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In recent years there has been a considerable body of activity conceming the sur-
jectivity (and the corank) of gaussian maps associated to line bundles on projective
curves over an algebraically closed field of characteristic zero. The starting point
was Wahl’s discovery of the connection between gaussian maps

(L a line bundle on a curve C) and deformation theory, leading to the striking result
that if L is normally generated and 03B3KC,L is surjective then C  P(H°(L)) is not
the hyperplane section of a normal surface other than a cone ([W1], [W3]). E.g. if C
is a hyperplane section of a K3 surface then the map lKc,Kc (usually referred to as
the Wahl map) is not surjective. This is contrasted by a result of Ciliberto-Harris-
Miranda ([CHM]) stating that the Wahl map of the general curve of genus g = 10
or g  12 is surjective, and also by a result of Lazarsfeld ([L3]), yielding that there
are Brill-Noether-Petri general curves of any genus which are hyperplane sections
of K3 surfaces. Therefore the non surjectivity of the Wahl map is a non-trivial
condition, apparently not depending on classical Brill-Noether theory. These and
other reasons stimulated a growing interest on two complementary themes: on the
one hand to understand the nature of the obstructions to the surjectivity of the Wahl
map and on the other hand to study systematically all gaussian maps lL,M, where
L and M are line bundles (say of high degree) on a given curve C. As mentioned,
the problem has a special interest when L = Kc (we refer to [W3] for a survey on
these and other related questions).

Conceming the first question, a striking result has been proved by C. Voisin
([V]): given a Brill-Noether-Petri general curve C, if the Wahl map is not surjec-
tive then there is an unexpected family of non-normally generated line bundles.
Specifically, the family in question is {KC Q9 A’1,4cy, where Y = W1[(g+3)/2] is
the variety of pencils of minimal degree on C. As we said, this is unexpected,
since Voisin proves also that if C is general in Mg,g = 10 or  12, the general
of those line bundles is normally generated, thus reproving the mentioned theorem
in [CHM]. This method has been partially extended by Paoletti ([P]) to gaussian
maps of type 03B3KC,L on B-N-P general curves.
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The starting point of this paper is that something similar to the first step of
Voisin’s argument holds in full generality:

THEOREM A. Let C be any curve of genus g  1 and let E and F be vector
bundles on C. Assume that Y C Pica(C) is a subvariety generating the jacobian
as a group and such that the general line bundle A parametrized by Y is a base
point free pencil. Under mild hypotheses, if for A general in Y the multiplication
map

is surjective then the gaussian map 03B3E,F: Rel(E,F) ~ H0(KC Q9 E Q9 F) is
surjective. The reader is referred to Theorems 3.1 and 3.2 below for precise, and
in fact more general, statements.

As a particular case, when C is Brill-Noether-Petri general and E = F = K c,
taking Y = W1(g+3)/2 we recover Voisin’s lemma ([V] 2.8) in the odd genus case. If
the genus is even, we get a somehow weaker result, since, as W1(g+2)/2 is a finite set,
in order to get a family of pencils generating the jacobian, we are forced to consider
pencils of the subminimal degree (g +4)/2. This is balanced by the fact that here the
same result works as well for curves satisfying the weaker Brill-Noether condition
(Y is not required to be smooth).

The proof of Theorem A is very différent from Voisin’s one, even within the
B-N-P condition. Surprisingly enough, the present argument (which was inspired
by the reading of Kempf’s works [K1], [K2], Chapter 6 and [K3]) relies on very
general properties of the duality between Pic0(C) and Alb(C). In fact, Theorem A
is, via the classical base point free pencil trick, a corollary of the following theorem,
valid for varieties of arbitrary dimension having immersive Albanese map:

THEOREM B. Let X be a smooth irreducible projective variety such that ni-
is generated by its global sections and let E, F’, Fil be vector bundles on X.
Moreover let Y be a nondegenerate (cf. Section 1.2) subvariety of Pic°(X). Under
mild hypotheses, i , for a general on Y, the multiplication map Rel(E,F’03B1) Q9
H0(F"-03B1) ~ Rel(E Q9 F"-03B1, F’03B1) is surjective then the gaussian map 03B3E,F’~F":
Rel(E, F’ Q9 Fil) ---+ H0(03A91X Q9 E Q9 F’ Q9 Fil) is surjective. More generally, if the
multiplication map Relk(E,F’03B1)~H0(F"-03B1) ~ Relk(E~F"-03B1,F’03B1) is surjective for
a general in Y, then the k-th higher gaussian map 03B3kE,F’~F": Relk(E, F’ Q9 F") ~
H0(Sk03A91X Q9 E Q9 F’ Q9 Fil) is surjective. The reader is referred to Theorems 1.3
and 1.9 below for precise and more general statements. Here Fa means F ten-
sored with the line bundle corresponding to a via the choice of a Poincaré line
bundle.

The previous theorems might have a wide range of applications. In this paper
we work in the direction of Bertan-Ein Lazarsfeld’s paper [BEL], tackling the
following problem: since, as it is easy to see, when the degrees of Land Mare
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high enough the gaussian maps ’YL,N are surjective, give (possibly optimal) explicit
results.

In fact, in view of Theorem B, one can deal with analogous questions in higher
dimension as well (granting some knowledge about the surjectivity of multiplica-
tion maps between relations). Specifically, we start with an application to abelian
varieties, generalizing earlier results of [W2] and [BEL] for elliptic curves:

THEOREM C. Let A be an ample line bundle on an abelian variety X (over
any algebraically closed field) and let L and M line bundles on X, algebraically
equivalent respectively to a 1-power and to a m-power of A. If l , m  4 and
l + m  9 then the gaussian map ’YL,M: Rel(L, M) ~ H0(03A91X 0 L 0 M) is sur-
jective. In particular, if l  5, ’YL,L is surjective. More generally, if l, m  2(k + 1)
and l + m  4(k + 1) + 1 then the higher gaussian map 03B3kL,M: Relk(L, M) ~
H0(Sk03A91X 0 L 0 M) is surjective; this is already sharp for elliptic curves and
k = 1.

Next, we tum to the case of curves (in characteristic 0). Here, optimal bounds,
valid for any curve of given genus g, are known, basically from the works [W2]
and [BEL]. Nevertheless, in analogy with the case of multiplication maps ([GL]),
one still looks for more refined results, in function of the intrinsic geometry of the
curve. Applying Theorem A we find:

D. A lower bound on deg(L), as a function of the Cliffor index andlor the gonality
of the curve C, ensuring the surjectivity of maps ’YKc,L, (Theorem 3.4). Such a
bound coincides (essentially) with the one of [BEL] if cliff(C)  g/3 and improves
it otherwise.

E. Other lower bounds on deg(L) and deg(M), as functions of the geometry of
the curve via Clifford index andlor gonality, ensuring the surjectivity of gaussian
maps of type -YL,M (L and M line bundles) (Theorems 3.7, 3.8 and Prop. 3.9).
Some results about the surjectivity of maps ’YL,L seem to have a special interest.

F. Explicit lower bounds on the slopes of two vector bundles E and F on a curve
C ensuring the surjectivity of gaussian maps ’YE,F (Theorem 3.10, Cor. 3.11 and
Prop. 3.12).

Since some of the theorems above are complicated to state, we refer directly
to Section 3, where all this material is presented. It is worth observing that, as
a particular case, we recover, with a unified proof, essentially all the previously
known results in this direction. Finally, for Brill-Noether-Petri general curves, we
slightly sharpened our methods to get:

THEOREM G. Let C be any Brill-Noether-Petri general curve of genus g  22
and L a line bundle on C. If deg(L)  2g + 9 then the map ’YKc,L is surjective.
Moreover, if deg(L)  2g + 7 then the gaussian map -YL,L is surjective.
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Conceming the proofs, the leit-motif is very simple. One plugs into Theorem A:

(a) an estimate of the degrees d such that on the curve C there are families of base
point free pencils of degree d generating Jac(C) (dealing with maps 03B3KC,L, a
special role is played by primitive pencils, i.e. base point free pencils A such
that also Kc Q9 A v is base point free);

(b) explicit results about the surjectivity of multiplication maps of global sections
of line bundles.

Conceming point (b), an optimal theorem, due to Green-Lazarsfeld ([GL]), is
available in the case that the two line bundles coincide. In the general case, in
absence of references in the literature, we had to adapt the methods of [G], [L2]
and [GL] to get somehow analogous results. This material is somehow separated
from the theme of the present article, and it is in fact a prerequisite to it. Therefore
we present it in an Appendix at the end.

Although the results mentioned in D, E and F above do not seem to be sharp,
the proofs are very explicit and from them it appears that one could get close to
optimal bounds by refining points,(a) and (b) above. E.g. when the curve is Brill-
Noether general this can be dône easily and in this way one proves the stronger
Theorem G.

The results above suggest that, dealing with gaussian maps of line bundles of
high degree on curves, up to a certain point their surjectivity should be determined
by a complicated interaction of factors which are nevertheless of a Brill-Noether
theoretic nature. We will come back to this point, in Section 3.

Throughout the paper we will work over an algebraically closed field of charac-
teristic zero, with the exception of Section 2 where any characteristic is allowed.

Table of contents
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1. The main construction

(A) NOTATION AND PRELIMINARIES

Let X be a smooth projective variety over an algebraically closed field and let A
be the diagonal of X x X. Given two vector bundles E and F on X, we consider
the following exact sequence on X x X

Taking H°’s one obtains the multiplication map:

The vector space of relations between E and F is

Then one considers on X x X the sequence

Taking global sections we get the gaussian map

We refer to [W3] and [CHM] for other interpretations of this map, and also for the
motivation of the name "gaussian".
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Higher gaussian maps are a natural generalization of gaussian maps. To define
them, we consider the vector space of higher relations

Considering the exact sequence

and taking global sections, one defines the kth higher gaussian map

Therefore Relk( E, F) = ker(03B3k-1E,F). Note that, in this perspective, the multiplica-
tion map can be seen as the "Oth gaussian map" 03B30E,F := mE,F.

In the course of the proof of Theorem 2.5 below, on higher gaussian maps on
abelian varieties, we will use the following additional notation and facts: let us
introduce the following coherent sheaf on X

Then, by induction, Relk(E, F) ~ H0(RkE,F) ~ H0(RkF,E) and there is a com-
plex 

exact on the left and in the middle. The (k - 1 )th higher gaussian map is obtained
taking HO of the third arrow in (1). By induction one can also prove that: if for any
h, with 0  h  k - 1, the vector bundles Sh ni- 0 E Q9 F are generated by their
global sections and the higher gaussian maps 03B3hE,F are surjective then (1) is exact
on the right too. In particular the sheaves RhE,F’s are locally free. We leave this to
the reader. 
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(B) PRECISE STATEMENT AND PROOF OF THEOREM B

Given three coherent sheaves, L, M and N, on X, we will consider the two natural
multiplication maps of relations with global sections

As it is easy to see, they fit in the commutative diagram

Let us fix once for all a Poincaré line bundle P on X x Pic°X. We will adopt the
following notation: given a point 03B1 e Pic°X corresponding via P to a line bundle
La, we will denote by Ea the sheaf E 0 La.
Now let L, M’, M" be three vector bundles on X and set M := M’ 0 M". By

the above there is a commutative diagram

where m103B1 ML M"03B1), m203B1 mm, (L, M"03B1) are multiplication maps of
relations with global sections and 03B303B1 := 03B3L~M"03B1,M’-03B1, rL,M are gaussian maps.
This proves 

LEMMA 1.1. Let L, M, M’, M" be vector bundles on X such that M = M’0M".
Assume that there exists a subset Y C PicoX such that

(a) the map mM’ (L, M"03B1): Rel(L, M,,,) 0 H0(M"03B1) ~ Rel(L 0 M"03B1, M’-03B1) is
surjective for any a E Y;

(b) the map 03A303B1~Y03B3L~M"03B1,M’-03B1 : ~03B1~Y Rel(L ~ M"03B1, M’-03B1) ~ H0(03A91X 0 L 0 M)
is surjective.
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Then the gaussian map 03B3L,M: Rel( L, M) ---+ HO(ni- Q9 L Q9 M) is surjective.
The main content of the paper will be to find subsets Y C Pic°X satisfying

the hypotheses of the previous lemma. The basic Lemma 1.2 below will provide a
criterion in order to find in a natural way subsets Y C PICOX satisfying condition (b)
of Lemma l.l. Before stating it we need some additional notation and hypotheses.
First of all, from this point, with the exception of Section 2, we will work over an
algebraically closed field of characteristic zero. In the sequel Y will be a subvariety
(i.e. an irreducible and reduced closed subscheme) of PicoX. Taking the H1 of the
canonical surjection OPic0x ~ Oy and dualizing one gets a map

where H1(OPic0X) is identified to H0(03A91X) via duality between abelian vari-
eties :

Let us denote Vy the image of the map Oy.
Moreover, given a sheaf E on X, we will denote Y+(E) and Y-(E) the loci

of a E Y where respectively h°(Ea) and h0(E-03B1) jump. If F is another sheaf on
X we will denote m(Y, E, F) the locus where the multiplication map mE03B1,F-03B1 :
HO(Ea) Q9 H0(F-03B1) ~ HO(E Q9 F) is not surjective. Let also m(Y, E, F)1 denote
the union of all components of m(Y, E, F) of codimension one in Y. Finally,
we will say that a certain property holds for a general in Y if holds on an open
set of Y.

LEMMA 1.2. Assume that 03A91X is globally generated and let E and F be two
vector bundles on X such that H1(03A91X ~ E Q9 F) = 0. Suppose that Y is a
Cohen-Macaulay subvariety of Pic X such that the jump locus Y+(E) U Y-(F)
has codimension  2 in Y and

(a) the multiplication map Vy 0 HO( E Q9 F) ~ H0(03C91X ~ E Q9 F) is surjective;
(b) the multiplication map mE03B1,F-03B1: HO(Ea) Q9 HO(F-a) ---+ HO(E Q9 F) is

surjective (and not injective) for a general in Y. Then for any open set
U C Y meeting each component of m(Y, E, F) 1 the map

is surjective.

The next theorem is a corollary of the two previous lemmas.

THEOREM 1.3. Let X be a smooth irreducible projective variety such that ni- is
globally generated. Let L and M be two vector bundles on X such that H1(03A91X ~
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L Q9 M) = 0 and assume that M = M’ Q9 M". Let Y C PicoX be a CM subvariety
such that the jump locus Y+(L Q9 M") U Y-(M’) has codimension &#x3E; 2 in Y and
U C Y be an open set meeting each component of m(Y, L Q9 M", M’) 1 such that

(a) the multiplication map Vy Q9 H°(L Q9 M) ~ H0(03A91X Q9 L Q9 M) is surjective;
(b) the multiplication map mL~M",M’: H0(L ~ M"03B1)~HO(M’-03B1) ~ HO(LQ9M)

is surjective (and not injective) for a general in Y;
(c) the map mM’-03B1(L, M"03B1): Rel(L, M’-03B1) Q9 H0(M"03B1) ~ Rel(L Q9 M"03B1, M’-03B1) is

surjective for any a in U.

Then the gaussian map lL,M: Rel( L, M) H0(03A91X Q9 L Q9 M) is surjective.
Proof of Lemma 2.2. In the first place let us globalize (according to Kempf, [K2]

Chapter 6), at least "generically", the multiplication maps

On the product X x X x Pic°X let us consider the three projections on the inter-
mediate factors p 12, p13 and p23. Then p*13(P) Q9 p*23(Pv)|0394 Pic0X is trivial. Let us
denote also 0394Y := A x Y and I0394Y := I0394Y|X X Y, the ideal sheaf of Ay in
X x X x Y. Setting

we have on X x X x Y the exact sequence

Applying P3. (where now we mean the projection from X x X x Y onto Y) one
gets a sequence on Y

where r is some sheaf on Y. We have that P3. (£) and P3. (£ Q9 Lily), as direct
images of torsion free sheaves, are (non zero) torsion free sheaves on Y. Moreover,
as Y is assumed to be reduced, off the jump locus Y+(E) U Y-(F) we have
that p3*() is locally free on U and, for any a E U,p3*(03B1) ~ H0(E03B1) ~
HO( F -a) (Künneth formula). Moreover the map P3. (G)(a) ~ HO( E Q9 F) is the
multiplication map mE03B1,F-03B1 and p3*( ~ I0394Y)(03B1) ~ Rel(Ea, F-03B1). Therefore,
thanks to hypothesis (b), T is a torsion sheaf on Y, whose support is contained on
Y(E) U Y(F) U m(Y, E, F).
Now let us globalize generically the gaussian maps
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We consider the map

Since we have natural isomorphisms

(where N means conormal sheaf), applying p3* one gets a map

and, as above, on some non empty open set W C U the map

coincides with the gaussian map -ya = 1 Ea,F -0 .
Since T is a torsion sheaf on Y, dualizing (1) we get that H0(E ~ F) Q9 (9y

sits naturally as a subsheaf of p3* (). Let W be the quotient:

Again, dualizing sequence (1) we get the exact sequence

Next, we will construct a canonical lifting

of the map l’ v. To this purpose, let us denote 0394(2) the first infinitesimal neigh-
borhood of A in X x X and 0394(2)Y := 0394(2) x Y. There is a natural isomor-
phism between the ideal sheaf 1 (2) of Ay in 0394(2)Y and the conormal sheaf
NXylX0X0Y = I0394Y/I20394Y. Therefore on X x X x Y we can consider the com-
mutative diagram with exact rows
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Applying p3* and using the hypothesis H1(03A91X ~ E Q9 F) = 0 one gets

Dualizing one gets a commutative diagram with exact rows

This induces a natural map

which is our canonical lifting of .
CLAIM. H0(): H0(03A91X ~ E ~ F) ~ H"(1,V) is injective.

Let us first show that the Claim implies the statement of Lemma 1.2. Let us
observe first of all that, since Y is CM, 03B5xt1(, OY) is supported on the one
codimensional components of the support of T, i.e., by hypothesis, m(Y, E, F) 1.
Moreover 03B5xt1(, Oy), as a sheaf on its support, is torsion free and p3* (£ ~ I0394Y)
is torsion free on Y.

The Claim is equivalent to the injectivity of the map

(where now the subscript a means "stalk at a"). Let W C Y be an open set meeting
every component of m(Y, E, F) 1. By the above and sequence (2) this is equivalent
to the injectivity of the map

But on some open subset U C W we have that W(03B1) ~ Rel(E03B1,F-03B1) and
,YV ( a ) = (03B1) = 03B3E03B1,F-03B1. Therefore the injectivity of the above map is equiva-
lent to the injectivity of 
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i.e., dualizing, to the statement of Lemma 1.2. c

We will show that the map H0(): H0(03A91X ~ E ~ F) ~ H0(W) is injective.
This implies that the map H0() is injective and hence the Claim.

By diagram (4) it is enough to show that the coboundary map

of the top row of (4) is injective. This in tum follows from hypothesis (a) and the
following

LEMMA 1.4. Up to multiplication for scalar coefficients, the map b is the dual of
the composed map

Proof Let us denote Q := p*13(p*1(E) ~ P) Q9 p*23(p*2(F) ~ PV) and let us
consider the sequence on X x X x Pic0X (analogous to the bottom row of (3))

Applying P3. and using, as before, that H1(03A91X ~ E Q9 F) = 0 one gets the exact
sequence

Setting 9 : = h1(OX) = dim(Pic°X), we have the Serre duality isomor-
phisms Hg(OPic0X) ~ k, Hg-1(OPic0X) ~ H1(OPic0X), and the isomorphism
H1(OPic0X) ~ H0(03A91X). Thus Lemma 1.4 is immediately implied by the follow-
ing Lemma 1.5, whose proof is a straightforward application of the duality theory
on abelian varieties as started by Mumford ([M]) and developed by Kempf ([K1])
and Mukai ([Mu]). For the reader’s convenience, we will outline a proof in the next
section.


