and proof of Lemma 3.2

Now we are ready to complete the proof of Lemma 3.2.
Proof of Lemma 3.2. The proof follows by steps:
1) We show that the maximal A-regular subset in

Ω1 = {(x1, x2, x3, x4) : x1 + x2 < 1, x2 ≤ x1, x3 + x4 < 1}
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is contained in

R1 = {x ∈ Q : x1 + x2 < 1, x3 + x4 < 1, x3 > x1 + x2, x1 ≤ 1/2, 2x1 > x3 + x4}.

2) R1 is the maximal A-regular subset of Ω1, and for x ∈ R1 we have

h1111(x) = x2x4.

3) We compute hj ’s for x ∈ R1.
4) We complete the proof of the lemma.

Proof of step 1. Let us denote the maximal A-regular set under consideration by P1. According to Lemma 6.3
we have

P1 ⊆ Ω2 = Ω1 ∩ {x ∈ Ω : x3 > x1 + x2}.
Then by Lemma 6.4

P1 ⊆ Ω3 = Ω2 ∩ {x ∈ Q : x1 > x2 + x4}.
An easy computation shows that if x ∈ P1 we have 1 > x3 > x1 + x2 > 2x2 + x4, which implies x2 ≤ 1/2,
and x4 ≤ x3. Now we apply Lemma 6.5. As x2 ≤ 1/2, we have P1 ⊆ Ω3 ∩ (T2 ∪ T3) (we identify Ti’s with its
embeddings in Q ⊆ R

4). But Ω3 ∩ T2 = ∅, because T2 ⊆ {x4 ≥ x3} (see Fig. 3). Hence

P1 ⊆ Ω4 = Ω3 ∩ {x ∈ Q : 2x2 < x3 − x4}.

Then we use Lemma 6.6, which implies that

P1 ⊆ Ω4 ∩ (Ŝ(T1) ∪ Ŝ(T2) ∪ Ŝ(T3) ∪ Ŝ(T4)).

Now it suffices to verify that
Ω4 ∩ Ŝ(Ti) = ∅, for i = 1, 3, 4. (6.7)

The property (6.7) for i = 1 follows from the sequence of inequalities: 2x1 > x3 + x4 + 1 > x1 + x2 + x4 + 1,
which implies the impossible one: x1 > x2 + x4 + 1 > 1; (6.7) for i = 3 and i = 4 contradicts the fact that
x3 + x4 < 1 on P1. Summing up all conditions describing P1 we get

P1 ⊆ R1 = {x ∈ Q : x1 + x2 < 1, x2 ≤ x1, x3 + x4 < 1,

x4 ≤ x3, x3 > x1 + x2, x1 > x2 + x4, x4 ≤ 1/2,

x2 ≤ 1/2, 2x2 < x3 − x4, x1 ≤ 1/2, 2x1 > x3 + x4}.

Now it suffices to eliminate those conditions in the description of P1, which are implied by the other. To do
this let us denote inequalities defying P1 by 1)–11) respectively. Then it suffices to note that 6) implies 2), 5)
and 6) imply 4) and 9), 6) and 10) imply 7) and 8), 5) and 11) imply 6). Since R1 is the nonempty intersection
of 5 halfspaces, it is the symplex in R

4.

Proof of step 2. According to Lemma 6.1, Corollary 6.1 and Lemma 6.2 we have D � x �→ hj(x) ∈ A for
every j if and only if D � x �→ hi

111(x) ∈ A for i = {1, . . . , 4} and D � x �→ h1111(x) ∈ A. We have shown in
the proof of step 1 that the mapping R1 � x �→ hi

111(x) is represented by elements of A. Hence it suffices to
show that h1111(x) ∈ A for x ∈ R1. We will show it by direct computation of h1111(x). For simplicity we put
I = h(1,1,1,1)(x). Then an easy computation shows that for x ∈ R1 we have I =

∫ 1

0

∫ 1

0
g(τ1, τ2)dτ1dτ2, where

g(τ) = f0(τ)f1(τ)f2(τ)f3(τ), and for τ = (τ1, τ2)

f0(τ) = χτ1∈[0,x1],τ2∈[0,x2],

f1(τ) = χ(τ1+τ2)<x3 ,

f2(τ) = χ[τ1−τ2]1∈[0,x4],

f3(τ) = χτ1>τ2
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(as for τ1 ≤ τ2 and x4 ≤ 1/2 the function f2 vanishes). Note that f0f3 �≡ 0 only if τ2 < x1, while f1 �≡ 0 if
τ2 < x3 and τ1 < x3 − τ2, so f1f3 �≡ 0 only if τ2 < x3 − τ2, which is equivalent to: τ2 < x3/2. Hence

I =
∫ min(x1,x2,x3/2)

0

∫ h(τ2)

τ2

dτ1dτ2, where h(τ) = min(x1, x3 − τ, x4 + τ).

But for x ∈ R1 we have min{x1, x2, x3/2} = x2, and min{x1, x3 − τ, x4 + τ} = x4 + τ if τ < x2. Thus I = x2x4.

Proof of step 3. Lemmas: 6.3, 6.4, 6.5, 6.6 give for x ∈ R1: h1
111(x) = x2x4, h2

111(x) = 1/2x3x4, h3
111(x) = x2x4,

h4
111(x) = x1x2, h1111(x) = x2x4. Thus we can use Remark 6.1 and calculate all the remaining coefficients hj on

R1. Note that according to our notation we have A0 = 1, A1
j = xj , A2

j1j2
= xj1xj2 , A3

123 = h4
111, A3

124 = h3
111,

A3
134 = h2

111, A3
234 = h1

111, A4
1234 = h1111.

Proof of step 4. Consider the following sets

C1 = {x1 + x2 < 1, x2 ≤ x1, x3 + x4 < 1}
C2 = {x1 + x2 < 1, x2 ≤ x1, x3 + x4 > 1}.

Since the isometry A1 in Lemma 3.1 transforms C1 onto C2, it follows from Lemma 3.1 and previous steps that
R1 ∪ (R2 = A1(R1)) is the maximal A-regular subset of

{x1 + x2 < 1, x2 ≤ x1}.

Now, if D is the maximal regular subset of {x1 +x2 < 1, x2 ≤ x1}, then A2(D) is the maximal A-regular subset
of {x1 + x2 < 1, x2 ≥ x1}. In particular R1 ∪ R2 ∪ (R3 = A2(R1)) ∪ (R4 = A2(R2)) is the maximal A-regular
subset of {x1 + x2 < 1}. Finally, it suffices to use the isometry A = A1 ◦ A2 ◦ A1 ◦ A2, which transforms the
region {x1 + x2 < 1} onto {x1 + x2 > 1}. Then we obtain the maximal A-regular subset of Q: ∪8

i=1Ri where
R4+i = A(Ri), where i = 1, . . . , 4. The coefficients on every symplex Ri for i = 2, . . . , 8 are calculated according
to the role hj(x) = hAj(Ax) in Lemma 3.1 from those given on R1, where we take A = E2, E3, . . . , E8 for
calculations on R2, R3, . . . , R7 and R8 respectively. �
Remark 6.4. It is easy to check that the set of coefficients {hj(x)}j for all symplexis Ri where i = 1, . . . , 8 is
different for different i.
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[52] F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978) 489–507.
[53] F. Murat, A survey on compensated compactness. Contributions to modern calculus of variations, L. Cesari Ed. Longman,

Harlow, Pitman Res. Notes Math. Ser. 148 (1987) 145–183.
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