JOSEPH Blass
PIOTR Blass
JEFFREY LANG

Generic simple coverings of the affine plane

Compositio Mathematica, tome 93, n° 3 (1994), p. 243-253

<http://www.numdam.org/item?id=CM_1994__93_3_243_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Generic simple coverings of the affine plane

JOSEPH BLASS¹, PIOTR BLASS² and JEFFREY LANG³

¹Department of Mathematics, Bowling Green State University, Bowling Green, OH 43403
²Department of Mathematics, Palm Beach Atlantic College, West Palm Beach, FL 33402
³Department of Mathematics, University of Kansas, Lawrence, KS 66045

Received 15 February 1993; accepted in final form 18 August 1993

0. Introduction

In [1, 2, 4, 5, 6] ideas of Deligne are used to prove the factoriality of the surface \(\mathbb{Z}^p = f(X, Y) \) for a generic choice of polynomial \(f(X, Y) \) of arbitrary degree \(\geq 4 \) (with \(p \geq 3 \)). In this paper we study the class group of surface \(\mathbb{Z}^n = f(X, Y) \) for arbitrary positive integer \(n \).

The above mentioned calculation leads us naturally to conjecture that the class group of \(\mathbb{Z}^n = f(X, Y) \) is factorial for a generic choice of \(f \). To be more precise, let \(f = \sum T_{ij}X^iY^j \) be a generic polynomial with indeterminate coefficients and let \(A_n = K\langle X, Y, Z \rangle / (Z^n - f) \) where \(K \) is the algebraic closure of \(\mathbb{F}_p(T_{ij}) \) with \(\mathbb{F}_p \) the prime field of \(p \) elements (\(p \geq 3 \)). Assume the degree of \(f \) is at least 4. Then we conjecture

0.1. For all \(n \in \mathbb{Z}^+ \), \(A_n \) is factorial.

In this paper we prove that (0.1) reduces to the case \(\gcd(p, n) = 1 \). We feel that this latter case can be approached by adapting a theorem of Steenbrink [9] from characteristic 0 to characteristic \(p \) by systematically replacing singular cohomology by étale cohomology; a project we are currently working on.

In Sections 1 and 2, descent techniques are used to study the class group of arbitrary surfaces \(\mathbb{Z}^n = f \). Two main results proved are (2.16), which reduces (0.1) to the case \(n = pm \) where \(\gcd(p, m) = 1 \), and (2.5), which shows that if (0.1) is true for some \(n \), then it is true for all divisors of \(n \).

In Section 3 the reduction of (0.1) to the case \(\gcd(p, n) = 1 \) is accomplished by analyzing the action of \(G = \text{Gal}(K, \mathbb{F}_p(T_{ij})) \) on the divisor class group of \(\mathbb{Z}^{pm} = f \) (3.8).
1. Galois descent

1.1. NOTATION. If \(R \) is a commutative ring with unity and \(P \) is a prime ideal of \(R \), denote the residue field of \(R \) at \(P \) by \(k(P) = R_P/PR_P \).

If \(R \) is a Krull domain, let \(\text{Cl}(R) \) denote the divisor class group of \(R \) as defined in P. Samuel’s Tata notes [7] (also see [3]).

1.2. DISCUSSION. This section makes use of Galois descent techniques and the next section employs radical descent methods. Suppose \(G \) is a finite group of automorphisms acting on a Krull domain \(B \) and \(A \) is the fixed subring of \(B \). Denote the multiplicative set of units in \(B \) and \(A \) by \(B^* \) and \(A^* \), respectively. Since \(G \) is a finite group, the ring \(B \) is integral over \(A \). The inclusion \(A \to B \) induces a homomorphism \(\varphi: \text{Cl}(A) \to \text{Cl}(B) \) by the following theorem.

1.3. THEOREM. Let \(A \subseteq B \) be Krull rings with \(B \) integral over \(A \) or with \(B \) flat as an \(A \)-module. Then there is a well defined group homomorphism \(\varphi: \text{Cl}(A) \to \text{Cl}(B) \) such that for each height one prime \(P \) of \(A \)

\[
\varphi(P) = \sum_{P'} e(P', P)P'
\]

where the \(P' \) are the prime ideals of \(B \) lying over \(P \) and \(e(P', P) \) is the ramification index of \(P' \) over \(P \) ([7], pp. 19–20).

1.4. THEOREM. Let \(A \) and \(B \) be as in (1.2). Then \(\varphi \) induces an injection \(0: \ker \varphi \to H^1(G, B^*) \). If every prime divisorial ideal of \(B \) is unramified over \(A \), then \(0 \) is a bijection ([7], p. 55).

1.5. REMARK. If \(G \) in (1.2) is a finite cyclic group generated by an element \(\pi \), then \(H^1(G, B^*) \) is the homology of the complex \(B^* \xrightarrow{h} B^* \xrightarrow{N} A^* \) where \(h(x) = \pi(x)/x \) for \(x \in B^* \) and \(N \) is the norm on \(B^* \) ([7], p. 57).

1.6. LEMMA. Assume in (1.2) that \(G \) is cyclic of order \(n \) and \(B \) is a unique factorization domain. Assume that for each prime element \(b \in B \) either

(i) \(\pi^s(b)B \neq \pi^t(b)B \) whenever \(s \neq t \) (mod \(n \)), or

(ii) \(b \in A \).

Then \(H^1(G, B^*) = 0 \).

Proof. By (1.5) \(H^1(G, B^*) \) is the homology of the complex \(B^* \xrightarrow{h} B^* \xrightarrow{N} A^* \). Assume \(u \) is a unit in \(B \) and \(N(u) = 1 \). Let \(L \) denote the field of fractions of \(B \). Each element of \(L^* \) can be written as a fraction \(b/a \) where \(b \in B, a \in A \). Then by Hilbert’s Theorem 90 there exists \(x \in B \) such that \(h(x) = u. x \) can be written as a product \(x = wb_1^{e_1} \cdots b_r^{e_r} \) where \(w \in B^* \), the \(b_i \) are prime elements in \(B \) and \(e_i \in \mathbb{Z}^+ \), \(1 \leq i \leq r \).
Note that since $\pi(x) = ux$, if $\pi(b)B = b_jB$, then $\pi(b_j)$ multiplied by a unit must appear in the prime factorization of x in B with the same exponent as b_j. Therefore, in order to show that $u \in h(B^*)$ we may reduce to the case $x = wb\pi(b) \cdots \pi^{m-1}(b)$ where m is the smallest positive integer such that $\pi^m(b)B = bB$. By hypothesis either $b \in A$ and $m = 1$, or $m = n$, in which case $x = wN(b)$. In either case $u = \pi(x)/x = \pi(w)/w$, so that u is a boundary.

1.7. LEMMA. Assume in (1.2) that G is cyclic of order n and B is a unique factorization domain. Assume for each prime element $b \in B$ either $[k(bB) : k(bB \cap A)] = 1$ or $b \in A$. Assume also that B is unramified over A. Then $H^1(G, B^*) = 0$.

Proof. Let b be a prime element of B and $b \not\in A$. Then by hypothesis there are exactly n height one primes of B lying over $bB \cap A$ and each of them is generated by a conjugate of b. Thus b satisfies condition (i) of (1.6).

1.8. NOTATION. If E is a field, $A = E[X_1, \ldots, X_n]$ is the polynomial ring in s variables over E and $h \neq 0$ is an element of A, let $\deg(h)$ denote the degree of h and h^+ the highest degree form of h. If $g \neq 0$ also belongs to A define $\deg(h/g) = \deg(h) - \deg(g)$.

1.9. ASSUMPTIONS. Throughout K will be an algebraically closed field of characteristic $p \geq 3$. Assume $f \in K[X, Y]$ is an irreducible polynomial in two variables X, Y of degree at least 4. We will assume that $\partial f/\partial X$ and $\partial f/\partial Y$ meet transversally and in the maximum possible number of points of K^2. This number is $(\deg f - 1)^2$ if $\deg f \not\equiv 0 \pmod{p}$ and $(\deg f)^2 - 3 \deg f + 3$ otherwise (see [5, pp. 287–288]). Implicit in these assumptions is the fact that $f^+ \notin K[X^p, Y^p]$. We remark that a generic f of degree at least 4 satisfies the conditions stated above.

For each $n \in \mathbb{Z}^+$, let $A_n = K[X, Y, Z]/(Z^n - f)$ and E_n denote the field of fractions of A_n. Let x, y, z denote the images of X, Y, Z in A_n. Then the subring of $K[x, y]$ of A_n is isomorphic to $K[X, Y]$.

Let $W_n = \text{Spec}(A_n)$. Since W_n has only finitely many singular points, A_n is noetherian integrally closed and hence a Krull ring.

1.10. LEMMA. Assume $n \in \mathbb{Z}^+$ and $\text{Cl}(A_n) = 0$. Then $\text{Cl}(A_m) = 0$ for all $m \in \mathbb{Z}^+$ such that m divides n and $\gcd(p, n/m) = 1$.

Proof. It’s enough to prove the case $n = mq$ where q is a prime number. Let $c \in K$ be a primitive q-th root of unity and let π be the $K(X, Y)$-automorphism on $K(X, Y, Z)$ defined by $\pi(Z) = cZ$. Then π induces an automorphism on A_n. Let G be the cyclic group generated by π and A be the fixed subring of A_n. Then $A = K[x, y, z^n] \cong A_m$.

Let b a prime element of A_n. Then b can be written $b = \sum_{i=0}^{q-1} a_i z^i$ for unique $a_i \in A$. Since $[E_n : E_m] = q$, $[k(bA_n) : k(bA_n \cap A)] = 1$ unless $a_i = 0$ for
Since f is irreducible in $K[X, Y]$, z is a prime element in A_n. Since $A_n\left[\frac{1}{z}\right]$ is unramified over $A_n\left[\frac{1}{z}z^q\right]$, we obtain by (1.7) that $H^1(G, A_n\left[\frac{1}{z}\right]^*) = 0$. By (1.3) and (1.4) it follows that $\text{Cl}(A_m\left[\frac{1}{z}\right]) = 0$, which by Nagata's lemma implies $\text{Cl}(A_m) = 0$.

2. Radical descent

2.1. DISCUSSION. Let B be a Krull ring of characteristic $p \neq 0$, and let L be its quotient field. Let Δ be a derivation of L such that $\Delta(B) \subset B$. Let $L' = \ker(\Delta)$ and $A = L' \cap B$. Then A is a Krull ring and B is integral over A since $B^p \subset A \subset B$. By (1.3) there is a well defined group homomorphism $\varphi: \text{Cl}(A) \to \text{Cl}(B)$.

Set $L' = \{t^{-1} \Delta t: t^{-1} \Delta t \in B, t \in L^*\}$ and $L^* = \{u^{-1} \Delta u: u \in B^*\}$. Then L' is an additive subgroup of B and L'^* is a subgroup of L^*.

2.2. THEOREM. (a) There exists a canonical monomorphism $0: \ker\varphi \to L'/L'^*$. (b) If $[L: L'] = p$ and if $\Delta(B)$ is not contained in any height one prime of B, then 0 is an isomorphism ([7], p. 62).

2.3. PROPOSITION. If $[L: L'] = p$ in (2.1) then there exists $a \in A$ such that $\Delta^p = a \Delta$ ([7], p. 63).

2.4. PROPOSITION. If $[L: L'] = p$ in (2.1), then an element $x \in L$ is logarithmic derivative (i.e., $x = t^{-1} \Delta t$ for some $t \in L$) if and only if $\Delta^{p-1} x = ax + x^p = 0$, where $\Delta^p = a \Delta$ ([7], p. 64).

2.5. PROPOSITION. Assume $n \in \mathbb{Z}^+$ and $\text{Cl}(A_n) = 0$. Then $\text{Cl}(A_m) = 0$ for all positive divisors m of n.

Proof. It's enough to prove the case $n = mq$ where q is a prime number. The case $\gcd(p, q) = 1$ is (1.10). Thus we are left with the case $n = mp$.

The derivation $d = \partial/\partial Z$ defines a derivation on A_n with kernel $K[x, y, z^p] \cong A_m$. By (2.2) $\text{Cl}(A_m) \cong L'/L''$, where $L = \{u^{-1} du: u \in E_n$ and $u^{-1} du \in A_n\}$ and $L'' = \{u^{-1} du: u \in A_n^*\}$. Let $t \in L\setminus\{0\}$. We have $t = \sum_{i=0}^{n-1} t_i z^i$ for unique $t_i \in k[x, y]$. By (2.4) $d^{p-1} t = -t^p$. If we compare coefficients of $z^{(r-1)p}$ on both sides of this equality, we obtain for each $r = 1, 2, \ldots, m$,

$$t_{r, p-1} = \sum_{j=0}^{p-1} t_{r, p-1-jm} z^{nj}.$$ (2.5.1)

Since $z^n = f$, we have for each $r = 1, 2, \ldots, m$,
Choose s such that \(\deg(t_{sp-1}) \geq \deg(t_{rp-1})\) for each \(r\). \(t_{sp-1}\) appears on the right side of one of the equations in (2.5.2). Let \(t_{up-1}\) be the element on the left side of this equation. Since \(1, f^+, \ldots, (f^+)^{p-1}\) are independent over \(K(X^p, Y^p)\), \(\deg t_{sp-1} \geq \deg(t_{up-1}) \geq \deg(t_{sp-1}) > p \deg(t_{sp-1})\), which is impossible. Therefore \(\mathcal{L} = 0\). \(\square\)

The next proposition follows easily by (2.2), (2.3) and (2.4). Details are provided in [5]. Also see the proof of (2.13).

2.6. PROPOSITION. Let \(D\) be the derivation on \(K(X, Y)\) defined by

\[
D = \frac{\partial f}{\partial Y} \frac{\partial}{\partial X} - \frac{\partial f}{\partial X} \frac{\partial}{\partial Y}.
\]

(a) \(\ker D \cap K[X, Y] = K[X^p, Y^p, f]\);

(b) \(A_p\) is isomorphic to \(K[X^p, Y^p, f]\);

(c) \(\text{Cl}(A_p)\) is isomorphic to \(\mathcal{L}_0 = \{u^{-1}Du : u \in K(X, Y)\}\) and \(u^{-1}Du \in K[X, Y]\);

(d) There exists \(a_0 \in K[X^p, Y^p, f]\) such that \(D^p = a_0 D\) and \(\deg(a_0) \leq (p - 1)(\deg(f) - 2)\) ([5], pp. 616–622).

2.7. THEOREM. Let \(\Phi\) be an algebraically closed field of characteristic \(p \neq 0\). Let \(g \in \Phi[X, Y]\), \(D = g_x \frac{\partial}{\partial Y} - g_y \frac{\partial}{\partial X}\) and \(a\) be such that \(D^p = aD\). Let \(Q \in \Phi^2\) be such that \(g_x(Q) = g_y(Q) = 0\) and \(\sqrt{H(Q)}\) a root of \(T^2 = H(Q)\), where \(H = g_{xx}g_{yy} - g_{xy}^2\). Then \(a(Q) = (\sqrt{H(Q)})^{p-1}\) (see [4, Theorem 1.5]).

2.8. NOTATION. Let \(S = \{Q \in K^2 : f_x(Q) = f_y(Q) = 0\}\).

2.9. LEMMA. If \(t \in K[X, Y]\), then \(\{Q \in S : t(Q) = 0\}\) has less than or equal to \(\deg(t) \cdot (\deg(f) - 1)\) elements.

Proof. Let \(t = t_1^{i_1} \cdots t_s^{i_s}\) be the prime factorization of \(t\) in \(K[X, Y]\). Since \(f_x\) and \(f_y\) have no common factors, \(t_i\) is relatively prime to either \(f_x\) or \(f_y\), \(1 \leq i \leq s\). By Bezout's Theorem [8] the number of points \(Q \in S\) such that \(t_i(Q) = 0\) is at most \((\deg t_i)(\deg f - 1)\). It then follows that the number of \(Q \in S\) such that \(t(Q) = 0\) is at most \((\sum \deg t_i) \cdot (\deg f - 1) \leq \deg(t)(\deg f - 1)\). \(\square\)

2.10. LEMMA. If \(t \in K[X, Y]\) and \(t(Q) = 0\) for each \(Q \in S\), then either \(t = 0\) or \(\deg t > \deg f - 2\).

Proof. Assume \(t \neq 0\) and \(\deg t \leq \deg f - 2\). By (2.9), the number of points \(Q \in S\) such that \(t(Q) = 0\) is at most \((\deg f - 2)(\deg f - 1)\). By (1.9),
there is at least one point \(Q \in S \) such that \(t(Q) \neq 0 \). \(\square \)

2.11. LEMMA. Assume \(a_0 \in K[X^p, Y^p, f] \) is such that \(D^p = a_0 D \). If \(t \in K[X, Y] \), \(\deg t \leq \deg f - 2 \) and \(D^{p-1} t - a_0 t = 0 \), then \(t = 0 \).

Proof. Given \(Q \in S \), \((D^{p-1} t)(Q) = 0 \) and \(a_0(Q) \neq 0 \) by (1.9) and (2.7) (recall that \(\partial f / \partial X \) and \(\partial f / \partial Y \) meet transversally at \(Q \)). Therefore \(t(Q) = 0 \).

By (2.10) we obtain \(t = 0 \). \(\square \)

2.12. NOTATION. The derivation \(D \) on \(K(X, Y) \) extends to a derivation on \(K(X, Y, Z) \) with \(Z^n - f \) in its kernel. Thus \(D \) induces a derivation on \(E_n \) which we denote by \(D_n \). \(L_n \) will denote the additive group of logarithmic derivatives of \(D_n \) in \(A_n \), \(L'_n = \{ u^{-1} D_n u : u \in E_n \text{ and } u^{-1} D_n u \in A_n \} \). \(L_n \) will denote the subgroup of \(L_n \) of logarithmic derivatives of units in \(A_n \).

2.13. PROPOSITION. (a) \(A_{np} \) is isomorphic to \(\ker D_n \cap A_n \); (b) there is a well defined group homomorphism \(\varphi_n : Cl(A_{np}) \to Cl(A_n) \) with \(\ker \varphi_n = L_n / L'_n \).

Proof. \(\ker D_n \cap A_n \cong K[x^p, y^p, z] \), the latter is clearly isomorphic to \(K[X, Y, Z]/(Z^{np} - f^{(p)}) \), where \(f^{(p)} \) is obtained from \(f \) by raising each coefficient of \(f \) to the \(p \)-th power. Since \(K \) is perfect, the automorphism \(\alpha \to \alpha^p \) of \(K \) induces an isomorphism \(A_{np} \to K[x^p, y^p, z] \). It follows that \(K[x^p, y^p, z] \) is integrally closed. Since \([E_n : K(x^p, y^p, z)] = p \), \(\ker D_n \cap A_n \) and \(K[x^p, y^p, z] \) have the same field of fractions. Since \(\ker D_n \cap A_n \) is integral over \(K[x^p, y^p, z] \), we obtain (a). (b) is an immediate consequence of (a) and (2.2). \(\square \)

2.14. PROPOSITION. Let \(t = \sum_{i=0}^{n-1} t_i z^i \in A_n \), where \(t_i \in K[x, y] \), \(0 \leq i < n \). For each \(i = 0, 1, \ldots, n - 1 \), let \(J(i) = \{ j : 0 \leq j < n \text{ and } p j \equiv i \pmod{n} \} \). Then \(t \in L_n \) if and only if for each \(i = 0, 1, \ldots, n - 1 \),

\[
D^{p-1} t_i - a_0 t_i = - \sum_{j \in J(i)} t_j^p f^{(p j - i)/n},
\]

where \(a_0 \) is such that \(D^p = a_0 D \).

Proof. By (2.4), \(t \in L_n \) if and only if \(D^{p-1} t - a_0 t = - t^p \); which holds if and only if \(\sum (D^{p-1} t_i - a_0 t_i) z^i = - \sum t_j^p z^{ip} \). Since \(1, z, \ldots, z^{n-1} \), is a basis for \(E_n \) over \(K(x, y) \) and since \(Z^n = f \) we obtain the desired result by comparing powers of \(z \) on both sides of the above equation.

2.15. LEMMA. Let \(t = \sum_{i=0}^{n-1} t_i z^i \in A_n \), where \(t_i \in K[x, y] \), \(0 \leq i < n \). If \(t \in L_n \), then \(\deg t_i \leq \deg f - 2 \) for each \(i \).

Proof. Let \(r \) be such that \(\deg t_r \geq \deg t_i \) for each \(i \). We consider two cases.

Case 1. \(\gcd(p, n) = 1 \).

We have \(pr = nq + s \) for \(q, s \in \mathbb{Z} \) with \(q \geq 0 \), \(0 \leq s < n \). By (2.14),
\(D_{p-1}^n t_s - a_0 t_s = -t_p f^a\). By (2.6), \(\deg a_0 \leq (\deg f - 2)(p - 1)\). A simple induction shows that \(\deg(D_{p-1}^n t_s) \leq \deg t_s + (\deg f - 2)(p - 1)\). Thus \(p \deg t_r \leq \deg(D_{p-1}^n t_s - a_0 t_s) \leq \deg t_s + (\deg f - 2)(p - 1) \leq \deg t_r + (\deg f - 2)(p - 1)\). Hence \(\deg t_r \leq \deg f - 2\).

Case 2. \(p | n\).

Again \(p \tau = nq + s\) as in Case 1. By (2.14),

\[
D_{p-1}^n t_s - a_0 t_s = -\sum_{j \in J(s)} t_j^p f^{(pj - s)/n}\]

Since \(p\) divides \(n\) and each \(j \in J(s)\) is less than \(n\), the integers \((pj - s)/n\) are distinct modulo \(n\). Since \(f^+ \notin K(x^n, y^n)\) by (1.9) and since \(r \in J(s)\) it follows

\[
\deg t_r = \deg(t_r^p) \leq \deg(t_r^p f^a) \leq \deg(\sum t_j^p f^{(pj - s)/n})
\]

\[
= \deg(D_{p-1}^n t_s - a_0 t_s) \leq \deg t_s + (\deg f - 2)(p - 1)
\]

\[
\leq \deg t_r + (\deg f - 2)(p - 1).
\]

Hence \(\deg t_r \leq \deg f - 2\). □

2.16. **THEOREM.** Let \(m \in \mathbb{Z}^+\) such that \(\gcd(p, m) = 1\). If \(\Cl(A_{pm}) = 0\) then \(\Cl(A_{pm}) = 0\) for all \(r \geq 0\).

Proof. The case \(r = 0\) follows by (2.5). The case \(r = 1\) is by hypothesis. To prove the remaining cases we need to establish the below claim.

CLAIM. If \(p\) divides \(n\), then the composition \(A_{n/p} \rightarrow K[x, y, z^n] \hookrightarrow A_n\) maps \(\mathcal{L}_{n/p}\) isomorphically onto \(\mathcal{L}_n\).

Proof of Claim. Let \(t = \sum_{i=0}^{n-1} t_i z^i \in \mathcal{L}_n\), where \(t_i \in K[x, y]\) and \(n = p^n m\). Since \(s \geq 1\), we have that if \(\gcd(i, p) = 1\), then by (2.14), \(D_{p-1}^n t_i - a_0 t_i = 0\); which by (2.11) and (2.15) implies \(t_i = 0\). Thus \(t \in K[x, y, z^n] \cong A_{n/p}\). Therefore the isomorphism that maps \(A_{n/p}\) onto \(K[x, y, z^n]\) maps \(\mathcal{L}_{n/p}\) onto \(\mathcal{L}_n\).

Now \(\Cl(A_{pm}) = 0\) and (2.13) imply \(\mathcal{L}_m/\mathcal{L}_m' = 0\). Then the claim shows that \(\mathcal{L}_{p^rm}/\mathcal{L}_{p^rm} = 0\) for all \(r \geq 1\). The remaining cases of the theorem follow by (2.13) and a simple induction. □

2.17. **PROPOSITION.** The kernel of \(\phi_n: \Cl(A_{np}) \rightarrow \Cl(A_n)\) is finite \(p\)-group of type \((p, \ldots, p)\) of order \(p^M\), where \(M \leq \deg f(\deg f - 1)/2\).

Proof. By (2.13) we need only show that \(\mathcal{L}_n\) has the stated properties. By the claim in the proof of (2.16) we may reduce to the case \(\gcd(p, n) = 1\).

Let \(t = \sum_{i=0}^{n-1} t_i z^i \in \mathcal{L}_n\), where \(t_i \in K[x, y]\), \(0 \leq i < n\). By (2.15), each \(t_i = \sum \alpha^{(i)}_{rs} x^r y^s\) where each \(\alpha^{(i)}_{rs} \in K\) and \(\deg t_i \leq \deg f - 2\). \(pi = nq + j\) for
$q, j \in \mathbb{Z}$, $q \geq 0$, $0 \leq j < n$. $\gcd(p, n) = 1$ implies $J(i) = \{i\}$; which by (2.14) yields

$$D^{p-1} t_j - a_0 t_j = -t^p f^q.$$

(2.17.1)

Comparing the coefficients of $x^e y^a z^b$ on both sides of (2.17.1) we see that for each triple of nonnegative integers (e, a, b) with $e < n$ and $a + b \leq \deg f - 2$, α_{ab}^i must satisfy an equation of the form

$$L_{(e, a, b)} = (\alpha_{ab}^i)^p.$$

(2.17.2)

where L_{ab} is a linear expression in the α_{ab}^i with coefficients in K. There are a total of $n \deg f (\deg f - 1)/2$ such equations. The ring $R = K[\ldots, \alpha_{rs}^i, \ldots]$ with these relations is a finite dimensional K-vector space spanned by all monomials in the α_{rs}^i of degree $(p - 1)n \deg f (\deg f - 1)/2$. This shows R is Artinian and has a finite number of maximal ideals. Thus the equations in (2.17.2) have only a finite number of solutions in K, which by Bezout's theorem [8, p. 198] is at most $p^n \deg f (\deg f - 1)/2$.

Since $\mathcal{L}_n \subset K[x, y, z]$, each element of \mathcal{L}_n has p-torsion.

2.18. REMARK. Our main objective is to reduce conjecture (0.1) to the case $\gcd(p, n) = 1$. Theorem (2.16) allows us to reduce to the case $n = pm$ where $\gcd(p, m) = 1$. In the next section we use results concerning $\text{Gal}(K(T_{ij})/K(T_{ij}))$ to complete the project. Proposition (2.5) gives us some flexibility when attempting (0.1). For example, we may reduce (0.1) to the case $n \equiv 1 \pmod{p}$.

3. The action of the Galois group

3.1. NOTATION. In this section \mathbb{F}_p is the prime field of characteristic $p > 3$, T_{ij} are indeterminates algebraically independent over \mathbb{F}_p where $0 \leq i + j \leq M$ with M a positive integer greater than or equal to 4. We denote the following:

$$f = \Sigma T_{ij} X^i Y^j$$

$$H = f_{xx}f_{yy} - f_{xy}^2$$

the hessian of f,

$$K = \overline{\mathbb{F}_p}(T_{ij}),$$

the algebraic closure of $\mathbb{F}_p(T_{ij})$,

$$\mathcal{G} = \text{Gal}(K, \mathbb{F}_p(T_{ij})),$$

$$S = \{Q \in K^2: f_X(Q) = f_Y(Q) = 0\},$$
For $n \in \mathbb{Z}^+$, let $\mathcal{S}_n = \{ (\alpha, \beta, \gamma) \in K^3 : (\alpha, \beta) \in S \text{ and } \gamma^n = f(\alpha, \beta) \}$.

In [1, 4] it is shown that \mathcal{S} has the maximum possible number of elements as described in (1.9). Let Q_1, \ldots, Q_I be a listing of the elements of \mathcal{S}. Then we can list the elements of \mathcal{S}_n as Q_{ij}, where if $Q_{ij} = (\alpha, \beta, \gamma)$, then $(\alpha, \beta) = Q_i$. Finally, for each i, let $\sqrt{H(Q_i)}$ denote a fixed root of the equation $T^2 = H(Q_i)$.

The next two theorems are proved in [2] and [4].

3.2. **THEOREM.** \mathcal{G} acts on \mathcal{S} as the full symmetric group (see [4, p. 353] and [2, p. 296]).

3.3. **THEOREM.** For every pair $Q_i \neq Q_j \in \mathcal{S}$, there exists $\sigma \in \mathcal{G}$ such that σ acts as the identity on \mathcal{S}, and

$$
\sigma(\sqrt{H(Q_e)}) = \begin{cases}
-\sqrt{H(Q_e)}, & \text{if } e = i, j \\
\sqrt{H(Q_e)}, & \text{otherwise}.
\end{cases}
$$

([4, p. 354] and [2, p. 297]).

3.4. **REMARK.** Assume $n \in \mathbb{Z}^+$ such that $\gcd(p, n) = 1$. Let $c \in K$ be a primitive n-th root of unity. Let π be the $K(X, Y)$-automorphism on $K(X, Y, Z)$ defined by $\pi(Z) = cZ$. Then π induces an automorphism on A_n and let $T : A_n \to K[x, y]$ denote the trace map.

Since the points $Q_{ij} \in \mathcal{S}_n$ lie on the surface $z^n = f$, we may define $t(Q_{ij})$ for $t \in A_n$ by evaluating any preimage of t in $K[X, Y, Z]$ at Q_{ij}. Observe that if for a fixed i, $t(Q_{ij}) = 0$ for all j, then for each j, $T(t)(Q_{ij}) = 0$, which yields $T(t)(Q_i) = 0$.

3.5. **LEMMA.** Assume $\gcd(p, n) = 1$ and $t = \sum_{r=0}^{n-1} t_r z^r \in A_n$. If for a fixed i, $t(Q_{ij}) = 0$ for each j, then $t_r(Q_i) = 0$ for each $r = 0, 1, \ldots, n - 1$.

Proof. It is well known that $f(Q_i) \neq 0$ for each i (it also follows by (3.2)). Let s be a nonnegative integer less than n. Then $t(Q_{ij}) = 0$ for each j implies $z^{n-s} t(Q_{ij}) = 0$ for each j. As we saw in (3.4) we obtain $T(z^{n-s} t)(Q_i) = n z^n t_s(Q_i) = n f(Q_i) t_s(Q_i) = 0$; hence $t_s(Q_i) = 0$.

3.6. **LEMMA.** Assume $\gcd(p, n) = 1$. For each $t \in \mathcal{L}_n$ and $Q_i \in \mathcal{S}$, there is an $r_{ij} \in \mathbb{F}_p$ such that $t(Q_{ij}) = r_{ij} \sqrt{H(Q_i)}$. Furthermore, the map

$$
\Phi : \mathcal{L} \to \bigoplus_{i,j} \mathbb{F}_p : \sqrt{H(Q_{ij})}
$$

defined by $\Phi(t) = (t(Q_{ij}))$ is an injection of groups.

Proof. Given $t \in \mathcal{L}_n$, $D_n^{-1} t - a_0 t = -t^p$ where $a_0 \in K[x^n, y^p, f]$ such that $D^p = a_0 D$ by (2.4). Evaluate both sides of this equality at Q_{ij} to obtain
Now use (2.7) to obtain the first statement of the lemma.

Write \(t = \sum_s t_s z^s \cdot \Phi(t) = 0 \) implies \(t_s(Q_i) = 0 \) for each \(i \) by (3.5). By (2.10) and (2.15), each \(t_s = 0 \).

3.7. THEOREM. Assume \(\gcd(p, n) = 1 \). Then the map \(\text{Cl}(A_{np}) \to \text{Cl}(A_n) \) is an injection.

Proof. By (2.13) it’s enough to show \(L_n = 0 \). Let \(t \in L_n \) and suppose \(t \neq 0 \). Assume \(\Phi(t) = (r_{ij} \sqrt{H(Q_i)}) \). If \(\sigma \in \mathcal{G} \) then \(\sigma(t) \in L_n \) and the action of \(\sigma \) on \(t \) is compatible with the action of \(\sigma \) on \(\Phi(t) \). By (3.2) we may assume that \(r_{11} \neq 0 \). By (3.3), there is \(\sigma', \sigma'' \in \mathcal{G} \) such that

\[
\sigma'\left(\sqrt{H(Q_i)}\right) = \begin{cases} -\sqrt{H(Q_i)}, & i = 1, 2 \\ \sqrt{H(Q_i)}, & \text{otherwise} \end{cases} \\
\sigma''\left(\sqrt{H(Q_i)}\right) = \begin{cases} -\sqrt{H(Q_i)}, & i = 1, 3 \\ \sqrt{H(Q_i)}, & \text{otherwise} \end{cases}
\]

Then \(\hat{t} = t - \sigma'(t) - \sigma''(t) + \sigma''\sigma'(t) \in L_n \) and has the property that \(\hat{t}(Q_{ij}) = 0 \) for all \(i \geq 2, 0 \leq j < n \), and \(\hat{t} \neq 0 \) since the first coordinate of \(\Phi(\hat{t}) \) is \(4r_{11}\sqrt{H(Q_1)} \neq 0 \).

We have \(\hat{t} = \sum_{s=0}^{n-1} t_s z^s \), where \(t_s \in K[x, y] \), \(0 \leq s < n \). By (3.5) \(t_s(Q_i) = 0 \) for each \(s \) and each \(i \geq 2 \). We now show that this implies each \(t_s = 0 \); thus obtaining a contradiction.

If \(\deg f \equiv 0 \pmod{p} \), then \(S \) has \((\deg f - 1)^2 \) distinct points. By (2.15), \(\deg t_s \leq \deg f - 2 \). If \(t_s \neq 0 \) then \(t_s(Q) = 0 \) at most \((\deg f - 2)(\deg f - 2) \) points \(Q \in S \) by (2.9). Hence \(t_s = 0 \).

The case \(\deg f \equiv 0 \pmod{p} \) requires a bit more effort. For each \(s = 1, \ldots, n - 1 \), let \(m(s) \) be the smallest positive integer \(m \) such that \(p^m s > n \). We proceed by induction to show that \(t_s = 0 \).

If \(m = 1 \), then \(ps = nq + r \) where \(q, r \in \mathbb{Z}^+, r < n \). By (2.14) \(D^{p-1} t_r - a_0 t_r = -t_r f^q \). The degree of the left side of the equality is at most \(p(\deg f - 2) \) by (2.6) and (2.15). Since \(q \geq 1 \), we obtain \(\deg t_s \leq \deg f - 3 \). By (2.9) and the fact that \(S \) has \((\deg f)^2 - 3 \deg f + 3 \) points, we have \(t_s = 0 \).

Assume that \(t_s = 0 \) whenever \(m(s) < d \) and \(1 \leq s_0 < n \) with \(m(s_0) = d \geq 2 \). By (2.14), \(D^{p-1} t_{ps_0} - a_0 t_{ps_0} = -t_{ps_0} \). Since \(m(ps_0) = m(s_0) - 1 \), \(t_{ps_0} = 0 \); hence \(t_{s_0} = 0 \). From this it follows that \(\hat{t} = t_0 \in K[x, y] \). In the introduction we mentioned that \(\text{Cl}(A_p) = 0 \) for a generic \(g \) of degree \(\geq 4 \), which shows \(t_0 = 0 \) by (2.13).

\[\square \]
3.8. THEOREM. For a generic f of degree at least 4 the following two statements are equivalent:

1. $\text{Cl}(A_n) = 0$ for all $n \in \mathbb{Z}^+$;
2. $\text{Cl}(A_n) = 0$ for all $n \in \mathbb{Z}^+$ where $\gcd(p, n) = 1$.

Proof. By (2.16) and (3.7).

4. References

5. Lang, J., The divisor class group of the surface $x^p = G(x, y)$ over fields of characteristic $p > 0$, J. Alg., 84 (1983).