AN EXAMPLE IN THE GRADIENT THEORY OF PHASE TRANSITIONS

CAMILLO DE LELLIS

Abstract. We prove by giving an example that when \(n \geq 3 \) the asymptotic behavior of functionals
\[
\int_{\Omega} \left(\varepsilon |\nabla^2 u|^2 + \frac{(1 - |\nabla u|^2)^2}{\varepsilon} \right) \nabla \Omega = \mathbb{R}^n
\]
as \(\varepsilon \downarrow 0 \), where \(u \) maps \(\Omega \) into \(\mathbb{R} \). This problem was raised by Aviles and Giga in [2] in connection with the mathematical theory of liquid crystals and more recently by Gioia and Ortiz in [9] for modeling the behavior of thin film blisters. Recently many authors have studied the planar case giving strong evidences that, as conjectured by Aviles and Giga in [2], the sequence \(\{ F_{\varepsilon}\} \) \(\Gamma \)-converge (in the strong topology of \(W^{1,3} \); see [1] for a discussion of such a choice and a rigorous setting) to the functional

\[
F^{\Omega}_\infty(u) := \begin{cases}
\frac{1}{3} \int_{J_{\nabla u} + \infty} |\nabla u^+ - \nabla u^-|^3 \, dH^{n-1} & \text{if } |\nabla u| = 1, u \in W^{1,\infty} \\
\text{otherwise.} &
\end{cases}
\]

Here \(J_{\nabla u} \) denotes the set of points where \(\nabla u \) has a jump and \(|\nabla u^+ - \nabla u^-| \) is the amount of this jump. Of course the first line of the previous definition makes sense only for particular choices of \(u \), such as piecewise \(C^1 \). For a rigorous setting the reader should think about a suitable function space \(S \) which contains piecewise \(C^1 \) functions and on which we can give a precise meaning to the above integral (for example a natural choice would be \(\{ u | \nabla u \in BV \} \); however this space turns out not to be the natural one: we refer again to [1] for a discussion of this topic).

Partial results in proving Aviles and Giga’s conjecture (i.e. compactness of minimizers of \(F^{\Omega}_\varepsilon \), estimates from below on \(F^{\Omega}_\varepsilon(u) \) and a suitable weak formulation for the problem of minimizing \(F \) subject to some boundary conditions) can be found in [1,3,5–8].

Mathematics Subject Classification. 49J45, 74G65, 76M30.

Received December 4, 2001.

1. INTRODUCTION

This paper is devoted to the study of the asymptotic behavior of functionals

\[
F^{\Omega}_\varepsilon(u) := \int_{\Omega} \left(\varepsilon |\nabla^2 u|^2 + \frac{(1 - |\nabla u|^2)^2}{\varepsilon} \right) \nabla \Omega = \mathbb{R}^n
\]
as \(\varepsilon \downarrow 0 \), where \(u \) maps \(\Omega \) into \(\mathbb{R} \). This problem was raised by Aviles and Giga in [2] in connection with the mathematical theory of liquid crystals and more recently by Gioia and Ortiz in [9] for modeling the behavior of thin film blisters. Recently many authors have studied the planar case giving strong evidences that, as conjectured by Aviles and Giga in [2], the sequence \(\{ F_{\varepsilon}\} \) \(\Gamma \)-converge (in the strong topology of \(W^{1,3} \); see [1] for a discussion of such a choice and a rigorous setting) to the functional

\[
F^{\Omega}_\infty(u) := \begin{cases}
\frac{1}{3} \int_{J_{\nabla u} + \infty} |\nabla u^+ - \nabla u^-|^3 \, dH^{n-1} & \text{if } |\nabla u| = 1, u \in W^{1,\infty} \\
\text{otherwise.} &
\end{cases}
\]

Here \(J_{\nabla u} \) denotes the set of points where \(\nabla u \) has a jump and \(|\nabla u^+ - \nabla u^-| \) is the amount of this jump. Of course the first line of the previous definition makes sense only for particular choices of \(u \), such as piecewise \(C^1 \). For a rigorous setting the reader should think about a suitable function space \(S \) which contains piecewise \(C^1 \) functions and on which we can give a precise meaning to the above integral (for example a natural choice would be \(\{ u | \nabla u \in BV \} \); however this space turns out not to be the natural one: we refer again to [1] for a discussion of this topic).

Partial results in proving Aviles and Giga’s conjecture (i.e. compactness of minimizers of \(F^{\Omega}_\varepsilon \), estimates from below on \(F^{\Omega}_\varepsilon(u) \) and a suitable weak formulation for the problem of minimizing \(F \) subject to some boundary conditions) can be found in [1,3,5–8].

Keywords and phrases: Phase transitions, \(\Gamma \)-convergence, asymptotic analysis, singular perturbation, Ginzburg–Landau.

\(^1 \) Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy; e-mail: delellis@cibs.sns.it

\(\odot \) EDP Sciences, SMAI 2002
The proof can be easily generalized to every \(n \) given by sequence \((\cdots)\) converging to \(E \), which is a dimensional problem in the calculus of variations which can be explicitly solved. This analysis leads to the ansatz has been proved by Jin and Kohn in [8] for \(n = 2 \). It reduces the problem of finding \(E \) to a one-dimensional problem in the calculus of variations which can be explicitly solved. This analysis leads to the result \(E = F_\Omega^2(w) \), which means that at \(w \) the \(\Gamma \)-limit of \(F_\Omega^2 \) exists and coincides with \(F_\Omega^2(w) \). With a standard cut and paste argument (see [4]) it can be proved that the same happens for every \(w \) which is piecewise affine. In the next section we will prove the following theorem:

Theorem 1.2. Let \(u \) be the function \(u(x_1, x_2, x_3) = |x_3| \) and \(C \) the cylinder \(\{|x_1|^2 + |x_2|^2 < 1\} \). Then there exists \((u_k) \) such that:

1. every \(u_k \) is piecewise affine (being the union of a finite number of affine pieces) and satisfies the eikonal equation;
2. \(\lim_k F_\infty^C(u_k) < F_\infty^C(u) \);
3. \(u_k \rightharpoonup u \) strongly in \(W^{1,p} \) for every \(p < \infty \).

The proof can be easily generalized to every \(n \geq 3 \). As an easy corollary we get that the one-dimensional ansatz fails for \(n \geq 3 \). Moreover this failure means that \(F \) cannot be the \(\Gamma \)-limit of \(F_\Omega^2 \) for \(n \geq 3 \).

Corollary 1.3. The one-dimensional ansatz is not true for \(n \geq 3 \).

Proof. As already observed, being every \(u_k \) piecewise affine, there is a family of functions \(u_{k,\varepsilon} \) such that \(u_{k,\varepsilon} \) converge to \(u_k \) in \(W^{1,p} \) (for every \(p < \infty \)) and \(\lim\inf F_\infty^C(u_{k,\varepsilon}) = F_\infty^C(u_k) \). A standard diagonal argument gives a sequence \((u_{k,\varepsilon(k)}) \) strongly converging to \(u \) in \(W^{1,p} \) such that \(\lim\inf F_\infty^C(u_{k,\varepsilon(k)}) < F_\infty^C(u) \).

2. THE EXAMPLE

In this section we prove Theorem 1.2. First of all we recall the following fact:

(Curl) If \(v : \mathbb{R}^n \to \mathbb{R}^n \) is a piecewise constant vector field, then \(v \) is a gradient if and only if for every hyperplane of discontinuity \(\pi \) the right trace and the left trace of \(v \) have same component parallel to \(\pi \).

The building block of the construction of Theorem 1.2 is the following vector field, depending on a parameter \(\phi \in (0, \pi/2) \). First of all we fix in \(\mathbb{R}^3 \) a system of cylindrical coordinates \((r, \theta, z)\) and then we call \(A \) the cone given by \(\{ z > 0, r < 1, (1-r) > z\tan \phi \} \) and \(A' \) the reflection of \(A \) with respect to the plane \(\{ z = 0 \} \). Hence we put

\[
\begin{align*}
v(r, \theta, z) &= (0, 0, 1) & \text{if } z > 0 \text{ and } (r, \theta, z) \notin A \\
v(r, \theta, z) &= (\sin(2\phi), \theta + \pi, \cos(2\phi)) & \text{if } z > 0 \text{ and } z \in A \\
v(r, \theta, z) &= (0, 0, -1) & \text{if } z < 0 \text{ and } (r, \theta, z) \notin A' \\
v(r, \theta, z) &= (\sin(2\phi), \theta + \pi, -\cos(2\phi)) & \text{if } z < 0 \text{ and } z \in A'.
\end{align*}
\]
It is easy to see that \(v \) maps every plane \(\{ \theta = \alpha \} \cup \{ \theta = \alpha + \pi \} \) into itself. Moreover the restrictions of \(v \) to these planes all look like as in the following picture.

![Planar section of the field \(v \)](image)

Lemma 2.1. The vector field \(v \) is the gradient of a function \(w \). Moreover there is a sequence of piecewise affine functions \(w_k \) such that:

(a) \(w_k \to w \) strongly in \(W^{1,p} \) for every \(p \);
(b) \(F^{
abla}_{\Omega}(w_k) \to F^{
abla}_{\Omega}(w) \) for every open set \(\Omega \subset \mathbb{R}^3 \).

Proof. We consider the restriction of \(v \) to the plane \(P := \{ \theta = 0 \} \cup \{ \theta = \pi \} \). As already noticed \(v \) maps this plane into itself. Moreover its restriction to it satisfies condition (Curl), hence on \(P \) \(v \) is the gradient of a scalar function \(w \). Moreover we can find such a \(w \) so that it is identically zero on the line \(\{ z = 0 \} \cap P \). Hence \(w \) is symmetric with respect to the \(z \) axis and so we can extend \(w \) to the whole three-dimensional space so to build a cylindrically symmetric function. It is easy to check that the gradient of such a function is equal to \(v \).

We call this function \(w \) as well and we will prove that it satisfies conditions (a) and (b) written above.

(a) Our goal is approximating \(v \) with piecewise constant gradient fields. First of all we do it in the upper half-space \(\{ z > 0 \} \). For every \(n \) we take a regular \(n \)-agon \(B_n \) which is inscribed to the circle of radius 1 and lies on the plane \(\{ z = 0 \} \). The vertices of this \(n \)-agon are given by \(V_i := (1, 2i\pi/n, 0) \).

Hence we construct the pyramid \(A^n \) with vertex \(V := (0, 0, \cot \phi) \) and base \(B_n \). In the pyramid we identify \(n \) different regions \(A^n_1, \ldots, A^n_n \), where every \(A^n_i \) is given by the tetrahedron with vertices \((0,0,0), V, V_i, V_{i+1} \). After this we put \(v_n \) equal to \((0,0,1) \) outside \(A^n \) and in every \(A^n_i \) we put

\[
v_n(r, \theta, z) \equiv (\sin 2\phi, \pi + (2i + 1)\pi/n, \cos 2\phi).
\]

It is easy to see that \(v_n \) satisfies condition (Curl), hence it is the gradient of some function \(w_n \). Moreover we can choose \(w_n \) in such a way that it is identically zero on \(\{ z = 0 \} \). Then we extend \(w_n \) to the lower half space \(\{ z < 0 \} \) just by imposing \(w_n(r, \theta, -z) = w_n(r, \theta, z) \). It is not difficult to see that \(\nabla w_n \) converges strongly to \(\nabla w \) in \(L^p_{\text{loc}} \) for every \(p \).

(b) Now we check that the previous construction satisfies also the second condition of the lemma. We fix an open set \(\Omega \subset \mathbb{R}^3 \) and we observe that both \(w_k \) and \(w \) satisfy the eikonal equation in \(\Omega \). Moreover we call \(L^n \) the triangle with vertices \(V, V_i, V_{i+1} \) and \(L^n \) the union of \(L^n_i \) (so \(L^n \) is the “lateral surface” of the pyramid \(A^n \)). Finally we denote by \(L \) the lateral surface of the cone \(A \), i.e. the set \(\{(1-r) = z \tan \phi \} \).

(i) The amount of jump of \(v_n \) (i.e. \(|v^n_+ - v^n_-| \)) on \(L^n \) is constant and equal to the value of \(|v^+ - v^-| \) on \(L \). Moreover the area of \(L^n \) is converging to the area of \(L \). The same happens on the symmetric sets in the lower half-space \(\{ z < 0 \} \).
(ii) Let us call B the base of the cone. The right and left traces of v_n coincide with those of v on $B_n \cup \{z = 0\} \setminus B$. Moreover the area of $B \setminus B_n$ is converging to zero.

(iii) The vector fields v_n are discontinuous also on the triangles T_i^n joining V_i, $(0,0,0)$ and V_i (and on the symmetric triangles lying on $\{z < 0\}$). The amount of jump of v_n on each of these triangles is given by

$$|v_n^+ − v_n^-| = 2 \sin(\pi/n).$$

Moreover the area of everyone is given by $(\cot \phi)/2$. Hence

$$\int_{\cup_i T_i^n} |v_n^+ − v_n^-|^3 d\mathcal{H}^2 = 4n \cot \phi \sin^3 \pi/n.$$

The right hand side goes to zero as $n \to \infty$ and this completes the proof.

Proof of Theorem 1.2. First of all we pass from the cartesian coordinates of the statement to the cylindrical coordinates (r, θ, z) given by $x_3 = z$, $x_1 = r \cos \theta$, $x_2 = r \sin \theta$ (and sometimes we will denote the elements of \mathbb{R}^3 with (y, z), where $y \in \mathbb{R}^2$ and $z \in \mathbb{R}$).

We take w as in the previous lemma. First of all we compute $F_C^c(w)$ where C is the cylinder $\{r < 1\}$. As in the previous proof we call L the lateral surface of the cone, that is the set $\{r − 1 = z \tan \phi\}$. The value of $|\nabla w^+ − \nabla w^-|$ on the surface L is given by $2 \sin \phi$ and the area of L is given by $\pi/\sin \phi$: the same happens for the symmetric of L lying on the half-space $\{z < 0\}$. On the base of the cylinder we have $|\nabla w^+ − \nabla w^-| = 2 |\cos 2\phi|$. Hence

$$a(\phi) := F_C^c(u) − F_C^c(w) = \frac{\pi}{3}(8 − 8 \cos^3 2\phi − 16 \sin^2 \phi)$$

and it can be easily checked that for ϕ close enough to zero, $a(\phi)$ is positive.

Therefore let us fix an α for which $a(\alpha) > 0$ and let us agree that w is constructed as in the previous lemma by choosing $\phi = \alpha$. Given $\rho > 0$ and $x \in \mathbb{R}^2$ we define $w_{x,\rho}$ in the cylinder $C_{x,\rho} := \{(y, z) : |y − x| \leq \rho\} \subset \mathbb{R}^3$ as $w_{x,\rho}(y, z) = \rho w((y − x)/\rho, z/\rho)$. It is easy to see that

$$F_{C_{x,\rho}}^c(u) − F_{C_{x,\rho}}^c(w_{x,\rho}) = a(\alpha) \rho^2. \tag{2}$$

Let us fix ε and take ρ such that $\rho \cot \alpha < \varepsilon$. Thanks to Besicovitch Covering lemma we can cover \mathcal{H}^2 almost all $D := \{z = 0, r ≤ 1\}$ with a disjoint countable family of closed discs D_i such that every D_i has radius $r_i < \rho$, center x_i and is contained in D. We construct u_ε by putting $u_\varepsilon \equiv w_{x_i,\rho_i}$ in the cylinder C_{x_i,ρ_i}.

Since ∇u_ε coincides with ∇u in $\{z ≥ \varepsilon\}$ and satisfies the eikonal equation, it is easy to see that $u_\varepsilon \to u$ locally in the strong topology of $W^{1,p}$. Moreover equation (2) implies that

$$F_C^c(u) − F_C^c(u_\varepsilon) = \sum_i a(\alpha) r_i^2 = a(\alpha).$$

At this point, using the previous lemma we can approximate the function u_ε in the cylinders C_{x_i,ρ_i} with piecewise affine functions in such a way that their traces coincide with the trace of u_ε on the boundary of C_{x_i,ρ_i}. Using standard diagonal arguments for every ε we can find a sequence of piecewise affine functions u_k^ε which converge in $W^{1,p}$ to u_ε and such that $F_C^c(u_k^\varepsilon) \to F_C^c(u_\varepsilon)$. Moreover, again using diagonal arguments, we can construct the sequence u_k^ε so that each one is a finite union of affine pieces.

Finally, one last diagonal argument, gives a sequence u_k such that:

(a) u_k is a finite union of affine pieces;

(b) $\lim_k F_C^c(u_k) < F_C^c(u)$;

(c) $u_k \to u$ strongly in $W^{1,p}$ for every $p < \infty$.

□
AN EXAMPLE IN THE GRADIENT THEORY OF PHASE TRANSITIONS

REFERENCES

