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Abstract. Let d be the discriminant of a quadratic field. Denote by (), h (d) and k2 (d) the Kronecker
symbol, the class number and the order of the A"2-group of the ring of integers of a quadratic field
with the discriminant d, respectively.

In this paper we shall be concemed with the equation

in the case of positive d. Using methods of [8] (based on the concept of [9]) we shall prove the above
equation has only finitely many solutions in integers x  1, y, z &#x3E; 1 (with effective upper bounds
for them), if b ~ 0, k  6 are integers and 2  d, 32  k2 (d). Moreover it is proved for all d satisfying
32  k2 (d) provided k and d are of different parities.

Key words: Sums of powers, generalized Bernoulli numbers and polynomials, class number, dio-
phantine equations

1. Introduction

We follow the notation of [8]. Let d be the discriminant of a quadratic field. Denote
by () its character. Write ê = Idl. Let ~(5) = 1 5 , q(8) = 1 2 , and ~(d) = 1,
otherwise. Put 03BE(-3) = 3, 03BE(-4) = 1 2, and 03BE(d) = 1, otherwise. We have

~(d)k2(d) = B2, () and £(d)h(d) = -Bl@(,I), where Bk,~ denotes as usual the
kth Bernoulli number belonging to the Dirichlet character x. We let A2 stand for
the ring of polynomials over Q with 2-integral coefficients.

In this paper we discuss the equation (1.1) of [8] for positive d. Until now, no
attempt has been made to consider this case. K. Dilcher [2] proved that:

’the equation (1.1) of [8] has only finitely many integral solutions (D)
x  1, y, z &#x3E; 1, (with effective upper bounds for them)’

for some sequences of negative discriminants (listed in [8]). In [8] we extended
Dilcher’s list, but we were also concemed only with the case of negative d.
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We shall prove the following:

THEOREM 1. Let d be the odd discriminant of a real quadratic field, and let k ? 6
be an integer. Then (D) is true if 32 f k2(d).

THEOREM 2. Let d be the discriminant of a real quadratic field, and let k ? 6 be
an integer. Then (D) is true if 32 f k2(d), and d and k are of different parities.

REMARK. The conditions of Thms. 1 and 2 are satisfied in the following cases
(for details and references, see [5] and [6]). We continue the numbering of the list
after Thms. 1, 2 [8] (cases (xvii)-(xx) are with any k  6, the others only with
odd k). Here p and q are odd primes, and (p q) denotes the Legendre symbol.

2. Formulas used

We can rewrite the equation (1.1) of [8] in the form

where Pk+1 (x) is defined by the formula (3.1) [8]. Applying (3.2) [8] in the case
of positive d we obtain

where for any s  1
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Hence we get

3. Lemmas

The proofs of Thms. 1 and 2 will be divided into a sequence of lemmas. In the five
lemmas below, let d and d* be the discriminants of quadratic fields and let k j 4
be an even natural number. Assume that d &#x3E; 0.

LEMMA 3. (see Cor. 1 to Thm. 1 [7]) We have:

LEMMA 4. (see Cor. 2 to Thm. 1 [7J) If 2 fi d then we have:

LEMMA 5. (see Cor. 3 to Thm. 2 [7J) If 4 d, d = -4d* then we have:

LEMMA 6. (see Cor. 4 to Thm. 3 [7J) Let 8 |d and write d = ±8d*. If d*  0 and

(d 2) = 1 then we have:
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(iii) ord2 bk(d)  5, otherwise.

LEMMA 7. The numbers bk(d) E Q are 2-integral and the congruence

holds with 03B5k(d) E {±1} defined as follows:

(a) if d is odd

(b) if 4~d, d = -4d*

(c) if 8 d, d = :f:8d*

Proof. Let 2 t d. In this case, by Thm. 1 [7], we have the congruence

where 03BCk, ~k = 1, if k j 8, and p4 = ~4 = ()6 = 1 (mod4) and 03BC6 ~ 1 (mod 2)
are defined in [7]. On the other hand, by Cor. 1 to Thm. 1 [6], we get

From this and from (3.1) we obtain
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because 4 k2(d) (see [5] or [6]) and k is even.
The above gives the lemma for 2  d, 16 t k2(d) because

The same conclusion can be drawn for 16~k2(d) and 81/h( -4d). Indeed, if
1611 k2 (d) then, by Cor. 2 (iii) to Thm. 1 [6], we have 81/h( -4d) and 8 |h(-8d), or
161 h(-4d) and 411 h(- 8d). If8/1h( -4d) then the congruence (3.2) holds modulo 32,
and by (3.1) so does the congruence (3.3). This together with (3.4) gives the
congruence of the lemma in this case immediately. In order to get the lemma in
the case of odd d, it remains to prove it for 161Ik2(d) and 161h( -4d). Then (3.1)
implies the congruence

which yields the lemma at once.
Let 4~d. Put d = -4d*. Then, by Thm. 4 [7], the congruence

holds with v = 4. This gives the lemma in the case 411d, 16  kz(d).
If 16 1 k2(d) then we consider two cases according to (d* 2) = 1, or -1. By

Cor. 2 (i), (iii) to Thm. 2 [6], in both the cases we have 4 1 h(_2d). Furthermore,
Thm. 2 [7] states that

where

If (d 2*) = 1 then, by definition, we deduce that 32 1 19. Consequently, in this
case (3.6) implies the congruence
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with v = 5. Hence the lemma for 16~k2(d) and (d* 2)= 1 follows easily.
Similar considerations apply to the case 32~k2(d), (d* 2)= 1 and 21 h (d*). Then,

by Cor. 2(i) to Thm. 2 [6], we have 81 h(- 2d) and (3.7) with v = 6 holds.
If 321/ k2( d) and 2 t h(d*) then we have

with T = 5 and v = 6. Consequently, the congruence (3.6) in the case (d* 2) = 1

yields

with v = 6. This clearly forces (3.5) with the same v, and completes the proof of
the lemma in the case d = -4d*, (d* 2) = 1.
We now tum to the case (d* 2) = -1 and 16~k2(d). If (d* 2) = -1 then we have

t9 = -6(k - 2) and, by Cor. 2(iii) to Thm. 2 [6], 161Ik2(d) implies 4 1 h(d*). If
8 1 h(d*) then the congruence (3.6) gives (3.7) with v = 5, and if 41Ih(d*) then
it implies (3.9) and next (3.5) with the same v because the congruence (3.8) with
T = 2 and v = 5 holds then. This establishes the lemma in the case 411 d.

The task is now to consider the case 8 d. Then, by Thm. 4 [7], the lemma for
8 fi k2(d) follows immediately. We first deal with the case d = 8d*. Then Thm. 3
[7] states

where

and 03BB4 = 1,Àk = 0, if k &#x3E; 4. Let us assume 8~k2(d). Then, by Cor. 2(ii) to Thm. 1
[6], we have 4~h(-d) and the congruence

holds with v = 4. Consequently, the congruence (3.10) leads to (3.9) and next to
(3.5) with the same v.

If 1611k2( d) then, by Cor. 2(iii) to Thm. 1 [6], we have either 81/h( -d) and
8 1 h(-4d*), or 16 1 h(-d) and 411h( -4d*). If 811h( -d) then the congruence
(3.10) implies (3.9) with v = 5 as the congruence (3.11) with v = 5 holds. This
forces (3.5) with the same v. If 16 1 h(-d) then (3.10) gives (3.7) with v = 5 at
once, which proves the lemma in the case d = 8d* completely.
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Let us consider the case d = - 8d*. Then Thm. 3 [7] states that

where

and 03BBk has the same meaning as in (3.10).
If 8 Il k2 (d) then, by Cor. 2(iii) to Thm. 2 [6] if (d* 2) = -1 and by Cor. 1(iii) to

Thm. 2 [6] if (d* 2) = 1, we have 4~h(-d). Consequently, the congruence (3.12)
gives (3.9) with v = 4, and next (3.5) with the same v because of (3.11).

If 16/1 k2( d) then the situation is a bit more complicated. If (d* *) = -1 then,
by Cor. 2(iii) to Thm. 2 [6], we have either 16 | h(-d) and 2I/h(d*), or 811h( -d)
and 4 | h(d*). If 16 |h(-d) then the congruence (3.12) yields (3.7) with v = 5 at
once. If 8~h(-d) then it implies (3.9) with v = 5, and next (3.5) with the same v
because of (3.11). If (d* 2) = 1 then, by Cor. 2(i) to Thm. 2 [6], we obtain 81/h( -d).
Consequently, if 2 1 h(d*) then the congruences (3.11), (3.9), and next (3.5) with
v = 5 hold. If 2 t h(d*) then, by (3.12), we deduce that

because the congruences (3.11) and (3.8) with T = 4, v = 5 hold then. The above
congruence clearly forces (3.7) with v = 5, which is our claim.
The lemma is proved completely. 0

LEMMA 8. (see [9J, [3J, [4J and [1]) Let 0 fl b ~ Z and let P(x) E Q[x]
be a polynomial with at least three zeros of odd multiplicity and for any odd prime
p, with at least two zeros ofmultiplicities relatively prime to p. Then the equation

has only finitely many integral solutions x ? 1, y, z &#x3E; 1 and these solutions can

be effectively determined. 0

LEMMA 9. Let l  5 be a natural number. Write l == À (mod2), À E tO, 11.
Set

If C2i E Q (i  0) are 2-integral, 2 t co and for i  1 one of the following
congruences holds
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then the polynomial x2-03BB ~l(x) satisfies the hypothesis of Lemma 8 for any l in the
case (i), and for even l in the cases (ii) and (iii).

Proof. (i) (a) The case of even 1.
The proof of the lemma in this case is similar to the proof of Lemma 9(ii) [8]

with k, fk(x), and a2j replaced by 1, ~l(x), and C2i, respectively. Since in each of
the cases (i), (ii) and (iii) of the lemma we have ao - a21 C2i == co (mod 2), all
the congruences modulo 2 of the proof of Lemma 9(ii) [8] work with k and fk(x)
replaced by l and yJi (z ) respectively. Therefore in the same manner we can exclude
the equality

for any prime p j 3, 2-integral q e Q and t e A2 provided 1 ~ 28. Also in all these
cases, if 1 = 28, () ? 3 then analysis similar to that in the proof of Lemma 9(ii) [8]
excludes (3.13) for any prime p and the equality

for w, u e A2, deg w = 2.
What is left is to exclude the equalities (3.13) with p = 2 and (3.14) if 1 ~ 28.

Let us again note that to exclude them for the polynomial ~l(x) it is sufficient to
do it for the polynomial 01(x) defined by the formula

We first exclude (3.13) with p = 2 and with ~l(x) replaced by 03C8l(x). As in the
proof of Lemma 9(ii) [8], (3.13) with p = 2 implies the congruence

(see (4.11) of [8]), where 11 &#x3E;... &#x3E; lm  0.
On the other hand denoting by 1 j, 0  j  1 the coefficient of xJ in the

polynomial 03C8l(x), by (3.15), we deduce that
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and

i.e.,

because l  4.

Moreover using the same arguments as in the proof of Lemma 9(ii) [8], by
(3.15), for 0  j  1 we obtain
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Thus we get

Consequently the above together with (3.17) and (3.18) give

Combining this with (3.16) we can assert that lm = 0 because, by Lemma 8(i) [8],
we have 2 1 (l l/2).Moreoverweget c0 = q(mod 4) and (- 1)1 2 + 1 c0 q+2(mod 4),
and in consequence l ~ 0 (mod 4).

Furthermore, since 1 fl 2B there exists 1  j  l - 3 such that 2  (l j) . Combining
this with (3.16) yields 2 t (l j+1 2), and this contradicts Lemma 8(ii) [8]. Indeed, let
20 Ill. Then 2 ( (l j) implies 203B8| j. This yields 203B8-1~j + l 2 and, by Lemma 8(ii) [8]
again, we get 2 | (l j+l 2). Contradiction. 

Now, we exclude (3.14) with l~(x) replaced by 03C8l(x). Put w(x) = ax 2 + bx + c,
where a, b, c e Q are 2-integral and a ~ 0. Then as in the proof of Lemma 9(ii) [8]
we get the congruence

(see (4.18) and (4.19) [8]), where b is even.
Thus if 1 - 0 (mod 4) the congruence (3.20) takes the form

This contradicts (3.19) because of the coefficients of xz (the above congruence
gives 03B32 = l - 2 (mod4), and (3.19) implies y2 - l (mod4)).

If l ~ 2 (mod 4) then (3.20) takes the form
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Thus, by (3.19) (because of the coefficients of xl- 1), we find that b+2 ~ l (mod4),
i.e., b - 0 (mod4). Therefore (3.22) takes the form

which together with (3.19) imply 2 1 (l j) for all even 2  j  1 - 2. Since 1 is not
a power of 2, these divisibilities contradict Lemma 8(ii) [8].

Part (i) of the lemma in the case of even l is proved. 0

(b) The case of odd 1.
As in the proof of Lemma 9(ii) [8] we shall prove that the polynomial 01(x)

defined by the formula

is an Eisenstein polynomial with respect to p = 2 (and so irreducible over Q).
Let us denote by -yj (0  j  1 - 1) the coefficient of xi in the polynomial

03C8l(x). We have:

i.e., 03B3l-1 is odd.
Moreover, by definition, we get
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i.e.,

if l5.
Furthermore, analysis similar to that in the proof of Lemma 9(ii) [8] shows

that

if 1  i  1 - 2 (we only use in this place congruences modulo 2), as required.
This together with (3.23) and (3.24) give the desired conclusion, which completes
the proof of (i) of the lemma. D

(ii) and (iii). Let 1 be even. As was mentioned at the beginning of the proof of
(i) of the lemma, it suffices to exclude the equalities (3.13) with p = 2 and (3.14)
(with ~l(x) replaced by 03C8l(x)). By (3.15), in case (ii) we get

and in case (iii) it follows that

(cf. the congruences before (3.18)). Moreover for 0  j  l, in case (ii) we
obtain

(cf. the congruences before (3.19)), and in case (iii) we find that

Therefore, by (3.17), we deduce that
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in case (ii), and

in case (iii).
We first exclude (3.13) with p = 2 and ~l(x) replaced by 03C8l(x). Write t(z) =

tl/2xl/2 +···+ to, where ti G Q are 2-integral. We see at once that the congruences
(3.25) and (3.26) imply 2  tZ/2, to. Consequently we have IZ = qt2l/2 ~ q (mod4),
and 10 = qtô - q (mod4) in both the cases. This excludes (3.13) in case (iii)
for all 1 and in case (ii) for 4 1 1. If 1 - 2 (mod4) then (3.25) takes the form
03C8l(x) ~ c0xl + c0 (mod4). This contradicts (3.16), which implies lm = 0 (because
of the coefficient of xll2), and next -yl 0 10 (mod4).

In order to exclude (3.14), let us note that in case (ii) (3.14) implies (3.20), and
in case (iii) it gives (3.21). Combining (3.25) with (3.20) yields

because of the coefficients of x2. This is impossible, of course. Next combining
(3.26) with (3.21) gives 1 ~ 2 (mod4) (because of the coefficient of x2). Contra-
diction because of the coefficients of xZ-2 in these formulas.
The lemma is proved completely. 0

REMARKS. For odd 1  5 the polynomial 03C8l(x) := ~l(x + 1) is not an Eisenstein
polynomial with respect to p = 2 because

in case (ii) (cf. the congruences before (3.23)), and

in case (iii).
In the case of odd 1 we have

Hence we obtain
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i.e.,

in case (ii). Thus in case (ii) we get

Similarly, by (3.27) in case (iii) we have

because

if 2 i, i &#x3E; 0. Thus in case (iii) we obtain
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With this and (3.28) we get in both cases

if l - 1 (mod4), and

ifl-3(mod4).
Thus it is not possible to exclude (3.13) and (3.14) for odd 1 using only congru-

ences modulo 4.

4. Proofs of the theorems

Put 1 = k - 1. We shall apply Lemma 9, or Lemma 9(ii) of [8] (with k, k, fk(x), a2i
replaced by l , a, ~l(x) and c2i respectively) for the polynomial

where 1 * À (mod 2), 03BB E {0, 1}. Then, by (2.2), we get

where for i  0 we have

Moreover, by Lemmas 3-6 and by the assumptions on d of both the theorems, we
get

ord2 b2i(d) = ord2 k2(d) - 1,

if i  1 and in consequence the coefficients C2i are 2-integral and C2i ~ 1 ( mod 2) .
Furthermore, by Lemma 7, the assumptions on d lead to the congruences (i) of
Lemma 9 or to the congruence

in case of Theorem 1, and to the congruences (ii) or (iii) of Lemma 9 in case
of Theorem 2. Therefore in order to prove Theorem 1 it is sufficient to combine
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Lemma 9(i) or Lemma 9(ii) [8] with Lemma 8 applied to the equation (2.1). In
case of Theorem 2 it suffices to apply Theorem 1 if l is even, or to combine Lemma
9(ii),(iii) with Lemma 8 applied to the same equation if 1 is odd.
The theorem is proved. 0

REMARKS. According to Remark after the proof of Lemma 9, it is not possi-
ble to prove this lemma under the assumptions (ii) or (iii) for odd 1 in the same
manner. We can extend Lemma 7 for some even d by proving similar congruences
modulo 2ord2 k2(d)+2 which imply congruences for c2i modulo 8. Unfortunately
these new congruences are still too weak to give Lemma 9(ii),(iii) for odd 1 by the
same methods.
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