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Introduction

(0.1) Let g be a finite-dimensional Lie algebra over an algebraically closed
field k of characteristic 0. Consider a finite-dimensional representation
p: g --+ gl(V). By V * we denote the dual g-module. Two bilinear mappings
and two (generalized) commuting varieties are naturally assigned to p. The
first variety is the zero-fiber of the moment mapping 9: V x V* -+&#x3E; g* and the
second one is the zero-fiber of the map g/: g x V--&#x3E; V, Vi(g, v) = p(g)v.
(Details see in 1.1).

EXAMPLES. (1) Consider the adjoint representation of g. Then Vi-’(0)
is the obvious commuting variety, i.e. the set of pairs of commuting
elements in g.

(2) For the coadjoint representation (i.e. V = g*) we have qJ = . ,
Therefore these varieties coincide.

(3) Let Sn be the set of symmetric n x n-matrices and let 5o,, be the Lie
algebra of skew-symmetric matrices. Then the moment mapping for the
natural representation of son in Sn is nothing else but the obvious matrix
commutator [ , ]: Sn x S , --+ - o,,. Thus the variety of pairs of commuting
symmetric matrices is the zero-fiber of a moment mapping.

(0.2) It has been shown in [BPV] that for the adjoint representation of a
Lie algebra g there exists a module (the Jacobian module) over the ring of
the regular functions k[g], such that tf - 1 (O)red is isomorphic to the

spectrum of the symmetric algebra of it. The main idea of [BPV] is to apply
known results on symmetric algebras to investigation of geometry of the
(obvious) commuting variety and vice versa.

In this paper we shall show that for any linear representation
p: 9 -+&#x3E; gl(V) one can define two modules E and E’ over R = k[V] in such
a way, that the subschemes qJ - 1(0) and Vi-’(0) are isomorphic to the
spectra of the corresponding symmetric algebras. Thus, our E’ may be
regarded as a generalization of the Jacobian module from [BPV]. There-
fore both E and E’ will be referred to as the Jacobian modules of a
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representation. The constructions of E and E’ are dual to each other and
for the coadjoint representation they are glued together. We obtain in
Section 1 simple estimations of the rank and the projective dimension of E
and E’, as well as the description of their dual modules. However, having
a representation of a Lie algebra, it is rather natural to think that this one
is a differential of a representation of a connected group G such that
g = Lie G. This assumption provides a more geometric framework for our
considerations. For instance, we get an ability to introduce the Jacobian
sheaf on a smooth G-variety.

In many papers (see e.g. [HSV], [SV]) a series of conditions (ffp) on a
presentation of an R-module E has been treated. They are closely related
with properties of the symmetric algebra SR(E). In Section 2 we shall give
an interpretation of this condition for the Jacobian modules of a represen-
tation of an algebraic group G in terms of sheets of the corresponding
G-action.

Most of the results of Section 1, 2 grew out of the attempts to understand
and present the construction from [BPV] in a coordinate-free form. Our
approach to the Jacobian modules allow us to prove a number of assertions
from [loc.cit] in a more general form. For instance, our Theorem 1.9 gives
sufficient conditions for pdR E’ = 2. Since these conditions hold for the
adjoint representations of semisimple Lie algebras, we obtain a unified
proof of Theorem 5.1 in [BPV], as well as the description of the "generic
Cartan subalgebra".

(0.3) In Section 3, 4 commuting varieties for representation of reductive
algebraic groups are being considered. We find sufficient conditions for
(ffo) and (F1,). As an application we describe a class of representations of
reductive groups such that all fibers of the moment mapping 9 are
irreducible reduced complete intersections (3.2). This class contains, for
instance, stable locally free 0-groups of E. Vinberg [Vil]. In Section 4 we
prove normality of fibers of the moment mapping for isotropy representa-
tions of symmetric spaces of the maximal rank. In particular this is the case
in the situation of Example 3.

(0.4) Our basic references for invariant theory are [VP] and [K]. We
follow mainly the terminology and notations of [VP].

1. The Jacobian modules of a representation

(1.1) Let g be a finite-dimensional Lie algebra over an algebraically closed
field k of characteristic 0. Consider a finite-dimensional representation
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p: g -+ gl(V). We can assign two natural bilinear maps to p. First, the

representation mapping

and second, the moment mapping

where (cp(v, ç), g):= (p(g)v, ç), g E g, v E V, E V* and (, ) is the pairing of
dual modules. Further we shall write g * v instead of p(g)v. As usual,
gv = {g*VlgEg} and gv = {gEglg*v = 0}. By AnnM we denote the

annihilator subspace in V * of a subset M c V. By definition put

Following Examples 0.1 we shall say that OE and OE’ are the commuting
varities.

(1.2) If Y is any affine variety and L is a linear space, then the set Mor( Y, L)
of all morphisms from Y into L is a free k[ Y]-module of rank dimk L.
Actually,

More explicitly, if l(Dfc-L&#x26;k[Y], then the corresponding map

y E M or( Y, L) is defined by y(y) = f (y)l.
Henceforth we use the following notation: R:= k[ V] = Sk(V*) is the

algebra of the regular functions on E n = dimk v: m = dimk g. Thus,
Mor( V, g) and Mor( V, V) are free R-modules of ranks m and n respectively.
Consider a homorphism of R-modules

where (v) = y(v) * (v), v E V. By definition put E = coker . This is the (first)
Jacobian module of a representation. By SR (E) we denote the symmetric
algebra of R-module E.

(1.3) THEOREM. k[ qJ - 1(0)] SR (E). In particular, going down to the
reduced varieties, we have Spec(S R (E)) red @.
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Proof. It follows from (2), that we get the exact sequence of R-modules

Functorial properties of symmetric algebras yield the surjective homomor-
phism of R-algebras

Moreover, the kernel of S(v) is the ideal, generated by the image of
[Bo, Ch. 3]. Clearly, SR (V Q R)  k[ V* x V] and Ker S(v) is generated by
(P(g 1). A simple consequence of the definition of 0 is the fact, that
(P(g (8) 1) = qJ*(g) c V (8) V*, where 9*: k[g*] -+ k[ V* x V] is the co-

morphism, associated with the moment mapping (p, g = k[g* ] 1, and

V (8) V* c k[V* x V] 2. Since the subspace k[g*]1 generates the ideal of
the point 0 E g*, we obtain the assertion of the theorem. D

Let p*: g --+ gl(V*) be the dual representation. We can also carry the
construction of the Jacobian module for p*. We shall get a module E over
R = k[V*] = Sk(V), Obviously, the definition of the moment mapping is
symmetric with respect of (V, p) and ( V *, p*). Therefore we get

COROLLARY. SR(E) - SR(E) as k-algebras. D

(1.4) Let us remark the V* x V is the cotangent bundle of V and

Mor(V, V) is nothing else but the set of algebraic vector fields on E This
observation leads to a global version of Theorem 1.3.

Let G be an algebraic group, g = LieG, and let Y be a smooth irreducible
G-variety. It is well-known, that the cotangent bundle T* Y is a symplectic
variety with the Hamiltonian G-acton. Therefore, the moment mapping
9: T* Y -+ g* is well-defined. Let (9y be the structure sheaf of Y and f7y be
the tangent sheaf of Y The action of G on Y induces the homomorphism
i: g - H’(Y, Ty). Define a homomorphism of sheaves 0: (9m g (9y --+ TY
as follows. If U c Y is an open subset, g E g, f E H°( U, 9-y), then the section
u = (P(g (8) f ) is determined by the formula a(v) = f(v)[r(g)(v)] for

v E U c Y Here g is regarded as a constant sheaf on Y Put E = coker ’q.
This sheaf of (9y-algebras is said to be the Jacobian sheaf of the action of
G on Y

THEOREM. The subscheme qJ-l(O) c T*Y is isomorphic to the spectrum
of the sheaf of Oy-algebras S,,(4’).

Proof. Taking a suitable affine open covering Y = Ui Yi we may

assume Y is affine and the tangent bundle is trivial. (This covering is not



185

required to be G-invariant, it is enough to have the homomorphism
r: g - HO(Yi, Tyi).) Then we can argue as in (1.3). D

(1.5) For any R-module by (-)* = HomR(-, R) we denote the dual
R-module. Clearly, Mor( V, L)* = Mor( V, L*). Now, dualizing the construc-
tion of 0 (3) we get the homomorphism

where J(v), g):= (à(v), g*v), VE v: g e g. By définition put E’ coker Vî.
This is the (second) Jacobian module of the representation p.

THEOREM. k[tJ-l(O)]  SR(E’). In particular, Spec(SR(E’», d 0152’.

Proof It goes in the same way as in 1.3. D

Let us give the global version of this theorem. Keep the notations of
1.4. Suppose TY is the tangent bundle of Y and Qy is the sheaf of

differentials. Define a homomorphism of sheaves of (Dy-modules tfr: Qy - g*
(8) (Dy  Hom(g, (Dy) as follows. If uEHO(U, Qy), u(y):= Ça’ then [tfr(u)(g)](y)
= Ça (-r(g)(y)). Put 9’ = coker . Consider a morphism 0: g x Y --&#x3E; Tl: such
that 0(g, y) = -r(g)(y).

THEOREM. The spectrum of the sheafof(Dy-algebras St,,«ff’) is isomorphic
to the subscheme i&#x3E; - 1( Y), where Y is being considered as the zero section
of TY.

Proof By taking a suitable open covering of Y it is reduced to the

previous Theorem (cf. 1.4). D

(1.6) Thus we have constructed two exact sequences of R-modules:

Let us begin to get some information about E and E’. It follows from the
definitions that

Since R is a domain, one can define the rank of R-modules by
rank M = dimQ(R)(M QR Q(R)), where Q(R) is the fraction field of R.

(1.7) PROPOSITION.
(i) rk § = rk (; = maxvev dim gv;
(ii) rank E = n - maxvev dim gv, rank E’ = m - maxvev dim gv;
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(iii) Ker êp  (E’ )*, Ker -- E*.
Proof. (i) Consider a homorphism 0,: g -+ V, g F--+ g v. This is a specializ-
ation of 0. Therefore rkêp = max"EY rk p". Since î = *, we have rk = rk .

(ii) This follows from (i).
(iii) Let us apply functor ( -)* to the exact sequences (4). D

(1.8) Now take into consideration a connected algebraic group G, such
that g = LieG, i.e. henceforth we assume g is an algebraic Lie algebra.
Suppose G - GL(V) and let p be the differential of this representation of
G. First, we present a simple result on connections between geometry of the
natural action of G on V and homological properties of E and E’. Recall
that an action (or representation) (G : V) is said to be (i) locally free, if

max,cv dim Gv = dim G and (ii) locally transitive, if maxcv dim Gv = dim V

THEOREM. (i) If action (G : V) is locally free, then KerÎJ = 0, pdRE = 1,
and E’ is a torsion module; (ii) If action (G : V) is locally transitive, then
Ker § = 0, pdR E’ - 1, and E is a torsion module.

Proof. This follows from (5) and 1.7. D

The statements of this theorem are dual to each other. But such a

symmetry fails in the sequel. Apparently, this means that E, 0152, and Ker 
are more important, than E’, OE’, and Ker. For example, if G is semisimple,
then almost all representations of G are locally free, but locally transitive
ones appears finitely many times (may be 0). Therefore it is rather seldom
that Ker = 0 and it may be useful to find conditions when Ker is a free
R-module.

Let J = RG be the subalgebra of G-invariant functions. Put VIIG =

SpecJ and let n: V -&#x3E; VIIG be the morphism, induced by the inclusion
J 4 R. (Here we assume J is finitely generated. This is always the case, if
G is reductive.) Define

U = {VE V n(v) is a smooth point and d7r, is surjectivel

(1.9) THEOREM. Let G c GL(V) be a connected algebraic group such
that

(i) J is a polynomial algebra;
(ii) codim,(VBU) 2;
(iii) maxveydimGv = dim V - dim VIIG.

Then Ker is a free R-module of rank dim V//G, generated by the differen-
tials of free generators of J. In particular, pdRE’  2.

Proof. If p E R, then the differential dp lies in Mor(V, V*). Moreover, if
p E J, then dp E Kert¡;. Indeed, in this case p is constant on G-orbits in V
and gv is. the tangent space to Gv at v. Therefore dp(v), gv&#x3E; = 0.

Let P1, - - ., Pl be free generators of J, where 1 = dim VIIG. We shall show
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that R-module Ker is freely generated by dpi’ i = 1, ... , l. It follows from
(iii) and (1.7), that rank Ker = 1. Condition (i) of the theorem means U
coincides with a set of v E V such that dpi(v), i = 1,..., 1 are linearly
independent. Since U is on open non-empty subset of E we have dpi’
i = 1,..., 1 are linearly independent over R. Therefore they generate a free
R-submodule, say F, of Ker of rank 1 and Ker /F is a torsion module.
That is, for every E Ker there exist f1, ... , f , f E R without common
factors, such that fu = L= 1 !ï dpi’ Assume f e k* and by D denote the
support of the divisor ( f ). Then Ei =1 fi(v) dpi (v) = 0 for all v E D. By (ii) we
have D n U is dense in D, whence fi(v) = 0 for every v E D, i = 1, ... , l. Thus
f1, ... , fi, f must have a common factor. A contradiction! Therefore f E k*,
ac-F, and Ker = F. p

The following assertion shows that the previous theorem has a sufficient-
ly large field of applications.

(1.10) COROLLARY. If G is a connected algebraic group without rational
characters and J is polynomial algebra, then Ker is a free R-module.

Proof. The reason is that for connected groups without rational charac-
ters conditions (ii), (iii) of Theorem 1.9 are automatically fulfilled. For (iii)
this follows from Rosenlicht theorem (see e.g. [K, Ch. 2]) and the equality
Q(J) = (Q(R))G. For (ii) this is proved in [Kn, Satz 2]. (In fact, the only
semisimple groups are considered in [Kn], but those arguments are also
valid in our case.) D

Another case when Ker is free is described in 3.4.

2. Determinantal conditions and sheets

(2.1) Let an R-module E have a presentation

Then /3 may be regarded as a n x m-matrix with entries in R. Let It(B) be
the ideal generated by the t-sized minors of B. Following [HSV] consider
the condition on the I t (B)’s (d &#x3E;, 0):

Clearly, (Fd) implies (Fd-1). A series of sufficient conditions for SR (E) may
be formulated in terms of (5d). For instance, if SR(E) is a domain, then E
satisifies (F1)’ while (F0) allows us to give a simple expression for

dim SR (E), etc.
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Our aim here is to present a geometric interpretation of these conditions
for the Jacobian modules of representations of algebraic groups. We shall
show the conditions (,5Fd) are rather naturally transferred into the ones on
the sheets of the group action. Afterwards, a standard invariant theory
technique produces a number of representations of reductive groups with
(F1), as well as sufficient conditions of flatness and of irreducibility of fibers
of the moment mapping.

(2.2) Let us come back in our situation: G c GL(V) is a connected

algebraic group, E and E’ are the Jacobian modules with the presentations
(4). Since 0 = tj;*, the conditions (Fd) for E and E’ are equivalent.
Therefore without loss of generality we shall consider only E in the sequel.
By k(V)G we denote the field of G-invariant rational functions on K

Recall the terminology on sheets. By definition put

This is a locally closed G-invariant subvariety of E The irreducible

components of V(s) are said to be sheets. The number of sheets is finite and
since V is irreducible, if follows that there is a unique open sheet. The
dimension of the stabilizers of points is upper semi-continuous on V,
therefore the closure V(s) is contained in Ul,s V(’). The integer mod(G, V)
= max,(dim V(s) - s) is said to be the modality of the action (G : V) (see
[Vi2]). If mo = maxveVdim Gv, then V(mo) is open sheet and by Rosenlicht
theorem dim v(mo) -mû = trdegk( V)G. In particular, mod(G, V) &#x3E;, trdegk(V)G.

(2.3) THEOREM. (i) dim0152 = dim V + mod(G, V);
(ii) dim ’ - dimg + mod(G, V).
Proof. (i) Consider the projection prl: OE --+ V. It follows from (1), that

prî ’(v) = {v} x Ann(gv) for each v E V. That is, the fibres of the projection
are affine spaces. Whence, prî ’(Gv) is a variety of dimension dim E

Therefore, if v,¡(S) is a sheet such that dim v,¡(S) - s = mod(G, V), then

prî l(Vj(» has an irreducible component of dimension dim V + mod(G, V).
Conversely, if @ is an irreducible component of OE, then prl(0152j) is

irreducible and there exist a sheet v(l) such that v(O n pr 1 (0152 j) is dense in

pr 1 (0152 j)’ Whence, dim 0152 j  dim V + dim Vi(’) - 1  dim V + mod(G, V).
(ii) This goes as well as in (i). D

Since the construction of OE is symmetric with respect of V and V*, we get

COROLLARY. mod(G, V) = mod(G, V*). D

(2.4) THEOREM. Let E be the ( first) Jacobian module of a representation
G --+ GL(V) and d E {0,1,2,...}. The following conditions are equivalent:

(i) E satisfies (Fd);
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(ii) Let Y be a arbitrary closed G-invariant subset of E such that

Y c VB v(mo). Then mod(G, Y)  mod(G, V) - d.
Proof. It follows from (1.7), that the zero set of the ideal 1t(4)) looks as

follows.

Since rk Ç = mo, the condition (5d) inverts into

If this unequality really holds for every t E [1, mo], then this is equivalent to
mod(G, V) = trdegk(V)G and trdeg k( V)G &#x3E; dim V(t-l)-(t-1)+d, tE[l,mo].
But the latter is equivalent to the statement (ii) of the theorem for the
subvarieties Y = V(s), s  mo. Hence this is the case for an arbitrary
Y c VB v(mo) , because Y(s) c V(s) for any s. D

(2.5) COROLLARY. The following conditions are equivalent:

(2.6) COROLLARY. Suppose G c GL(V) is reductive, B is a Borel sub-
group of G and EB is the Jacobian module of the representation B c GL( V).
Then EB satisfies (F0).

Proof. The result of E. Vinberg [Vi2] asserts that under these conditions
mod(B, V ) = trdegk(V)B. D

(2.7) REMARKS. (1) As far as 1 know, the explicit construction of OE first
appears in [P]. In this paper Pyasetskii has shown that if G acts on V with
finitely many orbits, then OE is a variety of pure dimension dim V and the
number of the irreducible components of OE is equal to the number of
G-orbits in V. Since the construction of OE is symmetric with respect of V
and V*, he has derived that the number of G-orbits in V is equal to the
number of G-orbits in V*.

(2) An opposite result has been achieved in [Ri]. Richardson proved
that for the adjoint representation of a semisimple group the commuting
variety @(@’) is irreducible. This result shows the condition that an

action is locally free is not necessary for irreducibility (cf. 3.2).

(2.8) EXAMPLE. We shall show that for any d &#x3E; 0 there exist represen-
tations such that (5d) holds for the Jacobian module E.

Consider G = SL(W) and its representation in V = nW = W ED ... (B W,
n &#x3E;, m = dim W. If we fix a base in W, then elements of V are naturally
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treated as m x n matrices. The sheets of (G : V) have a rather nice

description:

where V(’i) = f the set of matrices of rank m - il and si = {dimension of the
G-orbit of a matrix of the rank m - i}. It is well-known that dim V(si) =

(m - i)(n + i) and it is easy to compute that si = m2 - im, if i &#x3E; 1 and

so = m2 - 1. Here V(so) is the open sheet and dim V(so) - so = mn - m2 + 1.
Put Y = VB V(so). By Theorem 2.4 one has to compare mod(G, Y)
and mn - m2 + 1; namely, (Fd) holds iff max 1 _ i _,n (dim V(si) - Si) ,
mn - m2 + 1 - d. But max 1, a, m (dim V(si) - s,) = max 1, a, m [mn - m2
+ i(2m - n + i)] = nm - m2 + 1 + max 1, i, m Ci(2m - n + i) - 1]. Whence

and trivial calculation give the answer:

then already (F0) does not hold;

3. Jacobian modules for reductive group actions

Hereafter we assume G is reductive. In this case the quotient map n : V --+ V / /G
(see 1.8) possesses a number of nice properties (see [VP] or [K]).
The action (G : V) is said to be (a) stable whenever almost all fibers of n are

G-orbits and (b) visible, if n -1(n(0)) contains finitely many G-orbits; then this
is the case for all the fibers of n. A subgroup H c G is said to be the stabiliser
of general position (s.g.p.), if there exists an open subset S2 c V such that Gx is
conjugated to H for any x e S2. The s.g.p. is always exists for linear actions of
reductive groups. Moreover, if the action is stable, then H is reductive.

(3.1) THEOREM. (i) Suppose the action (G : V) is visible. Then the Jacobian

module E satisfies (FO).
(ii) Suppose the action (G : V) is stable and visible. Then the Jacobian module

E satisfies (F 1).
Proof. (i) Let Y be an irreducible closed G-invariant subvariety of V Then

n(Y) -- Y//G is closed in VIIG. Since the induced action (G : Y)
is visible, we have dim Y//G = trdeg k(y)G. Whence trdeg k(Y)’ 
trdeg k(V)G. Considering that this is the case for any Y we get the condition
(ii) of theorem 2.4 for d = 0.
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(ii) If in addition to (i) (G : V) is stable and Y is a proper subset of V, then
it follows from the stability that YIIG VIIG. Whence trdeg k( Y)G 
trdeg k( V)G - 1, i.e. we get the condition (ii) of Theorem 2.4 for d = 1. D

REMARK. There exist tables of visible irreducible representations of connec-
ted reductive groups ([Kac]) and stability criteria for actions of semisimple
groups (see e.g. [VP]). This provides numerous examples of representations
with property (ffl) (see also 3.4). Clearly, a first example of this kind is the
adjoint representation of a semisimple group.

(3.2) THEOREM. Suppose G c GL(V) and the action (G : V) is visible, stable,
and locally free. Then

(i) the moment mapping qJ: V x V* -+ g* is surjective and equidimensional;
(ii) all the fibers of 9 are irreducible reduced complete intersections in

V x V*. 1 n particular, this is the case for OE.
Proof. Take a point VEV: such that dimgv=dimg. Then dimqJ({v} x V*)

= dim V - dimAnn(gv) = dim g, i.e. 9 is surjective. Therefore all irreducible
components of all fibers of 9 has the dimension greater or equal
2 dim V - dim g = dim V + dim V//G.
By 3.1 the Jacobian module E satisfies (ffl). Therefore by 2.3, 2.5

dim OE = dim V + trdeg k(V)G. Since the action (G : V) is stable, we have

trdegk(V)G = dim V//G, whence OE is a variety of pure dimension

dim V + dim VIIG. Suppose @ is an irreducible component of OE and let Vj(’) be
the sheet, such that pr 1 (0152 i) n Vj(’) is dense in pr 1 (0152 i) (see 2.3). Then

dim V + dim VIIG = dim 0152i dim V + dim Vi(S) - s. Since (F1) holds, the latter
is possible iff Vj(S) = v(mo) and pr1(0152J is dense in V. But there exists at most one
irreducible component of OE with this property, because all the fibers pr1 1(v),
v E V are irreducible. Thus 0152 = 0152i.

In order to prove that (p (0) is reduced, it suffices to find a point p E 0152, such
that dg,, is surjective, since OE is irreducible and has the right dimension.

Obviously, we can take p = (v, 0), where v E v(mo) (see the first paragraph of the
proof). Thus everything is proved for 9 - (0). So far as (p is equidimensional
and is determined by homogeneous polynomials (of degree 2), the method of
associated cones [K, Ch. 2, 4.2] allow us to transfer the desired properties on
all fibers of 9. In particular all the fibers are complete intersections. 0

(3.3) Suppose Y is an affine G-variety and L is a G-module. Then G act on
Mor(Y, L) by the formula:

By MorG(Y, L) we denote the set of G-equivariant morphisms y: Y - L. This is
the subspace of G-invariant elements in Mor( Y, L), i.e.
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It is well-known that MorG(Y, L) is a finitely generated k[ Y]G-module, called
the module of covariants (of type L).

The following assertion may be treated as an application of 1.9. Recall that
J = k[V]G.

(3.4) THEOREM. Suppose (G : V) is a stable action and let H be the s.g.p. If
dim vH = dim V//G, then MorG(VI V*) is a free J-module, generated by the
differentials of the generators of J.

Proof. (a) First we show that conditions of Theorem 1.9 are satisfied here.
Put W = NG(H)/H. This group effectively acts on VH and by [LR] VH //
W éé VIIG. Therefore W is finite and by [Pa] J is a polynomial algebra and the
quotient morphism n is equidimensional.
Assume V B U contains a divisor D. Clearly D is G-invariant and therefore

n(D) is closed in VIIG. Since (G : V) is stable, we have n(D) e V and then it
follows from equidimensionality of n that n(D) is a divisor in VIIG. Since V//G
is factorial, there exists f E J with D = Y(f). Thus D is determined by a
G-invariant polynomial. Now the arguments of [Kn, Satz 2] give us a point
v E D such that dnv is surjective. This contradicts the definition of D. Hence
codim,(VBU) &#x3E; 2.

(b) The homorphisms à and , defined in Section 1, are evidently G-
equivariant. Since G is reductive, the functor ( -)G is exact. Therefore applying
( - )G to (4) we get the exact sequence of J-modules:

According to Theorem 1.9 R-module Ker is generated by G-invariant

elements. Therefore (Ker (ji)G is a free J-module of rank dim V//G, generated by
the differentials of the free generators of J.

(c) We have already proved that J is a polynomial algebra and n is

equidimensional. This implies that all modules of covariants, in particular
Morc(K V* ) and MorG(V, g* ), are free. For stable actions there is a simple
formula for the rank of modules of covariants:

Hence it follows from our assumptions that rank(Ker §) = rank MorG(VI V*),
because H is reductive and dim VH = dim(V*)H. Now, since Morc(K V*)l
(Ker)G is a torsion module and MorG(V: g*) is free, it follows from (6) that
à iMorG(V, V*) =0. D

COROLLARY (of the proof). If (G: V) is stable, J is a polynomial algebra, and


