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The rationality of the moduli space of Enriques surfaces
Compositio Mathematica, tome 91, no 2 (1994), p. 159-173
<http://www.numdam.org/item?id=CM_1994__91_2_159_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1994__91_2_159_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


159

The rationality of the moduli space of Enriques surfaces

SHIGEYUKI KONDO
Department of Mathematics, Saitama University,
Shimo-Okubo 255, Urawa, Saitama 338, Japan

Received 5 October 1992; accepted in final form 5 April 1993

Compositio Mathematica 91: 159-173, 1994.
(Ç) 1994 Kluwer Academic Publishers. Printed in the Netherlands.

0. Introduction

The purpose of this paper is to prove the rationality of the moduli space wÀf of
Enriques surfaces (defined over C) suggested by Dolgachev [Dl]. Recall that
oeV is described as a Zariski open set of D/0393 where -9 is a bounded symmetric
domain of type IV and of dimension 10, and r is an arithmetic subgroup acting
on D (Horikawa [H]). It is known that D/0393 is a quasi-projective variety
(Baily, Borel [B-B]). We shall prove:

THEOREM. N is birationally isomorphic to the moduli space N5,cusp of plane
quintic curves with a cusp.

It is known that N5,cusp is rational ([Dl]). Hence we have:

COROLLARY. JI( is rational.

Let C be a plane quintic curve with a cusp. Let X be a K3 surface with an
involution T obtained as the double cover of P2 branched at C and the tangent
line at the cusp. Then H2(X, Z)~03C4*~ ~ U 0 Dg as lattices. As in the case of
Enriques surfaces (Namikawa [Na]), by using the Torelli theorem for K3
surfaces (Piatetskii-Shapiro, Shafarevich [P-S]) and the surjectivity of the
period map (Kulikov [K]), we can see that the moduli space of pairs (X, i) is
described as a Zariski open subset of 9’/F’ where -9’ is a bounded symmetric
domain of type IV and of dimension 10, and r’ is an arithmetic subgroup
(Theorem 3.7). We shall prove that the map from N5,cusp to D’/0393’ obtained as
above is birational (Theorem 3.21). We remark here that a general K3 surface
as above has no fixed point free involution, and hence it is not the unramified
double cover of any Enriques surfaces. However, forgetting D/0393 and D’/0393’
being moduli spaces, we shall see that there is an equivariant map from -9 to
D’ with respect to r and r’, and this induces an isomorphism D/0393 ~ D’/0393’
(Theorem 4.1).
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1. Preliminaries

(1.1) A lattice L is a free Z-module of finite rank endowed with an integral
symmetric bilinear form ( , ). If L and L2 are lattices, then L ~ L2 denotes
the orthogonal direct sum of L1 and L2. An isomorphism of lattices preserving
the bilinear forms is called an isometry. For a lattice L, we denote by O(L) the
group of self-isometries of L. A sublattice S of L is called primitive if LIS is
torsion free.

A lattice L is even if ~x, x) is even for each XE L. A lattice L is non-degenerate
if the discriminant d(L) of its bilinear form is non zero, and unimodular if

d(L) = + 1. If L is a non-degenerate lattice, the signature of L is a pair (t +, t-)
where t+ denotes the multiplicity of the eigenvalues + 1 for the quadratic form
on L (8) R.

Let L be a non-degenerate even lattice. The bilinear form of L determines a
canonical embedding L - L* = Hom(L, Z). The factor group L*/L, which is
denoted by AL, is an abelian group of order Id(L)I. We denote by I(L) the
number of minimal generator of AL. We extend the bilinear form on L to one
on L*, taking value in Q, and define

We call qL the discriminant quadratic form of L. We denote by O(qL) the group
of isomorphisms of AL preserving the form qL. Note that there is a canonical
homomorphism from O(L) to O(qL).
A non-degenerate even lattice L is called 2-elementary if AL ~ (7Lj27L)’(L). It

is known that the isomorphism class of an even indefinite 2-elementary lattice
L is determined by the invariants (r(L), l(L), 03B4(L)) ([N1], Theorem 3.6.2) where
r(L) is the rank of L and

We denote by U the hyperbolic lattice defined by which is an even
unimodular lattice of signature (1, 1), and by Am, Dn, or El an even negative
definite lattice associated to the Dynkin diagram of type Am, Dn or El (m  1,
n  4, 1 = 6, 7, 8). We remark that Es is unimodular. Also we denote by ~m~
the lattice of rank 1 defined by the matrix (m). For a lattice L and an integer
m, L(m) is the lattice whose bilinear form is the one on L multiplied by m. In
section 3, we shall use the fact that both U(2) and D4n are 2-elementary lattices
with l = 2, 03B4 = 0.
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(1.2) A compact complex smooth surface Y is called an Enriques surface if the
following conditions are satisfied:

(i) the geometric genus pg(Y) and the irregularity q( Y) vanish;
(ii) if Ky is the canonical divisor on Y, 2Ky = 0.

Note that the unramified double covering of Y defined by the torsion Ky is a
K3 surface X, a smooth surface with q(X) = 0 and KX = 0. The second
cohomology group H2(Y,Z) is isomorphic to ZIO ~Z/2Z, where Z/2Z is

generated by the canonical class. The free part of H2(Y, Z) admits a canonical
structure of a lattice induced from the cup product. It is an even unimodular
lattice with signature (1, 9) and hence isometric to U Q Es (e.g. [N1], Theorem
1.1.1). In the same way, the lattice H2(X, Z) is isometric to

L = U ~ U Et) U O Es ~ Es. By definition of K3 surface, the Picard group
Pic(X) is a subgroup of H2(X, Z) which admits a structure of lattice induced
from that of H2(X, Z). We call this Pic(X) the Picard lattice of X.

Let Y be an Enriques surface and X its covering K3 surface. Let 6 be the
covering transformation of X and Q* the involution of H2(X, Z) induced from
a. Then 03C3* determines two primitive sublattices

It is known that M ~ U(2) ~ E,(2) and N ~ U 0 U(2) ~ E,(2) (e.g. [B-P],
§1.2). Let úJx be the cohomology class of a non-zero holomorphic 2-form on X
in H2(X, C) which is unique up to constant. This class satisfies the following
Riemann condition:

where denotes the bilinear form on H2(X, C) induced from the cup
product and 03C9X the complex conjugation of tox. We remark that 03C9X is

contained in N ~ C since there are no global holomorphic 2-form on Y Put

Then -9 is a union of two copies of bounded symmetric domain of type IV and
of dimension 10. By [B-B], the quotient D/0393 is a quasi-projective variety. The
correspondence Y - [wx] mod r defines a well-defined map from the set of
isomorphy classes of Enriques surfaces to (D/0393)0 = (D/0393)BH, where e is a
closed irreducible subvariety. The corresponding point [03C9X] in (D/0393)0 is called
the period of Y. It follows from the Torelli theorem for Enriques surfaces that
(D/0393)0 is the coarse moduli space of Enriques surfaces. For more details we
refer the reader to [H], and its improvement [Na].
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2. The curves related to Enriques surfaces

In this section, we shall devote the observation of Dolgachev [D1, 2] on the
relation between Enriques surfaces, plane quintic curves with two nodes and
plane quintic curves with a cusp. For the proof of our theorem, we shall only
use Proposition 2.2.

(2.1) Let Y be an Enriques surface. A superelliptic polarization D on Yof degree
8 is a divisor on Y such that D = 2(E 1 + E2), Ei an elliptic curve on Y with
El’ E2 = 1 (see [C-D], Chap. IV, §7). It is known that a general Enriques
surface, in the sense of Barth-Peters [B-P], has 27· 17·31 distinct superelliptic
polarizations of degree 8 up to automorphisms ([B-P], Theorem 3.9).

Let  be the moduli space of Enriques surfaces with a superelliptic
polarization of degree 8. Then the above implies that the natural map §
from  to N = (D/0393)0 is of degree 27 17.31. Note that 27 17 - 31 =

23(24 + 1)24(25 - 1) and recall that 23(24 + 1) is equal to the number of even
theta characteristics on a smooth curve of genus 4 and 24(25 - 1) is the

number of odd theta characteristics on a smooth curve of genus 5. In [D2],
Dolgachev gave a map cp from  to 5,cusp of degree 27.17.31 which
factorizes

where X is the moduli space of pointed curves of genus 4 and deg 9 1 =
23(24 + 1), deg lp2 = 24(25 - 1). For the precise definition of (pl, lfJ2, we refer

the reader to [D2]. Here we mention that a pointed curve (C, q) of genus 4 is
obtained as the normalization of a plane quintic curve with two nodes and q
is the point residual to the line passing through the nodes. The last one is
naturally appeared as the Hessian of a net of quadrics in p4. The base locus
of this net is the branched curve of the morphism of degree 2 defined by IDI
from Y to the intersection of two quadrics in P4 of rank 3, where (x D) is an
Enriques surface with a superelliptic polarization D of degree 8. Also a plane
quintic curve with a cusp is naturally appeared as the discriminant of the conic
bundle associated to a cubic threefold. The last one is constructed from the

canonical model of a curve of genus 4. Thus we have two maps of the same

degree:

This and the following suggest that JIt may be rational too.

PROPOSITION (2.2) ([Dl], §8, (e)). N5,cusp is rational.
Proof. The moduli space of plane quartic curves with a cusp is rational
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([Dl], Example 5). The same proof implies the assertion. D

3. K3 surfaces with some involution

The purpose of this section is to see that N5,cusp is birationally isomorphic to
the moduli space of the pairs of K3 surfaces X and its involution r with

H2(X, Z)~03C4*~ ~ U ~ Dg.

(3.1) Let C be a plane quintic curve with one cusp q. Let L be the tangent line
of C at the cusp. In the following, we assume:

ASSUMPTION (3.2). L meets C at another distinct two points pl, P2.

Consider the plane sextic curve C~L. Let X’ be the double cover of P2
branched at C~L and X the minimal resolution of X’. Then X’ has a rational

double point of type E7 over q and two rational double points of type A over
pi, p2. The X is a K3 surface which is reconstructed as follows. Taking
successive blowing-ups of P2, we have a rational surface R with the following
curves as in Figure 1.

Fig. 1.

where C’ and L’ are the proper transforms of C and L respectively, and the
horizontal lines except C’ (resp. the vertical lines) are smooth rational curves
with self-intersection number -4 (resp. -1). Then X is obtained as the double
cover of R branched at C’ and the smooth rational curves with self-intersection

number - 4 in the Figure 1. Hence X has smooth rational curves as in

Figure 2:
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Let T be the covering transformation of X ~ R. Note that each curve in Figure
2 is preserved by T.

LEMMA (3.3). Pic(X)~03C4*~ contains a sublattice isometric to U Et) D8.
Proof. The 9 curves except F10 in Figure 2 define an elliptic pencil with a

singular fibre of type 8 (type 1* in the Kodaira’s notation) and FI 0 is a section
of this pencil. Hence these 10 curves generate a sublattice of Pic(X)~03C4*~
isometric to U O D8, D

Taking an isometry H 2(X, Z) ~ L = U Et) U Q U Et) E8 O E., define

We remark here that S and N’ are primitive in L, i.e. L/S and L/N’ are torsion
free.

PROPOSITION (3.4). S ~ U C D. and N’ ~ U C U(2) e E8.
Proof. Obviously S ~ Pic(X)~03C4*~. Note that both S and U 0 Ds are 2-

elementary lattices. It follows from [N2], Theorem 4.2.2 that

(r(S) 2013 l(S))/2 = #{smooth ranonai curves nxea Dy Ti = 4

where r(S) (resp. l(S)) is the rank of S (resp. the number of minimal gener-
ator of As). Hence r(S) = 10 and l(S) = 2. By Lemma 3.3, Pic(X)03C4*&#x3E; con-
tains U E9 Ds which has the same invariants. Thus we have S =

Pic(X)03C4*&#x3E; ~ U Q D.. Then N’ is an even indefinite 2-elementary lattice with the
invariant (r(N’), l(N’), b(N’)) = (12, 2, 0) because N’ is the orthogonal comple-
ment of S in the unimodular lattice L ([NI], Proposition 1.6.1.). Since the
isomorphism class of an even indefinite 2-elementary lattice is determined by
(r, 1, 03B4) ([NI], Theorem 3.6.2), we have N’ ~ U E9 U(2) E9 E8. D

Remark (3.5). Both S and N’are even indefinite 2-elementary lattices and hence
the homomorphisms

are surjective ([N1], Theorem 3.6.3). By [N1], Proposition 1.14.1, any y E O(S)
or y’ E O(N’) can be lifted to an isometry of L. In particular, if y acts on As
trivially, then it can be lifted to an isometry acting trivially on N’. Since

S ~ U~ D8, qS ~ qD.. . Hence As - (Z/2Z)2 and qS ~ [01/2 1/20]. A direct

calculation shows that 0(qs) - Z12Z and the generator of O(qs) is induced
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from the isometry i in O(S) defined by i([Fi]) = [Fi], 3  i  10, and

i([F1]) = [F2] (Note that the classes [Fa of Fi (1  i  10) in Figure 2 give
a base of S).

DEFINITION (3.6). Now we define:

Then -9’ is a union of two copies of bounded symmetric domain of type IV and
of dimension 10, and r’ acts properly discontinuously on D’. By [B-B], D’/0393’
is a quasi-projective variety. Put

Then r’ acts on 1’. By the same reason as in the case of Enriques surfaces
([H], II, Theorem 2.3), the period [03C9X] of any K3 surface X as above is
contained in (D’/0393’)B(H’/0393’). We remark here that J(’/r’ is a irreducible

hypersurface in D’/0393’ (see the following Proposition 3.9). By the similar proof
as that of Enriques surfaces ([Na]), using the Torelli theorem for K3 surfaces
[P-S] and the surjectivity of the period map [K], we have the following
theorem. For our purpose, we do not use this theorem, and hence we omit the
proof.

THEOREM (3.7). (D’/0393’)B(H’/0393’) is the coarse moduli space of the pairs (X, -r)
where X is a K3 surface andr is an involution of X with H2(X, Z)03C4*&#x3E; -- U Et) D8*

DEFINITION (3.8) ([N3], [Na], Theorem 2.15). A vector 1 in N’ with

l, l&#x3E; = -4 is called of even type if there is a vector m in S = (N’)~ with
m,m&#x3E; = -4 and (m + l)/2~L. By Remark 3.5, the set of ( - 4) - vectors in
N’ of even type is invariant under the action of T’’. Put

Then by the following proposition, J("/r’ is an irreducible hypersurface in
D’/0393’.

PROPOSITION (3.9). Let l and l’ be two ( - 2)-vectors in N’ (or (-4)-vectors of
even type). Then there is an isometry y E r’ with 03B3(l) = l’.

Proof. This follows from the same proof as in the case of Enriques surfaces
([Na], Theorems 2.13, 2.15 and Proposition 2.16). ~

In the following, we shall see that the set
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bijectively corresponds to the set of projective isomorphism classes of plane
quintic curves with a cusp satisfying the Assumption 3.2.

LEMMA (3.10). Let X be a K3 surface constructed in (3.1) and [cox] its period.
Then [wxJ mod r’ E (Ç)’/r’)o.

Proof. As mentioned in (3.6), [Wx] E D’BH’ and hence it suffices to see that
[wx] is not contained in H". Assume [wxJ E Yt". Then there exist ( - 4)-vectors
m in S and 1 in N’ with (m + /)/2eL and ~03C9X,l~ = 0. Consider the lattice
S~~-4~ generated by S and 1. By adding a vector (m + 1)/2, we have a
sublattice K in Pic(X) in which S~~-4~ is of index 2. Then d(K) =
d(S)·d(~-4~)/[K:S~~-4~]2=4.

Recall that X has an elliptic pencil 03C0 with a section F10 and a singular fibre
F of type 8 (see the proof of Lemma 3.3). It gives a decomposition

S = U E) D8

where U is generated by the classes of a fibre and F 10, and Ds is generated by
{Fi}1i8. Since U is unimodular, U is primitive in K, i.e. K/U is torsion free.
By using the fact Au = {0} and [NI], Proposition 1.5.1, we can easily see that
this U is also the component of a decomposition K = U Q K’, where K’
is a negative definite even lattice of rank 9 with d(K’) = 4 and K’ ~ D8*

If D. is not primitive in K’, then there is an even lattice M of rank 8 with
K’ ~ M :D D.. Since d(D.) = 4, d(M) = 1 and hence M ~ E.. Since Es is

orthogonal to U, Es should be generated by components of F (see [Ko],
Lemma 2.2), which is impossible.

If D. is primitive in K’, then the orthogonal complement of D. in K’ is

isometric to ~-2m~ (m E N). The primitiveness implies that K’/(D8 ~ ~-2m»
is embedded into AD8 ~ (Z/2Z)’ and A~-2m~ ~ Z/2mZ ([Nl], §1.5). Hence
K’/(D8~~-2m~ ~ Z/2Z. Therefore we have m = 2 by using the equation
d(K’) = d(D8)·d(~-2m~)/[K’:D8 e ~-2m~]2. By [Nl], Proposition 1.5.1, K’
is obtained from D. ~~-4~ by adding an element « = x* + y* where x* E D*
and y*~~-4~* with qDe(X*) = q(-4)(Y*) = 1. Note that such x* and y* are
unique modulo D. and ~-4~ respectively. Hence we can put

Then a2 = - 2, ~03B1, [Fi]~ = 0 (1  i  7) and ~03B1, [F8]~ = 1. Thus K’ ~ D9,
which is also impossible. D

Remark (3.11). If we drop the assumption (3.2), i.e. L tangents to C at a smooth
point, then there is a ( - 4)-vector of even type in Pic(X). Therefore, in this case,
[03C9X] E H".
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DEFINITION (3.12). Let X be a K3 surface with [cox] E (D’/0393’)0. Put

Note that C(X ) n Pic(X) is nothing but the set of classes of numerically
effective divisors. The following is an analogue of [Na], Proposition 4.7.

LEMMA (3.13). C(S) = C(X) n S (D R.
Proof. Obviously the left hand side contains the right. Let xeC(S) and

03B4~0394B03B4(S). The primitiveness of S in L implies that 03C4*(03B4) ~ ô. By the Hodge
index theorem, (b - t*(b»2  0 and hence (b, t*(b» &#x3E; - 2. Note that

03C4*(03B4) ~ -03B4 and ~03B4,03C4*(03B4)~ ~ 0, -1 because [cox] ~D’B(H’ ~ H"). Hence
b + 03C4*(03B4) E S with (ô +03C4*(03B4))2  - 2. If (ô +t*(b))2 = - 2, then b + t*(b) E A(S),
and hence ~x, 03B4 + t*(b) &#x3E; 0. If (ô + 03C4*(03B4))2  0, then ô + 03C4*(03B4) E P(X) and
hence ~x, 03B4 + 03C4*(03B4)~ &#x3E; 0. Since ~x,03B4~ = ~03C4*(x),03C4*(03B4)~ = ~x,03C4*(03B4)~, we have
~x,03B4~ &#x3E; 0. ~

(3.14). For b E A(S), define sa E O(H2(X, Z)) by

Then the group W(S) generated by {s03B4|03B4 ~0394(S)} acts on P(S) and C(S) is a
fundamental domain with respect to its action on P(S) ([V]).

(3.15) Surjectivity. We shall see that each point in corresponds to a
plane quintic curve with a cusp satisfying (3.2). Let X be a K3 surface with its
period [03C9X]~(D’/0393’)0. First note that X has an involution i with

H2(X, Z)03C4*&#x3E;~ U ~ D., In fact, the involution of S E9 N’ defined by aIS = ls
and 03C3|N’ = -1N’ acts on As 0 AN’ trivially because S and N’ are 2-elementary.
Hence by Remark 3.5, we can extend a to an isometry à of H2(X, Z).
Obviously à fixes the period of X. Moreover by Lemma 3.13, or preserves
effective divisors on X. Therefore it now follows from the Torelli theorem for

K3 surfaces [P-S] that à is induced from an involution 03C4 of X with -r* = à.

LEMMA (3.16). There exists an elliptic pencil n: X - pl with a singular fibre
F of type Dn (n  8) invariant under the action of r.

Proof. Consider an orthogonal decomposition S = U~D8 and take f~U
satisfying that f2 = 0 and f is primitive (i.e. f = me, e E U, implies m = ± 1). By
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Lemma 3.13 and the fact stated in (3.14), we may assume that f is numerically
effective, if necessary, replacing f by ç( f) where ~~O(H2(X, Z)) with
cp(S) c S. Then f defines an elliptic pencil 03C0:X ~ P1 such that f is the

cohomology class of a fibre of 03C0 ([P-S], §3, Theorem 1). Consider the negative
definite sublattice K in {the orthogonal complement of f in Pic(X)I/ Z[f]
generated by ( - 2)-elements. Then K rr K1~ ··· O K,, where Ki is a lattice
isometric to Am, Dn or El. By the same proof as that of [Ko], Lemma 2.2, n
has singular fibres of type K 1, ... , Kr . Since Ds c K, 03C0 has a singular fibre F
of type Dn (n  8). Since T* acts trivially on this D., F is invariant under the
action of T. D

LEMMA (3.17). We keep the same notation as in Lemma 3.16. Then n = 8.
Proof. Recall that F consists of the following smooth rational curves:

Fig. 3.

If 03C4(F1) = F2 or 03C4(F1) = Fn, then FB - F2 or F 1 - F" is ( - 4)-vector in N’ of
even type. Since ~03C9X, Pic(X)~ = 0, this contradicts the assumption [cox] E (D’
/0393’)0. Hence T(Fi) = Fi (1  i  n + 1). Now if n  9, then S contains a

degenerate lattice of rank n + 1  10 generated by components of F, which is
impossible. D

Thus the singular fibre F consists of smooth rational curves as in the following:

It follows from [N2], Theorem 4.2.2 that the set of fixed points of 03C4 is the

disjoint union of a smooth curve C of genus 5 and 4 smooth rational curves
E1,..., E4 (see the proof of Proposition 3.4). Since 03C4(Fi) = Fi (1  i  9), F3
and F7 are fixed curves of T. This implies that F 5 is also fixed by 03C4 and 03C4 acts
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on F, (i = 1, 2, 4, 6, 8, 9) as an involution because the set of fixed points of r
is the disjoint union of smooth curves. Thus we may assume that E1 = F3,
E2 = F 5 and E3 = F7. Then Fi (i = 1, 2, 8, 9) meets either C or E4. If C meets
all FI, F2, F. and F9, then E4. Fi = 0 (1  i  9) and hence S = U Q D8
contains a degenerate lattice of rank 10 generated by components of F and E4.
This is a contradiction. Also if C meets only F and F2, then E4 meets F. and
F9. In this case, (F7 + F8 + F9 + E4)2 = C·(F7 + Fg + F9 + E4) = 0. This
contradicts the Hodge index theorem. Similarly it does not occur that C meets
only F1 or C meets only F and F.. Thus we may assume that C meets FI, F2,
F. and E4 meets F9. Note that this is the same situation as in Figure 2.
Now taking the quotient X/(s) and contracting exceptional curves on

X/(s) successively, we have a plane quintic curve with a cusp satisfying the
Assumption 3.2.

(3.18) Injectivity. Let C and C’ be plane quintic curves with a cusp satisfying
(3.2). Let X and X’ be the corresponding K3 surfaces to C and C’ respectively.

PROPOSITION (3.19). If [03C9X] = [03C9X’] in (L’/0393’)0, then C is projectively
isomorphic to C’.

Proof. Let {Fi} or {F’i} (1  i  10) be smooth rational curves on X or X’
as in Figure 2, respectively. It suffices to see that there exists an isomorphism
between the pairs (X, r) and (X’, r’) which sends {Fi} to {F’i}. Let

be an isometry with 03B3([03C9X]) = [cox,] and 03B303BF03C4* = (t’)* 0 y. By Remark 3.5, if

necessary, changing F 1 and F2, and replacing y by 03B303BF~ for some

~~(H2(X, Z)) with ~03BF03C4* = 03C4*03BF~ and 9IN’ = 1N,, we may assume that
y([FJ) = [F’i] (1  i  10). Then by the following Lemma 3.20 and Lemma
3.13, y(C(X)) c C(X’). Therefore it now follows from the Torelli theorem for
K3 surfaces [P-S] that y is induced from an isomorphism as desired. D

LEMMA (3.20). C(S) = {x~P(S)| (x, [Fi]~ &#x3E; 0, 1  i  101.
Proof. The following proof is an analogue of [Na], Proposition 6.9. We use

the same notation as in [V]. Let W be the subgroup generated by reflections

S[Fi] (1  i  10). Its Coxeter diagram Y- is defined as follows: the vertices of 1
correspond to {Fi} 1i 10 and two vertices Fi and Fi are joined by a simple line
iff Fi·Fj = 1. Then Y- contains only two parabolic subdiagram 8 and Ê. which
all have the maximal rank 8. Also £ contains no Lanner’s diagram and no
dotted lines. Hence it follows from [V], Theorem 2.6 that W is of finite index
in O(S). Hence the polyhedral cone

is contained in P(S) (see [V], p. 335. By a direct calculation, we can also see
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the last assertion without using the above Vinberg’s theory). If there exists a
smooth rational curve E with E ~ F, and [E] E S, then E - Fi  0 for all i and

hence [E] E P(S), i.e. E2  0, which is impossible. Similarly there is no smooth
rational curve E with i(E) - E = 1. Now let 03B4~0394(S) and x E P(S). Let D be a
irreducible component of l5 which is a smooth rational curve. Then the above

implies that D=Fi for some i or 03C4(D)·D  2 (Since [03C9X]~(D’/0393’)0,
r(D) - D ~ 0). In the latter case, (D + 03C4(D))2  0 and hence x, [D + 03C4(D)]~ &#x3E; 0.

Thus ~x, 03B4~ &#x3E; 0 for any XE P(S) with ~x, [FiJ) &#x3E; 0 (1  i  10). D

Thus (D’/0393’)0 bijectively corresponds to the set of projective isomorphy classes
of plane quintic curves with a cusp satisfying (3.2).

Let N0 be an open set of N5,cusp consisting plane quintic curves with a cusp
satisfying (3.2). For any family W - S of plane quintic curves with a cusp, we
can construct a family Et - S of K3 surfaces with an involution as above.
Associating its period with each member of PI, we obtain a holomorphic map
from S to D’/0393’. Therefore we have a holomorphic map 03BB: N0 ~ (D’/0393’)0
which is bijective by the above argument. Let N0 be a compactification of N0
with normal crossing boundary. Then by Borel’s extension theorem [B], Â can
be extended to a holomorphic map from il, to the projective compactification
of D’/0393’ due to Bairly-Borel [B-B]. Hence by GAGA, 03BB is regular. Since Â is
smooth and bijective on a Zariski open set, we now conclude:

THEOREM (3.21). N5,cusp is birationally isomorphic to D’/0393’.

4. Proof of the rationality

The main purpose of this section is to prove the following:

THEOREM (4.1). D/0393 ~ (as quasi-projective varieties).
Proof. For a lattice (L, ~ , ~), we denote by L(1/2) the free Z-module L with

the symmetric bilinear form ( , )/2 valued in Q. Fix an orthogonal decompo-
sition N = U ~ U(2) O E,(2). Then N(1/2) = U(1/2) Q U Q Es and the sublat-
tice 2U(1/2) = {2x|x~ U(1/2)1 of U(1/2) is isometric to U(2). Under this

isomorphism, we consider the lattice N’ ~ U(2) (f) U ~ Es as a sublattice

2U(1/2) ~ U ~ Es in U(1/2) Q U ~ Es. Let O(N(1/2)) be the group of isomor-
phisms of Z-module preserving the form (, )/2. Obviously N and N(1/2)
define the same bounded symmetric domain -9 and O(N) = O(N(1/2)). Let e1,

e2 be a base of U(1/2) with the matrix (~ei,ej~) = [01/2 1/20] and e3,..., el2


