ESAIM: Control, Optimisation and Calculus of Variations June 2002, Vol. 8, 827-862
URL: http://www.emath.fr/cocv/ DOI: 10.1051/cocv:2002025

BOUNDARY CONTROLLABILITY OF THE FINITE-DIFFERENCE SPACE
SEMI-DISCRETIZATIONS OF THE BEAM EQUATION * **

LILIANA LEON! AND ENRIQUE ZUAZUA?

Abstract. We propose a finite difference semi-discrete scheme for the approximation of the boundary
exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam
with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform
(with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural
functional setting. We then prove that there are two ways of restoring the uniform controllability
property: a) filtering the high frequencies, i.e. controlling projections on subspaces where the high
frequencies have been filtered; b) adding an extra boundary control to kill the spurious high frequency
oscillations. In both cases the convergence of controls and controlled solutions is proved in weak and
strong topologies, under suitable assumptions on the convergence of the initial data.
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1. INTRODUCTION

The transversal vibrations of a 1-d beam with hinged boundary conditions are modelled by the following
equation

u 4+ u=0 in Q=(0,1) x (0,T)

u(0,t) = u(1,t) =0 t e (0,7) X

02u(0,t) = %u(1,t) =0 te (0,7) W
)

uw(z,0) =u’(z), u'(x,0)=ul(z) z€(0,1),
where ’ denotes the derivative of u with respect to time.
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828 L. LEON AND E. ZUAZUA
When (u®,ul) € H}(0,1) x H=1(0,1) there exists a unique solution u such that
u € C([0,T]; Hg (0,1)) N C([0, T]; H~(0,1)). (2)
This solution admits the Fourier expansion
oo
u(z,t) = Z{ak cos k*m2t + by, sin k*n*t} sin k7, (3)
k=1

with suitable Fourier coefficients depending on the initial data (u”,u!).
The energy associated with (u®,u') € H}(0,1) x H=1(0,1) is given by

1
B(6) = 5{ IO+ I ol @
where ||.]|1 and ||.]| -1 are the canonical norms in H{(0,1) and H~1(0,1), respectively. Namely

1 1/2
ol = [ [ @ ae] " s = -0l

where (—92)7! denotes the inverse of the operator —9? with homogeneous Dirichlet boundary conditions at
x=0, 1.

It is easy to see that the energy F(t) is conserved along time for the solutions of (1).

Applying multipliers or Fourier series techniques one can prove a boundary observability inequality showing
that, for every T > 0, there exists C = C(T') > 0 such that

E(0) < C/T |0u(1,1)|? dt, (5)
0

for every solution of (1) (see Lions [10]).

As a consequence of this observability inequality and Lions” HUM method [10] the following boundary
controllability property may be proved:

For all T > 0 and (y°,y*) € F = H}(0,1) x H~1(0,1), there exists a control v € L?(0,T), such that the
solution of

y'+0ly=0 in @Q=1Ix(0,T)

y(oat) - y(lvt) =0 te (OaT) ( )
6

92y(0,t) =0 Ozy(1,t) =v t€(0,7)

y(’JJ,O) = yo(x)v yl(l‘,O) = yl(x) €l
satisfies
y(z,T,v) =y'(z,T,v) = 0.

The main objective of this work is to study the controllability of the classical semi-discrete space approximation
by finite differences of (6). We also study the convergence of controls and controlled solutions as the mesh-size
tends to zero. Our work provides two alternative methods for the numerical approximation of the exact control
v of equation (6).
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In Section 2 we analyze the problem of the observability of the finite-difference space semi-discretization of
the beam equation (1). In Section 3, combining the results of the previous section, we find two results of uniform
controllability (as the mesh size tends to zero) of the semi-discrete space approximation by finite differences
of (6). The first one concerns the partial control obtained by filtering the high frequencies and the second
one the control of the semi-discrete solutions by means of a suitable modification of the boundary control. In
Section 4, we study the convergence of the solutions of the previous semi-discrete problems as the mesh-size
tends to zero.

2. ANALYSIS OF THE BOUNDARY OBSERVABILITY PROBLEM

For each N € N we consider a partition of I = (0,1), P = {20 =0,...,2; = jh,..., 2, = 1}, where the
mesh-size is h = 1/(N + 1).

To get a discrete definition of the boundary conditions of the problem (1) using centered finite differences,
we also introduce two external points z_; = 9 —h and x,., = x,,, +h. We denote by uy ;(t) the
approximation of the solution of (1) at the point ;. We also set up,—1 = —up,1 and up N2 = —Up,N-

The semi-discretization by finite differences of (1) is then given by the following system of N ordinary
differential equations,

up ;= —% [un jr2 = dun jr1 + Oupj — dun 1 + unj—2),

0<t<T j=12,...N

Upo =uUpN+1 =0, 0<t<T (7)
Up,—1 = —Uh1 Uk N4+2 = —Up,N, 0<t<T

un,j(0) =ug ; uj,;(0)=uj;, j=1,2,...N.

Here the initial conditions (u?, u}) of (7) are suitable approximations of the initial conditions of (1) at the points
x; of the mesh. It is easy to see that the scheme (7) is convergent as h — 0 in the classical sense, i.e. it is
consistent and stable.

The eigenvalue problem associated to (7) is as follows

L BG"(h) = B (h)

Pk,0 = Ok,N+1; (8)
Q-1 = —Pr1 Ok,Nt2 = —PrN
where
5 —4 1 0 o 0
—4 6 —4 1 0 .o 0
1 —4 6 —4 1 0 ......... 0
0 1 —4 6 —4 1 0 0
0 0 1 —4 6 —4 1 0
0 ......... 0 1 —4 6 —4 1
0 o 1 —4 6 —4
O 1 -4 5

NXxN
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FIGURE 1. Graph of discrete eigenvalues G (h) for different values of h
eigenvalues 3, = k*7* of the beam equation.

Note that B = A? with

-2 1 0 0
1 -2 1 0 ......... 0
0 1 -2 1 0 0
A = '..
0 0 1 -2 1
0 ... 0 1 -2 1
0 e 0 1 -2

NXN

and the continuous

(10)

The matrix A arises in the semi-discrete approximation of Laplace’s equation in one space dimension and its

eigenvalues and eigenvectors are well known (see [6]);

4 krh
Ai(h) = o sin’ <%> k=1,2,...,N

(/j)’k(h) = (¢k717¢k,27"'7¢k,N) k= 1,2,...,N
bk, (h) = sin(jkmh).

Then, the eigenvectors of B are the same, and their eigenvalues are

16 . kmh
Br(h) = Ai(h) = Fsm4 (T) k=1,2,...,N.

The discrete eigenvalues 3;(h) approximate the eigenvalues of the continuous model 3, = k*r* for k fixed, when
the size of the mesh h tends to zero, and its eigenvectors ¢ ¥ (h) coincide with the eigenfunctions ¢* (x) = sin(knz)

of the continuous model (1) on the mesh points.
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Therefore, the solution of system (7) may be expressed as

i{akcos( Bu(h) t) + bksin< B(h) t)}&k(h) (14)

k=1

with @5 (t) = (up,1(£), un,2(t), ... up N (t)), for suitable Fourier coefficients a;, b; depending on the initial data.
We set A, = ;5 A, where A is as in (10) and we denote by A; " its inverse. We define the energy E"(t)
associated to problem (7) by

2

3‘

w1t un,J(t)r+‘(A p G (0) 0~ (AT D), (15)

h

N
Eh w

[\
<

which is an approximation of the continuous energy E(t). Note that Fj(t) is conserved along time for solutions
of (7).
It is then natural to analyze the following semi-discrete version of the observability inequality (5):

E"0) < C(T,h) /T

2
unN(t) ‘ at (16)
O h

where C(T', h) is independent of the solution of (7).

The observability inequality (16) is said to be uniform, if the constants C(T, h) are bounded uniformly in h,
as h — 0.

However, as we shall see below in Section 2.1, whatever T' > 0 is, the inequality (16) may not be uniform.

In order to restore the uniformity of the observability inequality with respect to h there are two possibilities:
(a) to restrict the class of solutions of (7) under consideration; (b) to reinforce the observed quantity on the
right hand side of (16).

Once the lack of uniform observability is proved in Section 2.1 the rest of this section will be devoted to
prove the two uniform observability properties mentioned above.

2.1. Non-uniform observability
Let us first recall the following observability identity for the eigenvectors of B (see Lem. 1.1 in [5])

%

9 2

— V/Bi(h) 1?)

This identity allows to show that the observability inequality may not be uniform as h — 0 for any T. More
precisely, we have the following negative result:

o _]-’rl - ¢k,] Ok,N

k=1,2,...N. (17)

Theorem 2.1. For any T > 0, we have

E"(0) )
sup — 00, as h—0. (18)
@n sol. of (7) < o [unn () /0] dt

Proof. For h > 0, consider (t) = (up1(t), upn,2(t), ..., unn(t)) the solution of (7), associated to the eigenfunc-

tion ¢ % (h):

n(t) = VO£ GE () = At G (), (19)
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According to (17)

T 2 2 T
t - 2 T
/ um};/( )‘ _ ‘¢k,N‘ e“k(h)t‘ qf — d (4 — Al Z ¢k]+1 or | (20)
0 0 =
Note that 4 — A (h) h? = 4 cos?(EZL).
On the other hand,
N 2
Pk j+1 — Prj
Eh _ »J »J
o)=Y [t
7=0
Therefore
1 T Up N(t) ‘2
EM"0) = / : dt. 21
© 2T cos?(521) Jo h (1)
Thus for any T > 0, taking £k = N and using that
N7h h
cos? (TW) = cos? <g — %) — 0 when h—0,
equation (18) holds immediately. O

Remark 2.1. Let 6 € (0,1) be given. The counterexample above may not be found in the class of low frequency
solutions with Fourier components corresponding to indexes k < §N. Indeed in that case, the quotient in (21)
may be bounded below by 1/[2T cos?§((m — wh)/2)] which is bounded as h — 0.

This observation motivates the uniform observability result we state in the following section for filtered
solutions in which the high frequency components have been filtered.
2.2. Uniform observability of filtered solutions

Given v € (0,16) and h > 0, we consider Cp () the class of solutions of (7) generated by the eigenvectors
of (8) associated with eigenvalues such that

B(h) < yh~*
More precisely,

Cnly) = {dn sol. of (7): @y = {akei\/ﬁ’“(h)t+bke’i\/ﬁ’“(h)t}¢;k(h) : (22)

Br(h)<~vh—*

Observe that, when v = 16, Cp(y) = Cp(16) coincides with the space of all solutions of the semi-discrete
problem (7). The following observability result holds in this class.

Theorem 2.2. Let 0 <y < 16. For all T > 0, there exists C = C(T,7) > 0 such that

EM"0) < C/OT

The proof of this result relies on Ingham’s inequality (see [17] for instance) in which the gap between the
consecutive eigenvalues of the semi-discrete system (7) plays a crucial role.

2
LN(”‘ dt Vi, € Ch(7), Vh > 0. (23)
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FIGURE 2. The function k& — v (h) for different values of h.

2.2.1. Analysis of the gap between consecutive eigenvalues

Let us first observe that the gap for the continuous model (1) satisfies

V Bk+1 — \/@ = (2k + 1)7* — oo.

Moreover, we have the following:

Lemma 2.1. The following properties hold:

sin =2 2
@) VB () = VE®m) > 3w2{ 2 } — 2

(4) lim  inf 2{\/ﬁk+1(h) - \/ﬁk(h)} — 372

he01§k§%,

i) lm  suwp {VBea(h) — VBB = .

h=01<p<lo

Proof. (i) We set

Ye(h) = /Brs1(h) — /Be(h), for k=1,2,...,N—1.
Using classical trigonometrical identities it follows that

2 4 2k + 1)mh h
vie(h) = —(cos kmh — cos (k + 1)7rh) = —sin @k + 1)mh sin =

h2

We observe that 0<%§W§w—% fork=1,2...,N —1.

T R2 2 9

833

(27)

Thus, for every h > 0, the function &k — ~,(h) describes a concave parabola which is symmetric with

1-h
2h

respect to k = as shown in Figure 2.
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Then, it is enough to consider k € N such that % < W < g, or equivalently 1 < k < % For those

indexes k we have
4 . 3rh) . (7h 1-nh
')/k(h) ZﬁSID{T}SIH{T}, VkeNnN |:1,T:| .

Using the trigonometrical identity sin3a = 3sina — 4sin® o in the previous inequality, we conclude that

sin T : sin 2 ! sin 2 :
’Yk(h) Z 3772 7rh2 _ 7T4h2 7rh2 Z 37T2 7rh2 _ 7T4h27
2 2 2

for every k=1,2,...,N — 1.

(ii) From (27) we have that

— sin sin — sin — - (28)

inf B {vw(h)} = inf paSinT—————sin—o- ¢ = -5 5 5

1 1
1<k<i 1<k<i-2

{4 . (2k+1)mh . w_h} 4 . 3wh . wh

Then, (25) holds.

(iii) Again from the equality (27) we have that

—s8in —————— sin — sin — sin

) = s { g D B T

{4 . (2k+1)mh . Wh} 4 T . wh
1<k<i—2 1<k<i—2

and (26) holds. O
We also have the following additional property:

Lemma 2.2. For all ys > 0, there exist 6 > 0 and ko € N such that:

VBii1(h) = v/ Br(h) = 7o (30)

for k=ko, ko+1,...,1/h—1—ky and V|h| <34.
Proof. In view of (29) there exists ko and 6 > 0 such that

Yo (h) > Yoo for all |h| < 6. (31)

Then, taking into account that the parabola k — ~;(h) is symmetric with respect to k = 12*hh, we deduce that
1—2h

() > 9 Tor k=ho, o T (32)

|
In view of the particular structure of the gap functions described above we need the following variant of Ingham’s
inequality, whose proof is very close to that of Theorem 3.4 given in [13].

Lemma 2.3. Let f(t) = Y dne™ ' where {u,}
neZ
N €N,y >0 and o > 0 such that

nez S a sequence of real numbers, such that there exist

('L) Hntl — fn =Y YN € Z.
(i1) Card{n € Z : pins1 — pin < Yoo} = N.
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Then, for any interval J=[0,T] CR with T > 3—” there exist two positive constants C1,Cy > 0 such that
T 2
25 DTN ) S IRTEYES SiTA (33)
nez 0 lnez nez

for all sequence {d,} € I2.
More precisely C1 = C1(N) and Cy = Co(N), where C;(j), i = 1, 2, are given by the following recurrent
formulas

. [/.ca0) 4 217"
Cij+1) = (2 T +1> Cl(j)(Tvmi2ﬂ)272+f ,
Cb(j) ::2{j Iﬂ+’cé(0)}7 j ::1a27"w

and C1(0),C2(0) are such that (33) holds in the particular case in which N = 0.

Remark 2.2. The main difference between Lemma 2.3 and that proved in [13] is that, here, the set of badly
separated p,-s is not necessarily constituted by the first n-s such that |n| < k¢ for some finite ko as in [13].

Proof. We proceed as in [3] and [13]. The proof is divided in two steps.

Step 1. We fix any T > 27/7+. Let us consider the set

Y={n€Z: tiny1— tin < Yoo} - (34)

Denote

g(t) = Zdnei“"t.

nez
ng¢yY

Applying Ingham’s inequality [13] to g(t), we have that there exist two constants C1(0) > 0 and C5(0) >0
such that:

T
C1(0) S Idal? < / g(t)2 dt < Co(0) 3 [dul?. (35)
nez 0 nez
ngy n¢yY
For
F(8) = g(t) + Y dnei?,
nez
ney
we have

2 2
Z d,e#nt 4 Z d,,e'nt +

ney ngy

E dnei“"t

ney

E dnei“"t

ng¢y

dt. (36)

/OT|f<t>|2dt - /OT 2§2/0T
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According to (35) we obtain

T
L/|ﬂnf& < 205(0 E:MF+2T<§ZW|>
0 ngy ney
< 205(0) D [dnl* +2TN Y |dn]® < (2C2(0) + 2T'N) Y |dn|*.
ng¢yY ney neL

This provides the second inequality in (33).

Step 2. We now argue by induction on N.
If N =0, equation (33) follows from (35). When N = 1,if Y = {d,, }, then

= E dnezunt_i_dnlelltnlt.
neZ
n¢y

In Theorem 3.4 of [13], it was proved that for n >0 and T’ =T —n, when f(t) = g(¢t) + d,,, then

22t CL(0) S Jdal? < /l‘/on(f(Hw)—f(t))

neZ
ng¢yY

2 T
&SW/Uw%t
0

On the other hand,

T T T
4l < 100 -g0F = 7 [ |f<t>—g<t>|2dts%{ | ropas | |g<t>|2dt}

nEZ
n¢yY

IN

Then, from (38) and (39) we have
4 2 8C5(0) }T
d.]? < — et =t 5= / t)|? dt
Z| F = {7 ?Ci(0) T T*n*C1(0) ] Jo de

nez
= {%%7ﬁn$hm)<ﬂ§@)+1)}ATV@”%M

If N=2,let Y = {ny,ns}. In particular, if ny = 0, we write f(t) as

o g dnelﬂnt+doezﬂ'n1t+dnzell-lfn2t.
nez
n¢Y

Setting

= 3 daent 4 d,

nez
n#nsg

(40)
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and applying the result in step 1 to g(t) we have

Ziar= (3o srptes (20} o

nes
n#ng

and

(2C2(0) +27) Y |dn|* > / lg(t)[? dt.

nez
n#ng

Thus, from the previous estimate it follows that

4l < 100 -g0F = 7 [ |f<t>—g<t>|2dts%{ | ropas | |g<t>|2dt}

2 T
< = 2dt+ (2 2T dn|?
< 21 [ or e ) Yl
kEZ—{nQ}
+4 t)|“ dt. 41
{7+ e (2 1) ()
Iterating this argument the first inequality in (33) follows. |

2.2.2. Proof of Theorem 2.2

In order to represent the solution in Cy(7) in a simpler way we introduce

1
Ih(y){kGN:1§k<E2 and ﬂk(h)gfyh_4}

and the functions

cx Ok keZnl,
myj =19 Cp O—k; —keZNI )
0 k¢ ZnI,
Br(h) keN
e (h) = "
—V/B-k(h) —keN.
The components of uy, are then given by
= 3 O .
keZ
Thus,
u;hj = Zi'ukaj(h)mk,j eiltk(}l)t
kEZ
A ns = =X iy e .

kEZ
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Substituting identities (44) and (45) in (15) and having into account that the matrix A, = 7z A is orthogonal,
we deduce that

2

Pk,j+1 — Pk,j Pk, j+1 — P j

N 2
E"(t) =h ZZ{W - e [P |5 } (46)
j=0 keN
Moreover, from (46) and the identity (17) we have that
2 _on e [ 2 mg, N |2
B't) < S+l P} 2| = 2 S| )
1=V i h =gtk
From Lemma 2.2, for all T' > 0 exists o > 0 and k¢ € N, such that
2m 1—-3h .
ukJrl(h)*,LLk(h) > ? VkGKo(h) =<cko+1,kg+2,..., h — ko Wlth|h| < dp. (48)

Hence Y = {1,2,...,11:0,% —koy..nys l’h% .
Let us observe that, independently of the size of h, the set of indices Y is constituted by 2k elements.

On the other hand, in (ii) of Lemma 2.1 it was proved that for all € € (0, 1), there exists d; > 0, such that
pr1(h) — pg(h) >37% —€¢ VEke€Z and |h| < 4. (49)

Thus, applying Lemma 2.3 in (47) it is immediate to check that, for all T' > 0, with 6 = min{dp, 1} > 0, there
exists a constant C'= C(T,~) > 0, such that

2
EM0)< C / dt, Vi, € Ch(y) with |h] < 0. (50)

TLN@)}

This completes the proof of Theorem 2.2. O

2.3. Uniform observability by reinforced boundary measurements

The goal of this section is to show that, in view of the gap properties obtained in the previous section, the
observability inequality is uniform if the boundary measurement is reinforced in a suitable way.

Theorem 2.3. For all T > 0, there exists C = C(T) > 0 such that

h T“h,N(t)r 2 r
E(O)gc{/o O g e

h
for all @y, solution of (7) and 0 < h < 1.

u;z,N(t) ?
T‘ dt} (51)

Proof. Consider i, with components as in (44). According to the identities (46) and (17),

2 2

Eh(o) — hi2(|0+|2+|07|2) ‘(bk,j-i-l_(bk,j
k k h

j=1keN

_ 2 m,N |2
-2 (4_|Mk(h)|h2)‘ h ‘ (52)

keZ*

— ; , - (bk—,N
_%(4fluk(h)|hz)(|6ﬂ +ler ) ‘ :
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On the other hand, from Theorems 2.2 and 2.1 we have that, for all T' > 0 there exists § > 0, such that

2
t 2
c1 Z‘mkN‘ / uhN()‘ dt > C4 Z‘mZN ) (53)
keZx kez*
for all |h| < §.
Analogously,
my N |2 T uj, v (1) 7 r ; mkN2
€2 Z |,uk(h)|2 ‘T‘ = / 7h ‘ dt = / Z ipr(h) etttk (h) t T d+
keZr 0 0 ez
m 2
> G Y )P [N (54)
kez~
Thus, for C' = min{Cy, C4 }:
T 2 T,/
up, N (t) 2 / uhN(t ) ‘mkN‘z
— _— t> 1 RV
/o h‘dHhO h —Z“‘W )=
ez
4 — | (R)| P2\ | v |2
2 2 .

On the other hand, for h sufficiently small,

(L+ A2 |uk(h)?) (4= h? |uk(h)]) = 4 {1+ﬁ - (|k|7rh)} ( )
24{0052 ('MTM)Jrk% sin ( )}24, for |k| =1,2,...,1/h — 1.

(56)
Therefore,
T 2 T l
t uj N (1) 2
/ Uh,N()‘ dt+h2/ h,N dt>cz i ‘mkN‘
0 h 0 keZ* |Mk )| 7?)
Ons |’
> ch Y Y i+ et )| PR (57)
keN j=1
This concludes the proof of Theorem 2.3. O
2.4. The reverse inequalities
The following holds:
Proposition 2.1. For any T > 0, there exists ¢ = c(T) > 0 such that
T 2
t
E"0) > c/o “’TN()‘ dt, Yin 0<h<l. (58)
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Proof. According to the identities (17) and (46), we have

B0 = Y g e OF |22

kez*
As 4 — (k) h? =4 cos?(2Z) < 4,

h 1 2 [Onn |’
EMt) =5 Y lmea(®)® | = (59)

kez*

Then, applying Lemma 2.3, taking (59) into account and properties (48) and (49) on the eigenvalues under
consideration we deduce (58). O
As an immediate consequence of Proposition 2.1 the following holds:

Proposition 2.2. For any T > 0, there exists ¢ = ¢(T) > 0 such that

up, N (2) 2dt+h2 /T up, N (t)
h 0

E"0)+ A% EM0) > ¢ {/T dt}, Y i, (60)
0

. . —ol . — .
where E" is the energy associated to Uy, instead of iy, i.e.

2

N ’ / 2 1o 1
h Up jy1 — Up (A "ty )njrn — (A Uy, g
Eh t) = = »J sJ h h >J h h 2] 61
H0=5 24" . (61)
Remark 2.3. Due to the fact that (J’h)’ = ﬁ,'l' = —A? iy, the energy E" satisfies

) — |
hjtl ~ Yhj
h

) = o Z{

=0

L ‘ (Antn)n,j+1 — (Aptp)n,;
h

1 o

3. CONTROL OF THE SEMI-DISCRETE EQUATION

In this section, we apply the observability results obtained above to analyze the controllability properties of
the semi-discrete system.

3.1. The semi-discrete control problem

Let P={0=a20 < 21 < -+ < &y41 = 1}. It is natural to introduce the following approximations of the
boundary conditions in (6):

Yo = Yn,N+1 =0
Yh,1 — 2%,0 + Yh,—1 = 0
YnNt2 — 2UnNi1 Fynn = h? va(t). (63)
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Let us now consider the following controlled semi-discrete systems
1 ]‘
Ynj = "33 {Wn,jr2 — 4njr1 +6Yn; — 4Ynj—1 + Ynj—2},
0<t<T, 1<j<N
Yro =YnN+1 =0, 0<t<T
Yn—1=—Yn1 YnNt2=—Ynn+hvy, 0<t<T
yh,j(o):y}0~L7J yg,](o):y}llh]a jzlaaN

(64)

This system may be viewed as a semi-discretization of (6) but also as the semi-discrete system (7) under the
action of a control v,.

We denote by 7, (t) = (yn.1(t), yn,2(t), ..., yn n(t)) the solution of (64), with control vp. Note that, ygﬁj and

y}L ; are, as usual, approximations of the initial conditions (y°,y') of the control problem (6) at the points z;.

3.2. The discrete spaces ‘Hj, and Hj,
The eigenvectors q; k(h) of the spectral problem (8) satisfy
N N
hY k(WP =y sin® (jkrh) = 1/2. (65)
j=1 j=1

However, to simplify the notation, in what follows, we shall normalize them so that
N
hIGH (W)l =h Y |ong(h)* = 1. (66)
j=1

For every s € R, introduce the finite dimensional Hilbert spaces Hj; = span{(,z_b'l(h), cee $N(h)} endowed with
the norm

N N
[0l =D Ni(h) lex|*,  whenever @, =Y e ¢ (h). (67)
k=1 k=1

In particular, H) will be denoted by L?.

Remark 3.1. The norm in H,:l is the dual to that in H}L in the sense that

| (U, Wn )o,n|

[Unll-1,n = sup = (68)
anent  |[Wnlln
N
where (T, W )0, = h Y vnjwp,; denotes the scalar product in L?.
j=1
We also introduce the discrete energy space Fp, = H} x H,:l, with norm
1(@n, )%, = 1@nlli n + 1500121 - (69)

The dual of F}, is denoted by Fj .
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Let us now introduce, for all A > 0 and 0 < v < 16, the space generated by the eigenfunctions (5 k(h) of the
spectral problem (8) with indexes on the set I , = {1 <k < 1/h —1: Ai(h) < \/7h~2}. In other words

Vhy = span{q;k(h) tk e I}w} .

For every s € R, we denote by Hj,  the subspace of ‘Hj generated by the eigenvectors (E k(h) with eigenvalues
lying in I}, endowed with the norm of Hj}, i.e.

a2, = D Ai(h) lexl?,  whenever %, = Y e ¢"(h).

kelh,'y kelh,'y

3.3. Partial controllability

Let v € (0,16) and T > 0. The partial controllability problem of system (64) in the space Fp, = H}L X H;l
consists in finding a control v, € L?(0,T') such that the solution g, of (64) satisfies

I, (5(T), 5i(T)) =0
where IL, is the orthogonal projection from Fj, into Fj . = Hflw X H;}Y and
IL, (5(), (1) = (L (D). L (1)) = | 30 ad (), Y wd™(h) | . (70)
kE€Ih kely ~

where (ay) and (by,) are the Fourier coefficients of (i, (T), 4, (T)) in the basis of the eigenvectors {¢* (h)}rer, .-

Multiplying (64) by uy, ;, adding in j, integrating in time, and using the symmetry of the matrix B, we get

T T
Uh,N t 1243 t
O*Z/ Yh,j uh] (Bh’th)h] dt+zyh]uh] yh]uh]) +/ %dt (71)
j=1 0 0
Thus, for all solution @}, of (7), we have
N N T
uh,N(t) Vh(t)
Z yh] uh,] T) - yh,]( uhg Z yhg uhg A,' ilLA, ) - /O T dt. (72)

Now, consider the functional Ly : RY x RV — R:
1 T unn (t) va(t)
Lt yh yh Z yh] “h; ,j up, ;) = o hz de.

We obtain the following characterization of the partial controllability property of system (64).

Lemma 3.1. Let T > 0 and v € (0,16). Problem (64) is partially controllable in Fj, = H} X H;l, iff for each
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(yﬁo,y*hl) € F, there exists v, € L?(0,T), such that

N 1

T
(yflz,j Ufoz,j - yfoz,j uilz]) = ﬁ/o vp(t) up,n(t) dt, (73)

j=1

for any initial data (u’}LO, u‘;’ll) associated to solution U € Cp(7y).

Proof. Tt is immediate from (72). O
The following uniform (with respect to h — 0) partial controllability property holds in the space Cp (7).

Theorem 3.1. For all T > 0 and v € (0,16) system (64) is partially controllable on Fj, = H} x H;l for all
0 < h < 1. Moreover, there exists a constant C = C(T,~) > 0, independent of 0 < h <1, such that

1nllz2 o,y < C I, WY, —4i°)lzz, YO<h<1,

for any (y_ilo, yﬁl) € Fn where vy, is the control of minimal L?(0,T)-norm.

Proof. We define the functional Jj, : RN x RV — R, by

n(wa) =5 [

where 4, is the solution of (7) in the class Cp,() with initial data (i7", ")

2 N
O 4 S (g~ ). (74)
h - g hyg J hyg

We have
N
Yn,j U Yn.j Uh,j = vYh YR ) YU TUR )
j=1
< g | [l 1h
< I h' =9 ") 7, (U%O,U%l)llfh- (75)

According to (75) and the direct inequality in Proposition in 2.1 we deduce that Jj, is continuous for each
0 < h < 1. Moreover Jy, is convex.

On the other hand, according to the observability inequality in Theorem 2.2, J, is coercive in Cy (7y), uniformly
on 0< h<1.

Thus, for each 0 < A < 1 there is a unique minimizer (u";'lo’ un b *) of the functional J:

Jh(u';’lo’*,uﬁl’*) = min Jh((uh U}, ))

(i 0ih ) EFh

Calculating the Gateux derivative of J, in (17", up"*), we get

T wf n(t) unn(t) N
- 0,% - 1% h,N »
Jh (( 0, ,uhlf )) (’U,ho”u,h ) = /0 T dt—h Z (y}lb,] U’?L,j - y}OLJ U’}L,])

j=1

= 0, Y(u',ui') € Fnne (76)

According to (73) and (76), v, = uj, n(t)/h is the control we were looking for.
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Let us finally prove the uniform L2(0,T)-bound on the controls. We have
Jh<( .0 *1*)) < J(0,0) = 0.
Moreover, from (75) it follows that
1 (T
i,

Combining (77) with the uniform observability inequality of Theorem 2.2 yields

“i*LA,N(t) ?
h

at < 0L, (71 =40") g 1), (77)

1/2
1T s () A PR g, n () 2
5/0 h;\; ‘ dt < C 1L, (yhlfyho) |7 </0 e B2 (78)
or, equivalently,
T up y ()]
h,N . -
Il = | at < o) I, (1, —5°) 1% (79)
where C(T,7) is independent of 0 < h < 1 as we wanted to prove. O

3.4. Uniform exact controllability with reinforced controls

In this section we analyze the problem of exact controllability. Thus, we look for controls such that the
whole solution (and not only its projections IIL,) vanishes at time ¢ = T. This will be achieved, as in the
previous section, minimizing a suitable quadratic functional with the aid of the uniform observability inequality
of Theorem 3.1. The additional term we add on the functional reinforces the observed quantity on the boundary
and leads to controls that are uniformly bounded in H~1(0,7) but not in L?(0,T). In fact, we will be able
to obtain a sharper decomposition of the control but, as mentioned above, it will be naturally bounded in
H=10,T).

Note that a control v, € H~1(0,T) such that the solution 7, of (64) satisfies

Gn(T) =93 (T) =0, forall he(0,1) (80)

may be characterized by the property that

3 unv (1)
h,N

DSk s~ v uhg) = (), ) -

j=1 H-1(0,T)x H'(0,T)
Observe that the duality between H~1(0,7) and H*(0,T) is not necessarily well defined. To avoid this difficulty
we shall build H~1(0, T)-controls with compact support in (0, T).

We emphasize that, for any A > 0, the controls v}, we shall obtain are arbitrarily smooth since we are dealing
with a linear finite dimensional control system but it is natural to work on the frame of H~1(0,T) to get uniform
bounds, as h — 0.

Theorem 3.2. For all T > 0, system (64) is exactly controllable in time T, for all h € (0,1). Moreover, for
all (4i.°,9,") € Fun = Hp x H;, " the control vy(t) may be found such that

va(t) = vin(t) + h vy, (t)



CONTROLLABILITY OF THE SEMI-DISCRETIZED BEAM EQUATION 845

where vy p(t) € L*(0,T) and vy, (t) € H-1(0,T) (with compact support on (0,T)) and so that

lv1nllLzom < C 1G22, 5 )| 7 (81)
-0 -
1m0, < C WL 905l 7, (82)

with a constant C > 0 which is independent of 0 < h < 1 and the data (y_ilo, y}'Ll) € Fp, to be controlled.

Proof. Given T' > 0 and € > 0 small enough (e < T'/2) we consider p.(t) € C*(R), so that 0 < p. <1, p. =1
in (¢,T — €) and the support of p. is compact in (0,7).
For (u’}bo, u‘;’ll) € Fp, we define the quadratic functional Jj, : RN x RY — R by

7o) =5 [

Observe that Jp, is continuous and convex. Moreover, according to Theorem 2.3, J;, is also coercive in F,.
- O,* — 17*

Therefore, there exists a unique (up, ", up ") € Fp, minimizing Jj.

2 h2 T
dt + — Pe (t)
2 0

up, N (1)
h

u;LN(t)
h

2 N
dt —h Z(yflz] Ufoz,j - yfoz,j uilz]) (83)
j=1

On the other hand, we have
N
he D Wh g = vhg )| < (g5 =6i") |
Yn,j Uhj = Ynj Ung)| S I\ Yn > —Yn ) lI7;
j=1

(u_ilo,u_}ll) 5, (84)

Computing the Gateux derivative of Jj, at the minimizer we deduce that

7 - 0,% = 1,%
Jh ((uh , Up,

)> ) ( 50 _,1) _ /OT U‘Z,N(t) uh,N(t) dt — n2 <(Pe (UZ,N)/) U};;N

Up U ) ; >
h h H-1(0,T)xH(0,T)

N
+h Z(u}lz] y}g,j - u(fJL,j y}lz_]) =0, V(ur’,ui') € F. (85)
j=1

The control we are looking for is then v, () = v1,4(t) + h vy ,(t), with

vin(t) = and  vpn(t) = —pe(t) (uh,n)'(t). (86)

On the other hand, Jh<(u710’*,u7bl’*)) < Jh((O7 0)) = 0. Hence,

1 (T [ upn® ], (uj ) ()] - 0 -1
g L W (LI S
2/0 { h pe(t) = \¥n h H; P xHL Yh h HLxH, ! (87)
Then, by Theorem 2.3, we get
17 up N ()] h? [t (uj, ) @) PR L0 1
3 1 e B [ a0 MR s it i 160
0 0

2 h2 T

dt + — pe(t)
2 Jo

L0 o 17 g () (uh,n) (1)
< C %5 <§ || M

2 1/2
dt> |
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Consequently

* 2 * ’ 2
up N (t) n2 [T (up n)'(t) 21 =0\ 2

] AL A < — .

| a [ | <o () B (35)

1 T
2,

Therefore, and pe(t)(u} y)'(t) are uniformly bounded in L?*(0,7'), and
!
o (e wiar®) o
hvy, =h is of the order of h in H~7(0,T). (89)
This completes the proof of Theorem 3.2. O

4. CONVERGENCE RESULTS

In this section we study the convergence as h — 0 of the semi-discrete systems without and with control.
We discuss both weak and strong convergence depending on the convergence properties of the initial data
and the controls.

4.1. Convergence for the uncontrolled semi-discrete system

We consider families {@p(t)} of solutions of (7) depending on the parameter h and study their limit behavior
as h — 0. Recall that @), admits the following development in Fourier series

N
in(t) =y mia(t) $*(h)
k=1
where

+ i Ak (h)t ke N
_Jep e se c N,
mi,n(t) = {c; el MMt gk ¢ N (90)

are the time-dependent Fourier coefficients.
Note that using the fact that sina/a > ¢ > 0, for all 0 < o < 7/2, for a suitable ¢ > 0 we have

ck®r? < \g(h) < k*n? forall 0<h<1, 1<k<N. (91)
Let us now introduce, for every s € R, the following Hilbert spaces of sequences
(o)
H = {{ck}keN €l K el < oo} , (92)
k=1

endowed with their canonical norms. In particular H° = I2.

Proposition 4.1. Let {4 (t)} be a family of solutions of (7), depending on the parameter h, with uniformly
bounded energies, i.e.

E"0)<C forall h>0. (93)
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Then, by extracting a suitable subsequence h — 0 we may guarantee that,

min(.) héo my(.)  weakly in HY(0,T), forall k€N, (94)
Z my(t) sin(krx)  solves (1) for suitable initial data, (95)
keN

u € C([0,T]; Hy(0,1)) n C*([0,T]; H~(0, 1)), (96)

E(0) < liminf E"(0), (97)

hz Jun @) ~— [u(®)i201) in L0, T). (98)

Proof. As an immediate consequence of (93) and from the conservation of energy we deduce that, for all
h € (0,1),

2
Uh,j+1 — Uh,j
h

+| - <

<AhH@Umﬁ1<Ah%aU”jf}<<c (99)

forall 0 <t <T.
Due to the fact that the eigenvectors ¢*(h) are orthogonal, we deduce that

N N 2
Pk jr1(h) — dr;(h)
B (Il + A2 (0)2) 3 | RS 4 < (100)
k=1 7=0
Since,
N N
¢k, )\k h
by L= o) S o (2 = 240, (101)
j=1 j=1
we conclude that, for all h € (0,1),
| XN
)= 3 2 (M) [maa @) + A7 () I n(0)F) < C: (102)
k=1
Then, from the uniform boundedness estimate (91) we have
{mn()}ren  uniformly bounded in L*°(0,T;H?'), (103)
{ ), ()}ren uniformly bounded in L*°(0,T;H™1). (104)
Thus, extracting subsequences, it follows that
mn(.) - m(.) weakly * in L>(0,T;H?), (105)
11—
my () — m/() weakly *in L>®(0,T;H™1). (106)

h—0
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In particular,

() = () weakly in L*(0,T; HY). (107)
1 () hjom/(.) weakly in L0, T;H ™). (108)

On the other hand, due to the fact that

mig g, + Ar(h) mi g, = 0, (109)
from (103) we have
S ONE(R) |mf =" el |men(®)|* < €, for all h e (0,1). (110)
keN keN
Consequently,
mi () — m”() weakly *in L>(0,T;H>). (111)

Using the classical Aubin-Lions compactness Lemma (see for instance Simon [14]), according to (105) and (111)
we deduce that

mp(.) — m(.) strongly in C([0,T];H®), forall s<1, (112)
and
e — i () strongly in  C([0,T); H™®), forall s> 1. (113)

According to the bounds (105) and (106) and the convergence (112) and (113) we deduce that

7, (0) h—\oﬁio weakly in  H?', (114)
my(0) — m' weakly in H ', (115)

h—0
where
m(0) =m® e H', w/(0)=m'eH L

Then, u is defined as in (95), u € L°(0,T; H}(0,1))nW1°(0,T; H1(0,1)) and, according to (105) and (106),
it is the solution of (1) with initial data

u’(z) = Z mQ sin(krz) € Hy(0,1), u'(z) = Z my, sin(krz) € H1(0,1).
kEN kEN

By uniqueness of solutions of (1) we deduce that (96) holds.
On the other hand, convergence (98) follows from (112) and (65). Indeed

N N
1
2 .
h El|uh,j(t)| =3 kgl | (%) 3 g |mg(t)|* = )|L2(O 1y, in C([0,T]). (116)
j= =
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We conclude this proof checking the property of lower semi-continuity of the energy (97). From (114) and (115)
we get

N
Z k% % |my(0)]? < 1i£11j51fz i () [mg 5 (0) (117)
keN k=1
N
302 7)) < liming S A;(8) . (0)” (113
keN k=1

Therefore, denoting A\ = k272 we have

> Imk(0)|2+>\k1|m§g(0)l2)Sligljgf{zkk(h) [ ()1 + D A () mi ( )IQ}, (119)

keN kEN keN
and (97) holds. O

4.2. Convergence of the normal derivatives

In the following propositions we study the convergence of the normal derivatives of the solution of the
semi-discrete systems. These results will be important in the study of the convergence of the solutions of the
controlled semi-discrete system.

Proposition 4.2. Let {@y(t)} be a family of solutions of (7) depending on h — 0 and satisfying (93). Let u be
any solution of (1) obtained as limit when h — 0 of {un(t)} as in the statement of Proposition 4.1. Then

WL’TN(t) — Oz u(1,t)  weakly in  L*(0,T), (120)

and therefore

T 2 T unn () [”
/ 10, w(L, B dt < liminf/ 7‘ dr. (121)
0 h—0 Jo h
Proof. From inequality (58) and (93) we have
T
/ “’l ‘ =3 ma M <C Vhe(0). (122)
h 2
0 ken L2(0,T)
Hence, there exists a subsequence of {h}o<pn<1, such that
t
o= Ny in 12(0,7). (123)
h h—0
On the other hand, from (112) it follows that
M n(.) s my(.) strongly in C([0,7]), forall keN. (124)
Moreover, for all k£ € N,
qbk,;;;l(h) _ sin(]\}flkzﬂh) _ sin k(lh— h)m — _cos(kn) sin(}klﬂrh) (125)
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converges to

—0y ¢k‘m:1 =—0, (sin(kﬂ'x))|m:1 = —cos(km) km, (126)
when h — 0.
Therefore, combining (124, 125) and (126) we obtain that
¢k,N(h) k .
_mk’h(')T p— mg(.) Oy @ ‘1:1 strongly in C([0,T]), VkeN. (127)

Let u(z,t) = > mg(t) sin(krx) be the limit solution of (1). It is sufficient to check that the weak limit v
keN
n (123) coincides with 9, u(1,t).

For any test function ¢ € D(0,T) we set

N
7k
Z M,y P D’(O,T)X’D(O,T)(’b (h) (128)
k=1
Z mg, 90>D'(0,T)><D(0,T) sin(kmz). (129)
keEN
It is then sufficient to check that
VN g (1), (130)
h h—o0
At this respect note that,
N
(Buiin)ng = —up ;== > mi ,(t) ¢r;(h) (131)
k=1
and
0y u(z) = —u"(2) = =y _mil(t) 9; ¢"(x). (132)
keN
Consequently,
N N
Bh’Uh Z Mk,h, ¥ D/(O T)xD(0,T) (Bh¢ Z mk hs P D’(O,T)XD(O,T)¢k’j (h‘)7 (133)
k=1 k=1
and

keN keN
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Consider the elliptic problem
0 (135)
(

From (134) we have g € H~1(0,1).

where g(z) = Y g* sin(kmz) with g% = <mg, 90>D/(o T)xD(0,T)"
et ; ,

On the other hand, let us consider the discretized problems

_(Bh Uh)h,j = 9h,js j:172a"'7N
Vh,0 = Vh,N+1 = 0 (136)

Uh,—1 = —Vh,1; Uh,N4+2 = —Un N

where g, ;j = Zgh sin(jkmwh) with gh <m§€"h, 90>D’(0,T)><D(0,T)'

Observe that from (107) and (108) we have

{min(ken = {mi()}ren  weakly in H™H(0, T H™Y). (137)
Consequently,
{oihion = 19" ren weakly in (138)

On the other hand, the solutions vy ; of (136) and v of (135), are given by

N . .
e sin(kwhy) .
= ) j=1,2,...,N
Uh,j kZIgh )‘i(h) y J PE) )

and

Z p sin(krz) k‘ﬂ'l‘

keN
Convergence (130) is equivalent to proving that
N N .
sin kth) gr  sin(krh)
Z ¥ h Z)\% D W cos(km) — = Zk;37r3 cos(km),

k=1 k=1

or, taking into account that the convergence of each term of the series for k fixed holds, for any € > 0 there
exists M, > 0, such that

koo k
gy sin(kmh g
Z ()\%(hh) (h ) _ k37r3) cos(km)| <. (139)
k> M,
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Taking into account that {g¥}reny € H ™1, it is easy to see that, for sufficiently large M.:

1/2 1/2
k
g 1 _ _
Z 7.3 cos(km)| < - Z k=2 |g")? Z k=% cos®(kn)
k> M. k> M. k> M.
1/2
C 1 €
< 3 Z P < 3 (140)
k> M.
Similarly, since ck? < \x(h) we have
1/2 1/2
sin(kmwh) |95 ] |94 k?m?
Z cos(km)| < 5 kr < Z 3
k> M. )‘ h k> M. A (h) k>0 Ak (h) k> M. A (h)
1o X 1/2 ]
2| k2
< C< k~2|gn > doml <% (141)
k> M. k>M.

for a sufficiently large M., independent of h.
This completes proof of (139) and that of Proposition 4.2 as well. O
The following result provides the strong convergence of the normal derivative under suitable assumptions on
the initial data.

Proposition 4.3. Let T >0 and h € (0,1). Let (4dj°u3') € Hp x Hy ' and (u®,u') € HE(0,1) x H=1(0,1)
be the initial conditions of problems (7) and (1), given by

i’ ka n 05 (h), ka n 65 (
ka o™ ( ka P (

keN keN

Assuming that m%h = mi,h =0 for all kK > N we suppose that

{mgyh}keN — {mQ}ren  strongly in  H*, (142)
{m,lcyh}keN P {mitren strongly in H™ ' (143)
11—
Then,
up,n(t) 9 o L2(0.T "
— 0 u(1,t) strongly in (0, 7). (144)

Proof. As a consequence of Proposition 4.2 we have

%TM — v u(l,t) weaklyin L(0,7),

where

N N
(kmh
= ];mkﬁ(t) ¢kT kzzj M cos(k)
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and

= mi(t) 0 #*|,_, =Y km mu(t) cos(kr). (145)

keN keN

To conclude the proof of (144) it is sufficient to show that the following holds:

[

Thus, it is sufficient to check that, for every € > 0, there exists M, > 0 such that

k: h)
sin(krh) cos(km) Zk‘ﬂ' my(t) cos(km)
keN

dt — 0.

h—0

2

T .
kmh
/ 3 <mk,h(t) % - mk(t)kﬂ> cos(kr)| dt <e. (146)
0 |k>n.
In view of the convergence (142, 143) and the conservation of the energies E" we deduce that:

T?lh(t) = {mk,h(t)}keN }:6 m(t) = {mk(t)}keN strongly in Hl, (147)

foral0 <t <T.
As a consequence of the direct inequality proved in Proposition 2.1 we deduce that

2

k’ h
/ Z M n( sin(km ) cos(km)| dt < Cy Z |mk7h|2 k*m2, VM >1. (148)
0 lk>m E>M

Due to the conservation of energy and taking hypotheses (142) and (143) into account we have that

Z | n|? k*7 % for M. large enough. (149)
k> M.
On the other hand, by the same argument,
2
r €
/ S (k) milt) cos(hn)| dt < Co 3 il k2 < © (150)
0 fg>M. E>M.
Combining (150) with (148, 149) convergence (146) follows immediately. O

4.3. Weak convergence of the semi-discrete problems with boundary control

In this section we study the convergence of the solutions of the controlled systems (64). In view of the two
uniform controllability results of Theorems 3.1 and 3.2 we distinguish two cases:

Theorem 4.1. Let T > 0, and 0 < v < 16. For any h € (0,1), consider (y‘;’lo,y_;}l) € H}w X H;}y and
(y°,y') € HE(0,1) x H=1(0,1), the initial conditions in (64) and (6) respectively, given by

Zak n GF( Zbk p 8F(h), ¥ = ap ", vt = b} " (151)

keN keN
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Assuming that,

{ag,h}keN hjo {aQ}ren  weakly in  H, (152)

{bintren = {bitren  weakly in H7T, (153)

then, (i (1), ¥ (1)) € Hj, ., X H,;lv and its partial controls v, € L?(0,T) are given as in Theorem 3.1. Moreover,
the Fourier coefficients arp(.) and by n(.) of yn and y_;h respectively, are such that

{akn(.)  ren - {ar()}ren weakly *in  L°°(0,T;H"), (154)
{brn(Veen = {bk(}ken  weakly *in  L2°(0,T;H™Y), (155)
vi(.) - v(.) weakly in L*0,T), (156)

where, (y(z,t),y (z,t)) = (Z ax(t) ¢k(x), > bi(t) ¢k(x)) solves (6), with control v(t), and y(T) = y'(T)
kEN kEN
= 0. The limit control v is given by

v(t) = =0, u*(1,1),

where u* is solution of (1), with data (u®*,u'*) € H}(0,1) x H=*(0,1) minimizing the functional

J((uo,u1)> = %/0 |81. u(l,t)|2 dt — <(y1,y0); (u?, —u1)>F,XF (157)

in H(0,1) x H1(0,1).

We consider now as initial datum for the semi-discrete equation (64) (7?2, 7!) € H} x H,:l. From Theorem 3.2
we obtain that the corresponding solutions and controls of (64) can be expressed by

Un(t) = Zn(t) + h @p(t) and vp(t) = vin(t) + h vy (1), (158)

N —
where Z, = 3. cpn ¢%(h) is the solution of (64) with control vy € L2(0,T) and initial data (47,°,%7"), and
k=1

N -
W, = > er.n ¢ (h) solves (64) with control vy € H71(0,T) and zero initial data.
k=1

Theorem 4.2. Let T > 0. For any h € (0,1), consider the initial data (32,5}) € Hi x H,' and
(y°,y') € HY(0,1) x H71(0,1) of problems (64) and (6) as in (151).

Assume that,

{ag,h}keN hjo {aQ}ren  weakly in  H, (159)

{bindren = {bi}ren  weakly in H7T. (160)
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Then, the controls vy, and the controlled solutions §y, in (158) satisfy

{ck,ntren o {ctren  weakly* in L0, T;H" ) NWH>(0, Ty H ™) (161)
h{exn}ren is of order h in L°(0,T;H™Y) N W1 (0,T; H™3), (162)
Vin =V weakly in  L*(0,T), (163)
h vy, s of order h in HY0,T), (164)

where y(z,t) = 3 en(t) ¢F(x) is solution of problem (6) with control v(t) = —8, u*(1,t) € L?(0,T) such that
keN

y(T) =y (T) =0 and u* solves (1) with the initial data (u®*,ub*) that minimizes the functional J defined

in (157) in HE(0,1) x H=1(0,1).

Proof of Theorem 4.1. We divide the proof in several steps.

First Step (Convergence of the Controls). In view of Theorem 3.1 and estimate (79), there exists a
subsequence {vp, }1, such that

vn(t) = “”TN“) —u(t) in L*0,T), as h— 0. (165)

Recall that 7,*(t) solves (7) with data (", up,"*) € H}, ., X H;l7 minimizing the functional Jj, defined in (74).
Moreover, as a consequence of the observability inequality (23) we have
(7,2 i )|, < C forall h > 0.

In these conditions, Proposition 4.2 guarantees that v(t) = d; u*(1,t), where u* solves (1).

Second Step. The solution ¢, of (64) satisfies
-/ — — -/ -1 -0 -0 -1
(v, (s),uh(s)>H;1Xﬁi — (Fn(s), i, (s))HiX?i;l = <yh , U, >H;1X71’1L - <yh , U, >H;1x71i
s t
+/ un(t) YN ® g, (166)
O h
for any ), € Cp(y) and all0 <s < T.

According to Proposition 2.1 and estimate (166), we obtain that

|53 (5), =9 ()7 < C Nl (i, =i

Combining (152, 153, 165) and (167), we deduce the existence of a subsequence of indexes {h}, such that

Fr + vale2o,r), Vs €(0,T). (167)

{akn(®hen = {ar()}ren  weakly *in  L(0,T;HY), (168)
{brn®}ken = {br()}ren  weakly *in  L%(0,T;H™Y), (169)
where by n(t) = aj ,(t) and  b(t) = ay(?).

Let us now prove that

{agyh(t)}kezv hjo {a)(t)}ken weakly in LQ(O,T;H_B). (170)
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For that it is sufficient to show that 33" is bounded in L?(0,T; H~3) or, equivalently, for any 0 € L2 (0, T;H3)

<C |\§h||L2(0,T;H§), Vh>0. (171)

(i @.0.00

>L2(0,T;H;3)xL2(o,T;Hg)

N S

In fact, by multiplying (64) by 65 ;(t) = > gk.n(t) ¢r; (the j-th component of 65), adding in j and integrating
k=1

n (0,7), we get that

N T N T
h Z/ Yy Onydt| = |h Z/ (Bh §n)nj On; dt
=0 =iJo
T N T
O, (t) -
= —/0 T v dt+ h z_:/o Yh,j (Bth)hyj dt
On, N
< /0 5 vy dt| + /0 Zakh h) grn(t) dt
k=1
- 1/2 - 1/2
< </O [{arn(t)} I3 dt) (/O [{gr.n(6)} |7 dt)
0 t
+ M |Vh|L2(0,T)' (172)
h L2(0,T)

On the other hand, due to 0,,(t) € L?(0,T;H;), the sequence of Fourier coefficients {gx 1 (t) }ren € L2(0,T;H?)
and

2
On,n (t r in(krNh
n (1) _ / ng,h sin(kwNh) &
Az ,m) (I e h
sm k7rh
< (ZA )/ (ZM |gkh|>
keN keN
1, -
< C}%yHehH%z(o,T;Hg)- (173)
€

Therefore, as a consequence of inequality (172) the proof of (171) and, therefore, that of (170) finishes.
Then, from (168, 169) and (170) we get

{ar(t)}ren € C([0,T);H™Y) and  {a)(t)}ren € C([0, T];H™?),

which implies the existence of {ay(0)}ken and {a}(0)}ken, which are uniformly bounded in H' and H™*
respectively.
Moreover, from (168, 169) and (169, 170) and Aubin-Lions compactness lemma, we deduce that

{arn(t)} P {ar(t)}, strongly in C([O,T];H‘S) N Cl([O,T];H“s), (174)
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for any § > 0. Thus,

{akﬁ(O)}th{ak(O)}, weakly in  H?, (175)
{akn(0)} = {ak(0)}, weakly in H (176)

Observe that, by the hypotheses of theorem, a;(0) = al and a},(0) = a}.
We also observe that, from (174), for each k fixed, the following convergence holds

app(t) een® o ak (t) e O forall te[0,T) (177)
ay. (1) ek () — ay(t) €@ forall te[0,T]. (178)

Third Step. Consider i), = e*» ()t q;p(h) € Cp (7). Then, obviously,

t
WO (1) uniformly i [0,7], (179)

where u(z,t) = e!*»'¢P(x). From (165) it then follows that
’ Uh Nt
/ vp(t) ———= dt—»/ t) Oyu(l,t)dt, as h—0. (180)
0

On the other hand, taking into account that @), — u in C([0,T]; H') and that (174) is valid for § = 1, we have
that the first term in the left hand side of (166) satisfies, for all s € (0,T),

1

h thj up,i(s }:6 ; y'(z,s) u(x, s) dz, (181)

where y(z,t) = k%:Nak (t) ¢*(z).

Similarly, in each term of (166) using the estimates (174) and (180) together with the fact of u/;, — u/ in
C([0,T); H™1) we show that when h tends to zero,

/ {4/ (2, 5) u(z, s) — y(x,5) o (z, )} da / {4 (2) «(2) — 4°(2) u)(2)} da
0

—/ v(t) 0y uw(l,t)dt, Vse(0,T). (182)
0

Thus, y is the solution by transposition of (6) with control v.
Since 1L, 4, (T') = IL,y3'(T) = 0, by the convergences (177, 178) and the fact that, as h — 0, all the Fourier
components are eventually involved in the projections II,, we deduce that y(T') = 3'(T") = 0.

Step 4. To conclude the proof of theorem it is sufficient to show that v = d,u*(1,t), where u* solves (1) with
the initial data minimizing the functional (157).
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We know that both v and d, u*(1,t) are exact controls for the system (6). Then

/T(y(t) — 9y u*(1,1)) 9y u(1,t) dt = 0,
0

for every solution u of the adjoint system (1).

From Proposition 4.2 we have also that v(t) = 9, z(1,t) € L?(0,T), where z is solution a (1). Consequently

/T (05 2(1,t) — 95 u*(1,1)) Oy u(l,t) dt = 0.
0

Taking u = z — u* as test function in this identity it follows that v(t) = 0, u*(1,1).
Proof of Theorem 4.2. We divide the proof in 3 steps.

Step 1. From Theorem 3.2 it follows that the control of system (64) has the form vy, () = v1,5(t) + h vy, (2).

Moreover, from (88, 159) and (160) we have that

{vin(t) n is uniformly bounded in L2(07 T)
{v2,n(t) bn is uniformly bounded in L?(0,T)
with compact support in (0,7
ZHoi is uniformly bounded in H~'(0,7)
h Vé,h(t) is of order hin H~'(0,T).

Hence, there exists a subsequence of {h} such that

v1,5(t) U (t) weakly in L?(0,T)

h vy p,(t) = 0 strongly in H~(0,7T).

Remark that, from Proposition 4.2, v(t) = 9, u*(1,t) € L?(0,T), where u* solves (1).

Step 2. Let t € [0,7] and j = 1,..., N. We introduce the following semi-discrete problems:

"
Zhj = ~75 gtz = 42nge1 + 62y — Az g1+ 2n-2}

Zh,0 = 2p,N+1 = 0,
2
Zh,—1 = —Zh1 Zh,N+2 = —2Zh,N + h* v,
O — 0 / o1

25,5(0) = Yh, s Zh,j(o) = Yh j»

and
1

1
Whj =~ 73 (Whgt2 = 4Wnjs1 + Ownj — dwhj-1 + wh -2},
Wp,0 = Wp,N+1 = 0,

— _ 2 ./
Wh,—1 = —Wh,1 Wh,N+2 = —Wh,N +h7 V5 p,

s

wp,;(0) =0, wj, ;(0)=0.

(183)

(184)
(185)
(186)

(187)
(188)

(189)

(190)
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It is easy to see that the solution ¥ (t) of (64) can be decomposed as ¥ (t) = Z(t) + h Wp(t). In particular, zj
satisfies the identity:

N N T up, N(t)
1 ;
B3 o) ns(5) = 20,9 w5 (6)) = b Doy = oy wh) = [ () 2R
Jj=1 Jj=1
for any y, solution of (7). Now, taking Proposition 2.1 into account, we obtain that

(53 (5), =20 (), (@n(5), 08 () o

u;LN(t)
h

< ||(37;},*37;?)||f;

(ﬁ;?, ﬁ}%)H}-h + |V1,h(')|L2(0,T)
L2(0,7)

<@ @z, (1@ -3z + anO)] e ) - (191)
Since the sequence {vy 5}, is uniformly bounded in L?(0,T), from the hypotheses (159) and (160) we have
(22 (), =Zn ()7 < C (@@, =)l 7y forall s € (0,T).

Hence, {ckn(s)}n, the sequence of Fourier coefficients of 2z, is uniformly bounded in L>(0,T,
HYHYNwWhee(0, T, H™L).

On the other hand, we denote by g, the solution of the semi-discrete system:

1 1

Phj =~ 773 (Phitz — 4Pnge1 + 6png — donj-1 +pnj-2},
Yho =¢nN+1 =0, 0<t<T (192)
©h—1=—Ph1 PhN+2=—PnN+h*vop,
en.i(0) =0 ¢} ;(0) =0,

where 0<t<T and 1<j5<N.
The sequence J}, satisfies the same uniform boundedness properties of 2}, above.
Taking into account that ), = ¢, its Fourier coefficients {ex 5 (s)}n are uniformly bounded in L>°(0,T,
H=HNWh(0,T, H3).
Step 3. From the previous estimates it follows that
Cr.n(8) — cr(s) weakly *in L0, T, H") n W (0,T,H™ 1) (193)

h ex.n(s) s 0 strongly in L%(0,T, Hil) N Wl’oo((), T,’H’3).
But, since

akﬁ(T) = Ck,}L(T) + h ek,h(T) =
bin(T) = ¢ 1 (T) + b€, (T) =

(194)
, (195)

and a,p (1) = by, (T) for all k, we deduce that (cx,n(T), ¢}, (1)) = (0,0), as h — 0, for all k.

As a consequence of (193) it follows that ¢ (T) = ¢} (T') = 0. Therefore, the limit y(z,t) = 3 cx(t) ¢*(z) of
keN
Zp, solves (6) with control v(t) = 9, u*(1,t) and satisfies y(T') = y'(T") = 0.
Finally, using the same arguments of Theorem 4.1 we conclude that u* solves (1) with initial datum (u%*, u!*)
minimizing the functional defined in (74). O
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4.4. Strong convergence of the semi-discrete problem with boundary control

Assuming the strong convergence of the initial data further convergence properties of controls and solutions
can be proved:

Theorem 4.3. Let T > 0 and 0 < v < 16. For any h € (0,1), consider (§2,7}) € Hy, ., X ’H;}Y and
(y°,y') € HL(0,1) x H=1(0,1), the initial conditions in (64) and (6) as in (151).
Assuming that,

{a%h}keN P~ {aQ}ren  strongly in  H?, (196)
{b} p b ren P {bi}ken  strongly in H ™, (197)

then, the partial controls vy (t) € L*(0,T), and the controlled solutions ¥y, satisfy

{akn(®)}ken — {ar(t)ren  strongly in H', Vite(0,T); (198)
{bk,h(t)}keN }—O) {bk(t)}keN strongly in H_l, Vte (O,T); (199)
11—
vi(.) p— v(.) strongly in L*(0,T); (200)
11—

where, (y(z,t),y (z,t)) = (X ar(t) " (x), S br(t) gbk(ac)) solves (6), with control v(t) € L*(0,T), and
keN keN
y(T) = y'(T) = 0. Moreover, the control v is given by

v(t) = =0, u*(1,1),

where u* is solution of (1), with initial data (u®*,ub*) minimizing the functional defined in (157).

- 0,% - 1,%

Proof. Combining Theorem 4.1 and Theorem 2.2 we obtain the weak convergence of the initial data (uj, ", up, ")
€ H,lw X ’H;}Y of (7), minimizing the functional J;, defined in (74). Moreover, by the hypotheses of Theorem 4.3,
the linear term of the functional .Jj, converges to the linear term of the functional J defined in (157). Therefore,
proving (200) is equivalent to proving that

T i) — T ), (201)
where (u®*,ub*) € H$(0,1) x H=1(0,1) minimizes the functional J. Indeed, if this is true, taking the
convergence of the linear term into account and the structure of the functionals J, and J we deduce that

/ P at— / P at

which, combined with the weak convergence property provides the desired strong convergence result.
In view of the weak convergence of the initial data and the controls, and by weak lower semicontinuity it is
easy to see that
J(* ut*) < liminf Jp, (a7, ", upb).
Thus, in order to complete the proof of (201) it is sufficient to check that for all (u° u') € D where D is the
subspace of initial data with a number finite of Fourier coefficients, which is dense in the space H}(0,1) x
H~1(0,1), there exists a sequence of approximated initial data (u’}bo, u‘;’ll) such that

}Lirrlo Jn (30, unt) = J(u®,ut).
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This is easy to see. Indeed, it is sufficient to take as (u’iLO

,u}l) the discrete initial data with same Fourier

coefficients as (u°,u') € D, which makes sense when h is sufficiently small.
Finally, taking the hypotheses of the Theorem into account, and the strong convergence of the controls it is
easy to see that the solutions @}, of (7) converge strongly to the solution u of (1). Consequently convergences

(198) and (199) are true. O

Theorem 4.4. Let T > 0. For any h € (0,1), consider the initial data (32,5}) € Hi x H,' and
(y°,y') € HY(0,1) x H1(0,1) of problems (64) and (6) as in (151).

Assume that,

{agyh}keN — {aQ}ren  strongly in  HE, (202)
{b,lcyh}keN P {bi}ren strongly in H ™' (203)

Let gy, be the solution of system (64) with control vy, so that both satisfy the decomposition given in (158).
Then,

{¢k.n}ren — {exynen strongly in L°°(0,T; HY) n W0, T; H™1),
h {ekn}ren — 0 strongly in L0, T;H™Y) nWh>(0,T; H3),

h{exn}ren is of order h in L°°(0,T;H~')N Wb (0, T; H™3),
v1,n(.) — v(.) strongly in L*(0,T),

hvyy(.) —0 strongly in  H~(0,T),
hvy,(.) is of order hin H'(0,T),

where y(x,t) = S ex(t) ¢F(x) is the solution of problem (6) with control v(t) = —d, u*(1,t) € L2(0,T) where
keN
u* solves (1) with the initial data (u®*,ul*) that minimizes the functional J defined in (157).

Proof. The proof is similar to that of Theorem 4.3 and we omit it. |

The authors are grateful to Sorin Micu for fruitful discussions.
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