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SOME APPLICATIONS OF OPTIMAL CONTROL THEORY
OF DISTRIBUTED SYSTEMS ∗
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Abstract. In this paper we present some applications of the J.-L. Lions’ optimal control theory to
real life problems in engineering and environmental sciences. More precisely, we deal with the following
three problems: sterilization of canned foods, optimal management of waste-water treatment plants
and noise control
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Introduction

Optimal control theory of distributed parameter systems is a fundamental tool in applied mathematics. Since
the pioneer book by J.-L. Lions [24] published in 1968 many papers have been devoted to both its theoretical
aspects and its practical applications. The present article belongs to the latter set: we review some work related
to real-life applications of optimal control theory to some engineering and environmental problems that have
been done by Galician researchers.

The first one concerns food technology (see [5] for details). The problem is to determine the time dependent
optimal temperature inside a sterilizing chamber for canned foods. The industrial sterilization of canned foods is
a process in which there usually occurs a degradation of nutrients and a deterioration of qualitative properties due
to the temperature to which the food is overexposed in order to assure destroying pathogenic microorganisms.
We face this problem using optimal control methods. Linear constraints on the control and nonlinear ones on
the state will appear as a consequence of the technological restrictions and the request for quality and economy.
Besides an existence result for the optimal control and an optimality system we give numerical results for some
real industrial examples. They show that present industrial sterilization processes can be improved in terms of
saving energy and nutrient retention.

The second problem falls into environmental engineering. We deal with the design and management of waste-
water treatment systems discharging polluting effluent into an aquatic medium. This problem is formulated
as a pointwise optimal control problem with state and control constraints. The main difficulties arise from
the lack of regularity of the source term in the state system and from the pointwise constraints on the state
variables. We develop theoretical analysis of the problem, propose an algorithm for its numerical resolution and
give results for a realistic problem in the ŕıa of Vigo (Spain).
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The third problem is related to acoustic engineering, more precisely, to noise reduction by active control
methods. During the last two decades there has been an accelerating level of interest in the control of sound by
active techniques. Many of the physical principles involved have long been established, but the technological
means for the successful implementation of “active noise control”, namely the fast digital signal processors(DSP)
have only recently become available. Noise reduction is based on the destructive interference of waves. Accord-
ingly, the control consists of a (secondary) source of noise the properties of which have to be determined in an
optimal way in order to cancel the original undesired (primary) noise.

1. Optimal sterilization of canned foods

1.1. Introduction

In order to prevent sanitary problems, canned foods undergo a thermal sterilization process. The goal is to
kill pathogenic microorganisms by keeping temperature at some level during some period of time. The problem
is that an excessive heating may lead to degradation of nutrients and deterioration of qualitative properties
and, additionally, to an unnecessary energy cost. In order to fulfill the request of quality and presentation for
canned foods it is very important to know the optimal profile of temperature in the sterilization chamber during
the process. Existing industrial sterilization retorts usually work with steam at constant temperature during a
certain time after which cans are cooled using water. This procedure does not seem to be optimal. Apparently
one could increase the temperature at the beginning of the process and after a certain time decrease it in a
smooth way.

The objective of this work is to give a general methodology to determine the suitable profile of temperature
by using optimal control techniques. Some theoretical and numerical difficulties arise as a consequence of the
existence of constraints on the control (steam temperature in the sterilization chamber) and on the state (canned
food temperature) which the process must satisfy. Detailed proofs of the results enounced below can be found
in [5].

1.2. Mathematical modelling and optimal control problem

The aim of the design of a thermal process for canned food sterilization lies in finding the optimal steam
temperature v(t) in the sterilization chamber, at each time t, in order to reach a given microorganism reduction
within the can at the end of the process, in such a way that energy cost be minimized and nutrient retention
maximized. We assume that cans are subjected to a variable steam temperature, which will be taken as the
control of the system, during a time interval (0, T ). We suppose that heat transfer inside them occurs only by
conduction. The optimization of sterilization processes including natural convection has been studied in [1].

Let us consider a can occupying a three-dimensional domain Ω in the retort. We denote by Γ its boundary.
Then heat transfer can be modelled by the following initial-boundary value problem,

ρ(θ)c(θ)
∂θ

∂t
−∇.(k(θ)∇θ) = 0, in Q = Ω × (0, T ) (1.1)

k(θ)
∂θ

∂n
= α(v − θ), on Σ = Γ × (0, T ) (1.2)

θ(x, 0) = θ0(x), in Ω (1.3)

where
• θ is temperature;
• ρ is density;
• c is heat capacity;
• k is thermal conductivity;
• α is a heat transfer coefficient to be measured depending, in particular, on the tin can;
• v is the retort temperature;
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• n is an outward unit normal vector;
• θ0 is the initial temperature.

Parameters ρ, c, k and α actually depend on temperature. However, as a first approximation, they will be
considered constant in the present paper.

In order to express the requirements of sterilization in a mathematical way it is necessary to know sev-
eral parameters relative to microbial resistance and their dependence on temperature (see, for instance, Olin
et al. [29]). The microorganism destruction is assumed to be a first order process because it has been observed
that the number of living cells decays exponentially in time during the exposure to a lethal temperature. This
fact can be expressed mathematically by the equation

dc
dt

= −Kc, (1.4)

where c(x, t) represents the living organism concentration at point x at time t. Parameter K is a function of
temperature through Arrhenius’ equation:

K = Kr exp
(
−E
R

(
1
θ
− 1
θr

))
, (1.5)

where Kr is the value of K at a reference temperature θr, E the activation energy and R the universal gas
constant. We consider the following parameters

• Dr: necessary time at a constant temperature θr to reduce the microorganism or spore population in 90%;
• z: necessary rise in temperature in order to reduce the value of Dr in one order of magnitude.

Then, approximating θθr by (θr + z)θr, equation (1.5) yields

K = Kr exp
(

ln 10
z

(θ − θr)
)
, (1.6)

from which we deduce

ln
K
Kr

=
ln 10
z

(θ − θr). (1.7)

Now equation (1.4) gives the concentration of microorganisms at final time T by

c(x, T ) = c(x, 0) exp

(
−
∫ T

0

Kr10
θ(x,t)−θr

z dt

)
· (1.8)

Therefore, if we want to reach a reduction in the order of 10β, the following inequality would be satisfied at
each point x in the domain defined by the canned food,

exp

(
−
∫ T

0

Kr10
θ(x,t)−θr

z dt

)
≤ 10−β. (1.9)

This state constraint can be written in a simpler way as follows∫ T

0

10
θ(x,t)−θr

z dt ≥ β ln 10
Kr

· (1.10)
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Moreover we are interested in optimizing the global retention of some particular nutrient for this given reduction
in microorganism concentration. If the nutrient retention is also assumed to be a first order process we are led
to maximize the function

∫
Ω

exp

(
−
∫ T

0

K̃r10
θ(x,t)−θ̃r

z̃ dt

)
dx (1.11)

which represents the whole nutrient content of the canned food after sterilization. Notice that this function is
determined by the control v(t) (the retort temperature at time t) because θ is a function of v through the partial
differential equation (1.1, 1.2). Due to the fact that activation energies for the nutrients are generally much
higher than for microorganisms, thermal sterilization of foods is possible without destroying all their nutrients.
The optimal control problem we are interested in consists in finding the (variable in time) steam temperature
minimizing the energy cost and maximizing the nutrient retention, while satisfying the constraint (1.10).

In what follows we study, from a mathematical point of view, an optimal control problem including the one
defined in the previous section as a particular case. More precisely we show existence of solution and obtain
optimality conditions which will allow us to compute the gradient of the cost function (1.11). This gradient will
be used for numerical solution.

Let Ω be an open bounded subset of RN with smooth boundary Γ. As usual we denote by Ω the closure
of Ω. Let T > 0 be the maximum time, Q = Ω× (0, T ) and Σ = Γ× (0, T ). Given strictly positive functions ρ,
c, k ∈ C∞(Ω̄), a positive constant α and a function θ0 ∈ C(Ω̄), the state of the system, θ, is obtained from the
control v ∈ L∞(0, T ) by solving the following initial value problem,

ρc
∂θ

∂t
−∇.(k∇θ) = 0 in Q (1.12)

k
∂θ

∂n
+ αθ = αv on Σ (1.13)

θ(x, 0) = θ0(x) in Ω. (1.14)

Let the cost function be defined by

J(v) = ν

∫ T

0

Φ(v)dt−
∫

Ω

e−
R

T
0 G(θ)dtdx. (1.15)

We assume Φ and G are continuously differentiable real functions and denote their respective derivatives by
Φ′ and G′. Furthermore we suppose Φ is convex and G positive. Parameter ν is a non negative real number
representing the relative weight of the two terms in the cost function J . In the sterilization problem

∫ T

0 Φ(v)dt
represents the energy cost. We impose some constraints on control and state. More precisely, v is taken in
the closed convex subset of L2(0, T ) given by

Uad = {v ∈ L2(0, T ) : v1 ≤ v(t) ≤ v2 a.e. in (0, T ), (1.16)

where v1 and v2 are given constants such that v1 < v2. In the sterilization problem v1 and v2 are technological
limits for the retort temperature. Furthermore we suppose the state θ has to satisfy the following inequality,

a(x) ≤
∫ T

0

F (θ(x, t))dt for all x ∈ Ω, (1.17)
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where a ∈ C(Ω̄) and F is a continuous function with continuous derivative denoted by F ′. Then the optimal
control problem consists of finding u minimizing J in the set of admissible controls:

C =

{
v ∈ Uad : a(x) ≤

∫ T

0

F (θ(x, t))dt in Ω

}
· (1.18)

We are interested in

• existence of optimal control;
• optimality conditions;
• numerical methods.

Difficulties arise in obtaining optimality conditions due to pointwise constraint (1.17) and the fact that the set

{z ∈ L2(Ω) : a(x) ≤ z(x) a.e. in Ω} (1.19)

has an empty interior in L2(Ω). Indeed, optimality conditions for constrained optimization problems are gen-
erally proved by using existence results of Lagrange multipliers (see, for instance, Ekeland and Temam [17]).
These results cannot be directly applied to our case because we are in an infinite-dimensional space (the space
L2(Ω)) where the admissible set (1.19) has an empty interior. To overcome this difficulty, we replace this func-
tional space by C(Ω̄). For this we need to prove that the state θ ∈ C(Q̄). Getting optimality conditions is very
important from the numerical point of view because they allows us to compute the derivative of the cost with
respect to the control. This derivative can be used in descent algorithms for numerical solution. Notice that,
in the present case, we have to deal with a large non-convex constrained mathematical programming problem.

1.3. Mathematical analysis

The following existence result can be found in [5]. The proof uses classical techniques of minimizing sequences
and a compactness result (see Lions [24] and [25]).

Proposition 1.1. Assume there exists v ∈ Uad such that the corresponding state satisfies the constraint (1.17).
Then the optimal control problem has a solution.

Next proposition yields an optimality system to be satisfied by a solution of the above defined optimal control
problem. The proof is based on an abstract theorem of existence of Lagrange multipliers (see Casas [11] or
Bonnans and Casas [9]). For any set C, let χC be its indicator function defined by

χC(x) =
{

0 if x ∈ C,
+∞ otherwise.

We denote the sub-differential of a convex lower semi-continuous function f defined in a Banach space by ∂f
(cf. Ekeland and Temam [17]). Recall that y ∈ V ′ belongs to ∂f(x) if and only if 〈y, z − x〉V ′V ≤ f(z) − f(x)
for every z. We denote by θ(v) the solution of the state equation (1.12−1.14) corresponding to a control v.
Then we define the nonlinear operator H and the set E by

H(θ(v))(x) =
∫ T

0

F (θ(x, t))dt, (1.20)

E = {ω ∈ C(Ω̄) : a(x) ≤ ω(x) in Ω}· (1.21)
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We have the following:

Proposition 1.2. Let u ∈ Uad be a solution of the optimal control problem. Under the following assumptions

1. F is strictly increasing;
2. there exists an interval (t1, t2) ⊂ (0, T ) and ε > 0 such that u(t) ≤ v2(t) − ε a.e. in (t1, t2);

then there exist functions θ, p, g and q such that

θ ∈ C(Q̄) (1.22)

p ∈ L2(0, T ;H2(Ω)),
∂p

∂t
∈ L2(0, T ;L2(Ω)), p|Σ ∈ H

1
2 (Σ) (1.23)

g ∈ L1(Q), g|Σ ∈ L1(Σ) (1.24)

q ∈ C(Ω̄)′ (1.25)

and satisfy

ρc
∂θ

∂t
−∇.(k∇θ) = 0 in Q, (1.26)

k
∂θ

∂n
+ αθ = αu on Σ, (1.27)

θ(x, 0) = θ0(x) in Ω (1.28)

−ρc∂p
∂t

−∇.(k∇p) = G′(θ)e−
R T
0 G(θ)dt in Q, (1.29)

k
∂p

∂n
+ αp = 0 on Σ, (1.30)

p(x, T ) = 0 in Ω (1.31)〈
g, ρc

∂ϕ

∂t
−∇.(k∇ϕ)〉Y ′Y = 〈(DH(θ(u)))∗q, ϕ

〉
C(Q̄)′C(Q̄)

, ∀ϕ ∈ <, (1.32)

where Y = {w ∈ C(Q̄) : w|Σ = 0} and

< =
{
ψ ∈ H2,1(Q); ρc

∂ψ

∂t
−∇.(k∇ψ) ∈ Y, k

∂ψ

∂n
+ αψ = 0, ψ(0) = 0

}
, (1.33)

q ∈ ∂χE(H(θ(u))), (1.34){∫ T

0

νΦ′(u)(v − u)dt+
∫ T

0

(∫
Γ

αpdσ

)
(v − u)dt

}
+ (1.35)

+
∫ T

0

(∫
Γ

αgdσ

)
(v − u)dt ≥ 0, ∀v ∈ Uad. (1.36)

Remark 1.1. Function p+ g is called adjoint state in optimal control theory. As a by-product of the previous
Proposition we can deduce that

νΦ′(u) +
∫

Γ

α(p+ g)dσ,

which is a function of time, is a descent direction for the “state constrained” cost function. This fact will be
used for numerical solution in the next paragraph.
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1.4. Numerical methods and results

For numerical solution, the state equations (1.12−1.14) are discretized using an implicit finite difference
scheme in time (backward Euler) and continuous piecewise linear finite elements on a triangular mesh of Ω.
The solution of the discretized optimal control problem has been done by using a Newton method with a
improvement simplifying the computation of the Hessian due to Bonnans [13]. Further details about computer
implementation can be found in [5].

As a test example, let us consider a cylindrical can of tuna with 6.52 cm diameter and 3 cm height. The
“energy cost” function has been defined by Φ(v) = v2 and the following values of the parameters have been
taken from Perez et al. [30],

k

ρc
= 1.2910−3 cm2

s
, (1.37)

z = 10, Dr = 0.21 min, θr = 121.1 ◦C, (1.38)

z̃ = 25.56, D̃r = 178.6 min, θ̃r = 121.1 ◦C, (1.39)
v1 = 20 ◦C, v2 = 115 ◦C (1.40)

θ0 = 15 ◦C, α = 90
W

cm2 ◦C
· (1.41)

Due to symmetry, cylindrical coordinates are used. In Table 1 we show results corresponding to several numerical
tests associated with different values of the process time (Col. 1), the upper bound of the steam temperature
(Col. 2) and the Fc parameter (Col. 3) given by

Fc =
β ln 10
Kr

·

The fourth and fifth columns give respectively the “energy cost”
∫ T

0 Φ(v) and the nutrient retention rate as
given by (1.11). Finally Figures 1 and 2 show the optimal control (see the rightmost column of Tab. 1). These
tests show how the industrial process, which usually works with steam at constant temperature during a certain
time, is not the most adequate in terms of quality factor and energy cost. Indeed, optimal profiles of steam
temperature, calculated for the same values of Fc and control bounds, give lower cost values and greater nutrient
retention. In any case the values of Fc used in the industrial sterilization seem to be greater than necessary
to ensure sterilization. In particular, the European Community (EC) rules require a value for Fc equal to 180
seconds for θr = 121.1 ◦C(250 ◦F), notably lower than that corresponding to industrial sterilization. Indeed,
two very common industrial processes are,

1. 115 ◦C during 3600 s;
2. 110 ◦C during 7200 s.

If we compute the corresponding temperature inside a can by solving the state equation we obtain for the
function in the left-hand side of (1.10) the values 268 s and 330 s, respectively, which are much greater than
those prescribed by the EC rules. On the other hand the corresponding values of nutrient retention are 72.93%
and 62.10%, respectively, which are lower than the optimal ones in Table 1.

2. An optimal control problem related to management

of waste-water treatment systems

2.1. Description of the problem

Let us consider a domain Ω with boundary Γ occupied by shallow waters where polluting waste-waters are
discharged through NE outfalls each corresponding to a particular depuration plant. We also assume that inside
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Table 1. Test results.

Process v2 Fc

(∑
u2

i

) 1
2 Nutrient Figures

time retention
3600 s 115 ◦C 180 s 338.8614 77.35% –
3600 s 119 ◦C 268 s 329.0677 74.06% 1
7200 s 115 ◦C 180 s 256.1834 75.89% –
7200 s 115 ◦C 330 s 280.5771 69.41% 2

Figure 1. Optimal steam temperature in the sterilization chamber.

Figure 2. Optimal steam temperature in the sterilization chamber.
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the domain Ω there exist several protected areas Ai ⊂ Ω, i = 1, . . . , NZ (bath, marine cultures, etc.) where it
is necessary to assure water quality, i.e. pollution concentration must be lower than a given maximum level.

We recall that, in order to control the marine pollution, some parameters are used which indicate water quality
and its capacity to keep the aquatic life. Among these indicators we mention dissolved oxygen, temperature,
pH, etc. Oxygen is used by bacteria to decompose organic matter. This process can be measured in terms of the
need of oxygen to do this task, the so called Biological Oxygen Demand (BOD). If the pollution level is not too
high this need can be satisfied by the Dissolved Oxygen (DO). However, if the organic matter increases beyond
a maximum value the DO is not enough for its decomposition, leading to important modifications (anaerobic
processes) in the ecosystem. Hence, in each protected area Ai, i = 1, . . . , NZ , a threshold value σi of BOD
may not be exceeded and a minimum level of DO ζi must be guaranteed. This can be done by some chemical or
biological treatments before discharging waste-waters into the sea which can be viewed as control mechanisms.

The cost of depuration at each plant is assumed to depend on the BOD of arriving waste-waters and some
other features as technology, age, etc. Then, for a particular plant, the cost is a decreasing function of the BOD
after treatment because getting a lower level of BOD leads to a more intensive depuration and, consequently, to
a higher cost. Keeping in mind that absolute depuration is not feasible and that there exists a minimum fixed
cost (even in the case where no treatment is needed), the cost function of the j-th treatment plant, fj , takes a
form similar to the one shown in Figure 5.

Then the problem is to determine, at each plant and for each time, the BOD level of discharges after treatment
minimizing the global depuration cost while respecting the above mentioned constraints on the water quality in
protected areas. From the mathematical point of view, this is an optimal control problem for a parabolic partial
differential equation with pointwise state constraints and pointwise control. Indeed, discharges from each plant
are made through outfalls located at some particular given points of the domain. Optimization of this location
can be considered as a geometric optimal control problem. This has been done in [6].

2.2. Mathematical modelling. Optimal control problem

Let us suppose that the outfalls are located at points Pj ∈ Ω, j = 1, . . . , NE and denote by mj(t),
j = 1, . . . , NE , the rate of BOD discharged at point Pj at time t. According to the distributed parameter
version of the Streter–Phelps model, the evolution of the BOD and the DO in the domain Ω ⊂ R2 is governed by
a system of partial differential equations (cf. [4,27,33]). Let us denote by ρ1(x, t) and ρ2(x, t) the concentrations
of BOD and DO at a point x ∈ Ω and a time t ∈ (0, T ), respectively. Then they are solution of the following
boundary value problem:

∂ρ1

∂t
+ ~u∇ρ1 − β1∆ρ1 = −κ1ρ1 +

1
h

NE∑
j=1

mjδ(x− Pj) in Ω × (0, T )

∂ρ1

∂n
= 0 on Γ × (0, T )

ρ1(x, 0) = 0 in Ω

∂ρ2

∂t
+ ~u∇ρ2 − β2∆ρ2 = −κ1ρ1 +

1
h
κ2(ds − ρ2) in Ω × (0, T )

∂ρ2

∂n
= 0 on Γ × (0, T )

ρ2(x, 0) = ρ20(x) in Ω



(2.42)

where h(x, t) and ~u(x, t) are, respectively, the height and the mean horizontal velocity of the fluid layer,
obtained by solving the Saint Venant (or shallow water) equations (see for instance [7]), δ(x− Pj) represents
the Dirac measure at point Pj and parameters β1 > 0 and β2 > 0 are horizontal diffusion coefficients involving
dispersion and turbulence effects. Parameter κ1 > 0 is a kinetic coefficient, parameter κ2 > 0 is an oxygen
transfer coefficient through the sea surface and ds is the oxygen saturation density.
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Let us assume now that there are NZ protected areas, A1, i = 1, . . . , NZ , where a maximum level of BOD
and a minimum level of DO must be assured, namely,

ρ1|Ai×(0,T ) ≤ σi, i = 1, . . . , NZ , (2.43)

ρ2|Ai×(0,T ) ≥ ζi, i = 1, . . . , NZ . (2.44)

Let fj, the treatment cost at the j-th plant, j = 1, . . . , NE , be given in ∈ C2(0,∞). Then the total cost of the
whole depuration system during a time interval [0, T ] is given by

J(m) =
NE∑
j=1

∫ T

0

fj (mj(t)) dt. (2.45)

The problem (P) of optimal management of the depuration system consists in finding the values of BOD
mj(t) > 0, j = 1, . . . , NE , along the time interval [0, T ], minimizing the cost function (2.45) under the state
constraints (2.43) and (2.44).

2.3. Existence of solution of the state equation

Definition 2.1. Given r, s ∈ [1, 2),
2
r

+
2
s
> 3, we say that ρ = (ρ1, ρ2) ∈ [Lr(0, T ;W 1,s(Ω))]2, is a solution

of the system (2.42) if for all Φ = (Φ1,Φ2) ∈ [L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))]2 ∩ [C1(Ω̄ × [0, T ]]2 such that
Φ(., T ) = 0, the following equality holds,∫ T

0

∫
Ω

{
−∂Φ1

∂t
ρ1 − ∂Φ2

∂t
ρ2 + β1∇Φ1∇ρ1 + β2∇Φ2∇ρ2 + ~uΦ1∇ρ1

+~uΦ2∇ρ2 + κ1Φ1ρ1 + κ1Φ2ρ1 +
1

h(x, t)
κ2Φ2ρ2)

}
dxdt

=
NE∑
j=1

∫ T

0

1
h(Pj , t)

Φ1(Pj , t)mj(t) dt

+
∫ T

0

∫
Ω

1
h(x, t)

κ2dsΦ2(x, t) dxdt+
∫

Ω

Φ2(x, 0)ρ20(x) dx. (2.46)

Let A be the operator defined by

〈A(w1, w2), (z1, z2)〉 =
∫

Ω

(
− β1∆w1z1 − β2∆w2z2

+~u∇w1z1 + ~u∇w2z2 + κ1w1z1 + κ1w1z2 +
1
h
κ2w2z2

)
dx,

for (w1, w2), (z1, z2) such that the previous expression makes sense. Then we have the following result:

Theorem 2.1. There exists a unique pair

ρ = (ρ1, ρ2) ∈ [Lr(0, T ;W 1,s(Ω))]2 ∩ [L2(0, T ;L2(Ω))]2,

with
∂ρ

∂t
=
(
∂ρ1

∂t
,
∂ρ2

∂t

)
∈ [Lr(0, T ; (W 1,s′

(Ω))′)]2



SOME APPLICATIONS OF OPTIMAL CONTROL THEORY OF DISTRIBUTED SYSTEMS 205

for all r, s ∈ [1, 2),
2
r

+
2
s
> 3, such that ρ is solution of (2.42) and verifies

∫ T

0

〈
−∂Φ
∂t

+ A∗(Φ), ρ
〉

dt =
NE∑
j=1

∫ T

0

1
h(Pj , t)

Φ1(Pj , t)mj(t) dt

+
∫ T

0

∫
Ω

1
h(x, t)

κ2dsΦ2(x, t) dxdt +
∫

Ω

Φ2(x, 0)ρ20(x) dx, (2.47)

for all Φ = (Φ1,Φ2) ∈ B, where:

B =
{

Φ = (Φ1,Φ2) ∈ [L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))]2 :

−∂Φ
∂t

+ A∗(Φ) ∈ [L2(0, T ;L2(Ω))]2,
∂Φ
∂nA∗ |Γ×(0,T )

= 0, Φ(., T ) = 0
}
·

Furthermore, there exist constants Ck, k = 1, . . . , 6, such that

‖ρ‖[Lr(0,T ;W 1,s(Ω))]2 ≤ C1

NE∑
i=1

‖mi‖L∞(0,T ) + C2‖ρ20‖C(Ω̄) + C3 ds. (2.48)

and

‖ρ‖[L2(0,T ;L2(Ω))]2 ≤ C4

NE∑
i=1

‖mi‖L∞(0,T ) + C5‖ρ20‖C(Ω̄) + C6 ds. (2.49)

The proof of this theorem can be seen in [28] as well as the following regularity and continuity results:

Lemma 2.1. Functions ρ1 and ρ2 are continuous in Āi × [0, T ], ∀ i = 1, . . . , NZ .

Lemma 2.2. There exist constants Ĉ1, Ĉ2, Ĉ3 such that:

‖ρ‖
[C(∪NZ

i=1Āi×[0,T ])]2
≤ Ĉ1

NE∑
i=1

‖mi‖L∞(0,T ) + Ĉ2 ‖ρ20‖C(Ω̄) + Ĉ3 ds.

2.4. Existence of control. Optimality system.

Theorem 2.2. If there exists a feasible control m̃ ∈ Uad such that:

ρ̃1|Ai×(0,T ) ≤ σi, i = 1, . . . , NZ

ρ̃2|Ai×(0,T ) ≥ ζi, i = 1, . . . , NZ

then the optimal control problem has, at least, a solution.

Proof. See [28].

Now we are interested in writing an optimality system. Firstly, let us consider the mappings

F1 : m ∈ (L∞(0, T ))NE −→ F1(m) = ρ1|∪NZ
i=1Āi×[0,T ]

∈ C(∪NZ

i=1Āi × [0, T ]),

F2 : m ∈ (L∞(0, T ))NE −→ F2(m) = ρ2|∪NZ
i=1Āi×[0,T ]

∈ C(∪NZ

i=1Āi × [0, T ]).
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We have the

Lemma 2.3. The mappings F1 y F2 are Gâteaux derivable. Moreover

DF1(m)(n) = ω1|∪NZ
i=1Āi×[0,T ]

,

DF2(m)(n) = ω2|∪NZ
i=1Āi×[0,T ]

,

where ω1 and ω2 are the solution of the linearized system

∂ω1

∂t
+ ~u∇ω1 − β1∆ω1 = −κ1ω1 +

1
h

NE∑
j=1

njδ(x− Pj) in Ω × (0, T )

∂ω1

∂n
= 0 on Γ × (0, T )

ω1(x, 0) = 0 in Ω

∂ω2

∂t
+ ~u∇ω2 − β2∆ω2 = −κ1ω1 − 1

h
κ2ω2 in Ω × (0, T )

∂ω2

∂n
= 0 on Γ × (0, T )

ω2(x, 0) = 0 in Ω



· (2.50)

From this lemma one can obtain a first order optimality system satisfied by any solution of the optimal control
problem. In order to express them in a simple way we introduce functions p1, p2 solutions (in the sense of Def. 2
below) of the following boundary value problems,

−∂p1

∂t
−∇.(~up1) − β1∆p1 + κ1(p1 + p2) = µ1|Ω×(0,T ) in Ω × (0, T )

β1
∂p1

∂n
+ ~u.~n p1 = 0 on Γ × (0, T )

p1(x, T ) = µ1|Ω×{T} in Ω

−∂p2

∂t
−∇.(~up2) − β2∆p2 +

1
h
κ2p2 = µ2|Ω×(0,T ) in Ω × (0, T )

β2
∂p2

∂n
+ ~u.~n p2 = 0 on Γ × (0, T )

p2(x, T ) = µ2|Ω×{T} in Ω



(2.51)

where µ1, µ2 are regular Borel measures in Ω̄× [0, T ]. The weak solution of the system (2.51) can be defined by
transposition techniques (see Casas [12]):

Definition 2. Given r, s ∈ [1, 2),
2
r

+
2
s
> 3, we say that p = (p1, p2) ∈ [Lr(0, T ;W 1,s(Ω))]2 is a solution of

the system (2.51) if, for all z = (z1, z2) ∈ [L2(0, T ;H1(Ω)) ∩ C1(Ω̄ × [0, T ]]2 such that z(., 0) = 0, the following
equality holds, ∫ T

0

∫
Ω

{
∂z1
∂t

p1 +
∂z2
∂t

p2 + ρ1∇z1∇p1 + ρ2∇z2∇p2 + ~u∇z1p1 + ~u∇z2p2

+κ1z1p1 + κ1z1p2 +
1

h(x, t)
κ2z2p2)

}
dxdt =

∫ T

0

∫
Ω

z1 dµ1(x, t)

+
∫ T

0

∫
Ω

z1 dµ1(x, t) +
∫

Ω

z1(x, T )dµ1T (x) +
∫

Ω

z2(x, T )dµ2T (x).
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Let us define the sets S1 and S2 by

S1 = {s ∈ C(∪NZ

i=1Āi × [0, T ]) : s(x, t) ≤ σj , ∀(x, t) ∈ Aj × [0, T ], j = 1, . . . , NZ},
S2 = {ω ∈ C(∪NZ

i=1Āi × [0, T ]) : ω(x, t) ≥ ζj , ∀(x, t) ∈ Aj × [0, T ], j = 1, . . . , NZ}·

We have the following result:

Theorem 2.3. Let m ∈ Uad be an optimal control. Then, there exist two functions ρ1, ρ2 ∈ Lr(0, T ;W 1,s(Ω))∩
L2(0, T ;L2(Ω)), for all r, s ∈ [1, 2),

2
r

+
2
s
> 3, solution of (2.42) and two functions p1, p2 ∈ Lr(0, T ;W 1,s(Ω)),

solution of (2.51), where µ1, µ2 are two Borel measures, with support in ∪NZ

i=1Āi × [0, T ], such that,

µi|∪NZ
i=1Āi×[0,T ]

∈ ∂χSi(Fi(m)), i = 1, 2, (2.52)

and furthermore

NE∑
j=1

{∫ T

0

fj
′(mj(t))(nj(t) −mj(t)) dt+

∫ T

0

1
h(Pj , t)

p1(Pj , t)(nj(t) −mj(t)) dt

}
≥ 0, ∀n ∈ Uad. (2.53)

2.5. Numerical solution

The first step in the numerical resolution of the control problem is solving the state system. For this purpose
we carry out a time discretization, treating the convective term with a method of characteristics. For the
time interval [0, T ], we choose a number N ∈ N and define ∆t = T

N > 0 and tn = n∆t, ∀n = 0, . . . , N.
Then, for the semi-discretized problem, we consider a variational formulation and approximate it by a finite
element discretization . We introduce a polygonal set Ωh approximating the domain Ω and choose an admissible
triangulation τh of it (see [15]) with triangles of diameter ≤ h and such that the vertices in the boundary of Ωh

also lie in the boundary of Ω. We define the following finite element space,

Vh =
{
vh ∈ C0(Ω̄), vh|K ∈ P1, K ∈ τh

} ·
Then the discretized problem is solved making use of the velocity and height of water column provided by Saint
Venant equations. Moreover the discretized cost Ĵ and constraints g are given by

Ĵ : R
N×NE −→ R

m −→ Ĵ(m) = ∆t
NE∑
j=1

N−1∑
n=0

Cjnfj(mjn),

g : RN×NE −→ RN×NV Z xRN×NV Z xRN×NE

m −→ g(m) = (ρ̃1h − σ, ζ − ρ̃2h,︸ ︷︷ ︸
= g1(m)

m−m,m−m︸ ︷︷ ︸
= g2(m)

)t,

where

• m is the vector consisting of all of the discharges at all times;
• mjn is the amount of BOD discharged in Pj at time tn;
• Cjn are the weights of the quadrature formula;
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• NV Z is the number of vertices in the protected areas;
• ρ̃ih is a vector of values of ρih at each vertex included in the protected areas and for all times.

We remark that function g can be decomposed into g1, which is putting together the constraints about the
water quality, and g2 collecting the bound constraints. Then, the optimal control problem is approximated by
the following discretized problem,

(PF )


min

m∈R
N×NE

Ĵ(m)

such that g(m) ≤ 0.

This problem has solution because the cost function is convex and the constraints set is compact. It has been
solved by using a feasible points method which is based on a globally convergent algorithm introduced by
Herskovits [19] and Panier et al. [31]. Let us introduce the following notation,

• p is the dimension of the control and q is the number of the constraints on the state;
• (λ, θ) is the vector of the dual variables;
• L(m,λ, θ) is the Lagrangian;
• H(m,λ, θ) is the Hessian.

Then the first order Karush–Kuhn–Tucker optimality conditions for the discretized problem are,

∇Ĵ(m) + ∇g1λ− Iθ = 0, (2.54)
G1(m)λ = 0, G2(m)θ = 0, (2.55)

λ ≥ 0, θ ≥ 0, (2.56)
g1(m) ≤ 0, g2(m) ≤ 0, (2.57)

where G1(m) and G2(m) are diagonal matrices of order q and p, respectively, with diagonal elements being the
values of the corresponding functions gi(m). The basic idea of the feasible points algorithm consists of solving
the system of equations (2.54, 2.55) in (m,λ, θ) by using a fixed point method, in such a way that conditions
(2.56, 2.57) hold at each iteration. We refer to [28] for further details.

2.6. Numerical results

In this section we present the numerical results obtained when solving the problem for a realistic situation.
We have taken a two-dimensional mesh of the ŕıa of Vigo (Spain) as domain Ω, where we have considered two
protected areas and two points of discharge (see Fig. 3). We have also supposed that it is necessary to guarantee
lower level of pollution in zone 1 than in zone 2. The values of the physical parameters and data can be seen
in Table 2.

The cost function is given in Figure 5. We assume that pollutant concentration of waste-waters arriving to
the sewage farm is 150 Kg/m3 so the depuration cost above this value is constant. The velocity and the height
of water column have been obtained by solving the Saint Venant equations in this domain. Figures 3 and 4
show the BOD concentration at high tide and at low tide, respectively. The constraints are satisfied everywhere
in the protected areas; at high tide they saturate at one of the vertices in zone 1 but at low tide, after a tidal
cycle, the saturation takes place at one of the vertices in zone 2.

The values of the optimal discharges can be seen in Figure 6. The BOD rate of discharge is greater during
rising tide at point 2 than at point 1. However, during ebb tide (after t = 60) the flow rate decreases at P2 and
increases at P1. This is an obvious consequence of the outfalls position: in fact, during rising tide, P2 is better
than P1, but during ebb tide the opposite holds.
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Table 2. Parameters for solving the problem (PF ) on the ŕıa of Vigo.

Saint Venant parameters Empiric Coefficients non-
dimensional
constants

Tidal cycle: T=12.4 h β1 = β2 = 2000 m2/s N = 120
Tidal run: 2.8 m κ1 = 1.15 10−5 s−1 ξ1 = 10−8

Water density: 1000 kg/m3 κ2 = 9 10−12 s−1 ξ2 = 10−8

Air density: 1.28 kg/m3 ds = 8.98 10−3 Kg/m3 µ1 = 10−5

North latitude: 0.7326 rad ρ20 = 8.082 10−3 Kg/m3 µ2 = 10−5

Wind direction: 3.9269 rad σ1 = 3.48398 10−4 Kg/m3 λI = 1
Wind velocity: 10 km/h σ2 = 5 10−4 Kg/m3 θI = 1
Angular velocity of Earth: ζ1 = 8.05255 10−3 Kg/m3

7.92 10−5 rad/s ζ2 = 8.03218 10−3 Kg/m3

m = 0 Kg/m3

m = 150 Kg/m3

Figure 3. BOD concentration at hight tide.
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Figure 4. BOD concentration at low tide.

Figure 5. Cost function. Figure 6. Optimal dis-
charges during a tidal
cycle.

3. Active control of noise

3.1. Introduction

Noise reduction is an important problem in acoustical and environmental engineering. While passive methods
are good for mid and high frequencies they are not efficient for low frequencies. However, the latter can be
efficiently reduced by active control. This is an old concept that has generated increased interest during the past
decades due to the development of fast digital signal processors (DSP). It is based on the principle of destructive
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interference of waves: an opposite pressure is generated by a secondary source to cancel an undesired noise.
In order to achieve significant reduction, this source must produce, with great precision, an equal amplitude
but inverted replica of the noise to be cancelled. Applications of these techniques are now successfully used to
reduce noise in aircrafts or cars. Reference books on this subject are [3] and [26]. The general principles of
active control of noise was described in a early patent by Leug in 1936. A microphone detects the undesired
noise and provides an input signal to an electronic control system. The transfer from the microphone to the
loudspeaker is adjusted so that the sound wave generated will destructively interfere the noise to be cancelled.

In this paper we state the problem of active control of noise in the framework of the optimal control theory
of distributed systems. For the sake of simplicity we only consider that the noise to be cancelled has one
single frequency but we can also control broad-band noise or non-periodic noise. Two problems are successively
considered. In a first step complex amplitudes are taken as control and the objective is to minimize pressure at
some particular points in the domain. In a second step, the locations of the loud-speakers are optimized with
respect to the same objective function. A third step that is not included here would consist in choosing the
locations of the microphones in view of minimizing the global noise, i.e. the norm of the pressure in the whole
domain under consideration rather than at some finite number of points. We refer to [18] for further details.

3.2. Mathematical model

Let us consider a bounded domain ΩF ⊂ Rn (n = 2 ó 3) either convex polygonal or with smooth boundary
enclosing an acoustic fluid, (i.e. inviscid compressible and barotropic). The propagation of acoustic waves is
modelled by the well-know equation

1
c2
∂2p(x, t)
∂t2

− ∆p(x, t) = f(x, t) in ΩF ,

where p is the pressure fluctuation, c is the sound speed and f is a source term. In our case f is going to be the
secondary source of noise produced by loud-speakers, that is, the control. Moreover we have a primary source
of noise acting on a part ΓN of the boundary:

∂p(x, t)
∂n

= g(x, t) on ΓN ⊂ ∂ΩF ,

where n is an outward unit vector normal to the boundary. This means that the normal displacements are
imposed on ΓN . In practice it corresponds to vibrations of the enclosure. In this paper we assume that both g
and f are harmonic sources, i.e.

g(x, t) = Re
(
G(x) e−iωt

)
, f(x, t) = Re

(
F (x) e−iωt

)
,

where G(x) y F (x) are complex functions called complex amplitudes. Actually their modulus are the physical
amplitudes while their arguments are called phase angles. Since the model is linear its solutions are also
harmonic with the same frequency:

p(x, t) = Re
(
P (x) e−iωt

)
.

In this situation, the acoustic wave equation yields the following Helmholtz problem to be satisfied by the
complex amplitude of pressure,

−∆P −
(ω
c

)2

P = F in ΩF ,

∂P
∂n

=
iωρ

Z(ω)
P on ΓZ ⊂ ∂ΩF ,

∂P
∂n

= G on ΓN ⊂ ∂ΩF ,

(3.58)
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where ρ is the density of the fluid and Z(ω) ∈ C is the so called wall impedance,

Z(ω) := β(ω) +
α(ω)
ω

i.

The boundary condition on ΓZ allows modelling the behaviour of absorbing viscoelastic materials on the walls
of the enclosure. They are used as passive systems to reduce noise. Functions β(ω) and α(ω) are related to the
viscous and elastic responses, respectively. Both are strictly positive functions of the angular frequency ω.

In our case F (x) is a linear combination of Na Dirac’s delta measures supported at some given points,{
xa

1 , . . . , x
a
Na

}
, with complex amplitudes, {u1, . . . , uNa}, to be determined:

F (x) =
Na∑
i=1

ui δxa
i
(x), with ui ∈ C.

This amounts to consider loud-speakers as acoustic monopoles (see for instance [26]). In order to state the
active control of noise as an optimal control problem we do the following choices,

• the state of the system is the pressure P (x) in the domain ΩF ;
• the control variable u is the vector of complex amplitudes of loud-speakers (actuators),

u = (u1, . . . , uNa) ∈ C
Na ,

which define the source term F (x). The set of admissible controls is a convex closed set Uad ⊆ CNa ;
• the model of the system relating the control to the state is the Helmholtz problem (3.58);
• the observation z is the set of pressure values at Ns microphones (sensors) located at given points{

xs
1, . . . , x

s
Ns

}
contained in ΩF . We associate to it the following observation operator,

z = CP (x) =
(
P (xs

i ), . . . , P (xs
Ns

)
) ∈ C

Ns .

Evaluating pressure at points xs
i makes sense as far as they are different from the locations of actuators.

Actually we have the following

Theorem 3.1. There exists a unique solution of the Helmholtz problem (3.58) in L2(ΩF ).Moreover, for every
ε > 0, we have P ∈ C0

(
ΩF \ ∪Na

i=1B(xa
i ,ε)

)
with

‖P‖C0
�
ΩF \∪Na

i=1B(xa
i

,ε)

� ≤ Cε‖u‖.

• The cost function to be minimized depends on the observation and maybe on the cost of the control itself:

J(u) = Φ(P (u),u) =
1
2
‖z‖2 +

ν

2
‖u‖2 =

1
2

Ns∑
i=1

|P (u;xs
i )|2 +

ν

2

Na∑
i=1

|ui|2,

where ν ≥ 0 is a weighting factor.

Then the optimal control problem is to find uop such that

J(uop) = inf
u∈Uad

J(u). (3.59)

Any solution uop of this minimization problem will be called optimal control.
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3.3. Existence and uniqueness of an optimal control

Since the control space is finite-dimensional to prove existence of an optimal control is an easy task. It relies
upon the fact that the mapping giving the observation from the control, namely,

CNa −→ C0
(
ΩF \ {xa

1 , . . . , x
a
Na

}) −→ CNs

u 7−→ P (u) 7−→ z(u) = CP (u)

is affine (and then continuous) whenever the subsets
{
xa

1 , . . . , x
a
Na

}
and

{
xs

1, . . . , x
s
Ns

}
are disjoint. Therefore

the cost function

J(u) =
1
2

Ns∑
i=1

|P (u;xs
i )|2 +

ν

2

Na∑
i=1

|ui|2,

is quadratic. Moreover it is strictly convex under one of the two following assumptions,
• ν > 0;
• ν ≥ 0 and z(u) is one-to-one;

in which case there exists a unique optimal control.
We notice that z(u) is one-to-one if and only if the observations corresponding to each single actuator are

linearly independent. Of course this implies that the number of microphones must be less or equal than the
number of loud-speakers: Ns ≥ Na.

3.4. Numerical methods

Even if the cost function is defined in a finite-dimensional space, it involves the solution of a partial differential
equation which has to be obtained by some discretization process as, for instance, finite element methods. This
leads to approximate observations {z1h, . . . ,zNah} ⊂ CNs and thereby to an approximate cost function.

Let us consider a triangular (or tetrahedral) mesh of the domain ΩF with maximum diameter h. We call
Vh ⊂ H1(ΩF ) the finite element space consisting of continuous piecewise linear functions on this mesh and
denote by Ph the corresponding discrete solution of the Helmholtz problem (3.58). Following an analogous
scheme to that by Scott [32] or Casas [10] for elliptic problems and using classical results by Mikhlin and
Babuška we can show the following error estimate (see [18] for proof).

Theorem 3.2. If P is the solution of (3.58) then there exists h0 > 0 such that, for all h < h0, the discretized
problem has unique solution and furthermore

‖P − Ph‖L2(ΩF ) ≤ C(xa
1 , . . . , x

a
Na

)|u|h2−n/2,

where constant C(xa
1 , . . . , x

a
Na

) goes to ∞ as some xa
i approaches the boundary ∂ΩF .

Now we write the control problem in matrix form. Let us introduce the vectors,

z0 = CP (0),

zi = CP (ei) − z0 with (ei)j = δij , i, j = 1, . . . , Na.

Vector z0 is the observation corresponding to the system without any control, i.e. the pressure at the sensors
arising from the primary source only. Vectors zi, i = 1, . . . , Na are the observations when the system is only
excited by the i-th loud-speaker with unit amplitude and without primary source. Let us define matrix Z and
vector b0 by

(Z)ij = (zj , zi), i, j = 1, . . . , Na,

(b0)i = (z0, zi), i = 1, . . . , Na,
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where ( , ) denotes the scalar product in CNa Then it is easy to see that the optimal control problem is equivalent
to the following quadratic programming problem. Find uop ∈ Uad such that

J(uop) = inf
u∈Uad

1
2
{((Z + νI)u,u) + 2Re (b0,u) + (z0, z0)} · (3.60)

Similar definitions of matrix Zh and vector bh0 for the finite element approximation leads to the discrete optimal
control problem: Find uhop ∈ Uad such that

J(uhop) = inf
uh∈Uad

1
2
{((Zh + νI)uh,uh) + 2Re (bh0,uh) + (zh0, zh0)} · (3.61)

The following error estimate is obtained in [18] by using pointwise error estimates for the state equation.

Theorem 3.3. There exists h0 > 0 such that, for all h < h0,

‖uop − uoph‖∞ ≤ 1
αZ − ‖∆Z‖∞ (‖∆Z‖∞‖uop‖∞ + ‖δb0‖∞) ≤ C

Ĉn
2

ln

(
Ĉ3

h

)
h2‖uop‖∞,

where, αZ > 0 is a positive constant such that

((Z + νI)v,v) ≥ αZ‖v‖2, ∀v ∈ Uad

where ∆Z = Z − Zh and δb0 = b0 − b0h.

3.5. Numerical results

In this paragraph we present some numerical results for a 3D test. In order to assess the effect of noise
control we use the following measure of attenuation,

Attenuation (dB) = 10 log

(∑Ns

i=1 |P (u;xs
i )|2∑Ns

i=1 |P (0;xs
i )|2

)
·

The data of the problem are

• ΩF = [0, 1] × [0, 1]× [0, 1];
• ω = 2, c = 1, ρ = 1 y ν = 0;
• primary source of noise: G(x, y, 0) = ei 2πy, on z = 0;
• one loud-speaker located at xa

1 = (4/6, 4/6, 4/6);
• two microphones located at xs

1 = (1/6, 2/6, 1/6) and xs
2 = (5/6, 1/6, 1/2);

• the wall z = 1 has an acoustic impedance for ω = 2 given by Z(2) = 300 + 103 i. The rest of the walls are
rigid.

In Figure 7 the coarsest mesh is shown. The optimal control has been computed for several mesh refinements
and then an extrapolated optimal control has been determined. This is used to compute the relative errors of
both its real and imaginary parts. They are shown in Figure 8 where an order two of convergence is observed,
as predicted by theoretical results.

For h = 1/24, the computed attenuation is −0.75 dB. Figures 9 and 10 show the modulus of the complex
pressure field without control and with control, respectively, on the plane containing the actuator and the two
sensors. Figure 11 represents the attenuation field on the same plane. In this case we can observe that there exists
zones where noise is reinforced, that is, where primary and secondary sources interfere in a constructive way.
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3.6. Optimal location of actuators

In the previous paragraph the position of both sensors (microphones) and actuators (loud-speakers) were
given. Then we used the complex amplitudes of actuators as a control variable and determine their optimal
values with the objective of minimizing the pressure level at points where sensors were located. Now we assume
that the positions of actuators can be chosen in certain subsets of the domain and determine those that minimize
the same objective function as above when the complex amplitudes with respect to these positions are optimal.
This is an important problem when a system of active control of sound has to be implemented to reduce noise
in a enclosure. It can also be formulated as an optimal control problem. The difficulty now is that dependency
of the state with respect to the additional control variables (the positions of actuators) is no longer affine.
Thus, the cost function may have many local minima and therefore gradient-like methods are not suitable to
solve the problem. Moreover, in practical situations, the number of feasible locations is finite and hence the
optimization problem is an integer programming problem. In these cases, one can use, for instance, genetic or
simulated annealing algorithms. Once the optimal locations have been determined it will be possible to improve
them in some given neighborhoods by performing a local minimization using the gradient of the cost function
with respect to the location of the actuators. The reader is referred to [18] for a full analysis of this problem;
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Figure 7. Coarsest mesh (h = 1/6).

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

1/h

er
ro

r 
re

la
tiv

o 
(%

)

Real      
Imaginaria

2 

1 

Figure 8. Relative error (%) as a function of 1/h in log-log scale.
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Figure 9. Pressure modulus without control for h = 1/24.
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Figure 10. Pressure modulus with control for h = 1/24.
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Figure 11. Attenuation field for h = 1/24.
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in particular, the first order optimality conditions given below are proved there. They allow computing the
gradient of the cost function through an adjoint state.

Theorem 3.4. Let Bad ⊂ RN the set of admissible locations for actuators. If (uop, bop) ∈ Uad × Bad is an
optimal control and P the corresponding state, then there exists an adjoint state R such that the following
equations hold,
State equation: 

−∆P −
(ω
c

)2

P =
∑Na

i=1 uopi δbopi
in ΩF ,

∂P
∂n

=
iωρ

Z(ω)
P on ΓZ ⊂ ∂ΩF ,

∂P
∂n

= G eon ΓN ⊂ ∂ΩF .

(3.62)

Adjoint state equation: 
−∆R−

(ω
c

)2

R =
∑Ns

i=1 P (xs
i )δxs

i
in ΩF ,

∂R
∂n

=
−iωρ
Z̄(ω)

R on ΓZ ⊂ ∂ΩF ,

∂R
∂n

= 0 on ΓN ⊂ ∂ΩF .

(3.63)

Euler’s inequality

Re

{
Na∑
i=1

(R(bopi) + ν uopi, ui − uopi)

}
+

Na∑
i=1

Re
{
ūopi

∇R(bopi)
} · (bi − bopi) ≥ 0,

∀(u, b) ∈ Uad ×Bad. (3.64)

The author is indebted to P. Gamallo, A. Mart́ınez, C. Rodŕıguez and M.E. Vázquez–Méndez for their help during the
preparation of this article.
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