COMPOSITIO MATHEMATICA

SHIGEYUKI KONDŌ The rationality of the moduli space of Enriques surfaces

Compositio Mathematica, tome 91, nº 2 (1994), p. 159-173

<http://www.numdam.org/item?id=CM_1994__91_2_159_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The rationality of the moduli space of Enriques surfaces

SHIGEYUKI KONDŌ

Department of Mathematics, Saitama University, Shimo-Okubo 255, Urawa, Saitama 338, Japan

Received 5 October 1992; accepted in final form 5 April 1993

0. Introduction

The purpose of this paper is to prove the rationality of the moduli space \mathcal{M} of Enriques surfaces (defined over \mathbb{C}) suggested by Dolgachev [D1]. Recall that \mathcal{M} is described as a Zariski open set of \mathcal{D}/Γ where \mathcal{D} is a bounded symmetric domain of type IV and of dimension 10, and Γ is an arithmetic subgroup acting on \mathcal{D} (Horikawa [H]). It is known that \mathcal{D}/Γ is a quasi-projective variety (Baily, Borel [B-B]). We shall prove:

THEOREM. \mathcal{M} is birationally isomorphic to the moduli space $\mathcal{M}_{5, cusp}$ of plane quintic curves with a cusp.

It is known that $\mathcal{M}_{5,cusp}$ is rational ([D1]). Hence we have:

COROLLARY. *M* is rational.

Let C be a plane quintic curve with a cusp. Let X be a K3 surface with an involution τ obtained as the double cover of \mathbb{P}^2 branched at C and the tangent line at the cusp. Then $H^2(X, \mathbb{Z})^{\langle \tau^* \rangle} \simeq U \oplus D_8$ as lattices. As in the case of Enriques surfaces (Namikawa [Na]), by using the Torelli theorem for K3 surfaces (Piatetskii-Shapiro, Shafarevich [P-S]) and the surjectivity of the period map (Kulikov [K]), we can see that the moduli space of pairs (X, τ) is described as a Zariski open subset of \mathscr{D}'/Γ' where \mathscr{D}' is a bounded symmetric domain of type IV and of dimension 10, and Γ' is an arithmetic subgroup (Theorem 3.7). We shall prove that the map from $\mathscr{M}_{5,cusp}$ to \mathscr{D}'/Γ' obtained as above is birational (Theorem 3.21). We remark here that a general K3 surface as above has no fixed point free involution, and hence it is *not* the unramified double cover of any Enriques surfaces. However, forgetting \mathscr{D}/Γ and \mathscr{D}'/Γ' being moduli spaces, we shall see that there is an equivariant map from \mathscr{D} to \mathscr{D}' with respect to Γ and Γ' , and this induces an isomorphism $\mathscr{D}/\Gamma \simeq \mathscr{D}'/\Gamma'$ (Theorem 4.1).

1. Preliminaries

(1.1) A lattice L is a free Z-module of finite rank endowed with an integral symmetric bilinear form \langle , \rangle . If L_1 and L_2 are lattices, then $L_1 \oplus L_2$ denotes the orthogonal direct sum of L_1 and L_2 . An isomorphism of lattices preserving the bilinear forms is called an *isometry*. For a lattice L, we denote by O(L) the group of self-isometries of L. A sublattice S of L is called *primitive* if L/S is torsion free.

A lattice L is even if $\langle x, x \rangle$ is even for each $x \in L$. A lattice L is non-degenerate if the discriminant d(L) of its bilinear form is non zero, and unimodular if $d(L) = \pm 1$. If L is a non-degenerate lattice, the signature of L is a pair (t_+, t_-) where t_{\pm} denotes the multiplicity of the eigenvalues ± 1 for the quadratic form on $L \otimes \mathbb{R}$.

Let L be a non-degenerate even lattice. The bilinear form of L determines a canonical embedding $L \to L^* = \text{Hom}(L, \mathbb{Z})$. The factor group L^*/L , which is denoted by A_L , is an abelian group of order |d(L)|. We denote by l(L) the number of minimal generator of A_L . We extend the bilinear form on L to one on L^* , taking value in \mathbb{Q} , and define

$$q_L: A_L \to \mathbb{Q}/2\mathbb{Z}, q_L(x+L) = \langle x, x \rangle + 2\mathbb{Z} (x \in L^*).$$

We call q_L the discriminant quadratic form of L. We denote by $O(q_L)$ the group of isomorphisms of A_L preserving the form q_L . Note that there is a canonical homomorphism from O(L) to $O(q_L)$.

A non-degenerate even lattice L is called 2-elementary if $A_L \simeq (\mathbb{Z}/2\mathbb{Z})^{l(L)}$. It is known that the isomorphism class of an even indefinite 2-elementary lattice L is determined by the invariants $(r(L), l(L), \delta(L))$ ([N1], Theorem 3.6.2) where r(L) is the rank of L and

$$\delta(L) = \begin{cases} 0 & \text{if } \langle x, x \rangle \in \mathbb{Z} \text{ for any } x \in L^* \\ 1 & \text{otherwise.} \end{cases}$$

We denote by U the hyperbolic lattice defined by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ which is an even unimodular lattice of signature (1, 1), and by A_m , D_n , or E_l an even negative definite lattice associated to the Dynkin diagram of type A_m , D_n or E_l ($m \ge 1$, $n \ge 4$, l = 6, 7, 8). We remark that E_8 is unimodular. Also we denote by $\langle m \rangle$ the lattice of rank 1 defined by the matrix (m). For a lattice L and an integer m, L(m) is the lattice whose bilinear form is the one on L multiplied by m. In section 3, we shall use the fact that both U(2) and D_{4n} are 2-elementary lattices with l = 2, $\delta = 0$. (1.2) A compact complex smooth surface Y is called an *Enriques surface* if the following conditions are satisfied:

- (i) the geometric genus $p_q(Y)$ and the irregularity q(Y) vanish;
- (ii) if K_Y is the canonical divisor on Y, $2K_Y = 0$.

Note that the unramified double covering of Y defined by the torsion K_Y is a K3 surface X, a smooth surface with q(X) = 0 and $K_X = 0$. The second cohomology group $H^2(Y, \mathbb{Z})$ is isomorphic to $\mathbb{Z}^{10} \oplus \mathbb{Z}/2\mathbb{Z}$, where $\mathbb{Z}/2\mathbb{Z}$ is generated by the canonical class. The free part of $H^2(Y, \mathbb{Z})$ admits a canonical structure of a lattice induced from the cup product. It is an even unimodular lattice with signature (1, 9) and hence isometric to $U \oplus E_8$ (e.g. [N1], Theorem 1.1.1). In the same way, the lattice $H^2(X, \mathbb{Z})$ is isometric to $L = U \oplus U \oplus U \oplus E_8 \oplus E_8$. By definition of K3 surface, the Picard group Pic(X) is a subgroup of $H^2(X, \mathbb{Z})$ which admits a structure of lattice induced from that of $H^2(X, \mathbb{Z})$. We call this Pic(X) the *Picard lattice* of X.

Let Y be an Enriques surface and X its covering K3 surface. Let σ be the covering transformation of X and σ^* the involution of H²(X, Z) induced from σ . Then σ^* determines two primitive sublattices

$$M = \{x \in L \mid \sigma^* x = x\}, \quad N = \{x \in L \mid \sigma^* x = -x\}.$$

It is known that $M \simeq U(2) \oplus E_8(2)$ and $N \simeq U \oplus U(2) \oplus E_8(2)$ (e.g. [B-P], §1.2). Let ω_X be the cohomology class of a non-zero holomorphic 2-form on X in H²(X, \mathbb{C}) which is unique up to constant. This class satisfies the following Riemann condition:

$$\langle \omega_{\mathbf{X}}, \omega_{\mathbf{X}} \rangle = 0, \quad \langle \omega_{\mathbf{X}}, \bar{\omega}_{\mathbf{X}} \rangle > 0$$

where \langle , \rangle denotes the bilinear form on $H^2(X, \mathbb{C})$ induced from the cup product and $\bar{\omega}_X$ the complex conjugation of ω_X . We remark that ω_X is contained in $N \otimes \mathbb{C}$ since there are no global holomorphic 2-form on Y. Put

$$\mathcal{D} = \{ [\omega] \in \mathbb{P}(N \otimes \mathbb{C}) | \langle \omega, \omega \rangle = 0, \langle \omega, \bar{\omega} \rangle > 0 \} \text{ and } \Gamma = \mathcal{O}(N).$$

Then \mathscr{D} is a union of two copies of bounded symmetric domain of type IV and of dimension 10. By [B-B], the quotient \mathscr{D}/Γ is a quasi-projective variety. The correspondence $Y \to [\omega_X] \mod \Gamma$ defines a well-defined map from the set of isomorphy classes of Enriques surfaces to $(\mathscr{D}/\Gamma)_0 = (\mathscr{D}/\Gamma)\backslash\mathscr{H}$, where \mathscr{H} is a closed irreducible subvariety. The corresponding point $[\omega_X]$ in $(\mathscr{D}/\Gamma)_0$ is called the *period* of Y. It follows from the Torelli theorem for Enriques surfaces that $(\mathscr{D}/\Gamma)_0$ is the coarse moduli space of Enriques surfaces. For more details we refer the reader to [H], and its improvement [Na].

2. The curves related to Enriques surfaces

In this section, we shall devote the observation of Dolgachev [D1, 2] on the relation between Enriques surfaces, plane quintic curves with two nodes and plane quintic curves with a cusp. For the proof of our theorem, we shall only use Proposition 2.2.

(2.1) Let Y be an Enriques surface. A superelliptic polarization D on Y of degree 8 is a divisor on Y such that $D = 2(E_1 + E_2)$, E_i an elliptic curve on Y with $E_1 \cdot E_2 = 1$ (see [C-D], Chap. IV, §7). It is known that a general Enriques surface, in the sense of Barth-Peters [B-P], has $2^7 \cdot 17 \cdot 31$ distinct superelliptic polarizations of degree 8 up to automorphisms ([B-P], Theorem 3.9).

Let $\tilde{\mathcal{M}}$ be the moduli space of Enriques surfaces with a superelliptic polarization of degree 8. Then the above implies that the natural map ψ from $\tilde{\mathcal{M}}$ to $\mathcal{M} = (\mathcal{D}/\Gamma)_0$ is of degree $2^7 \cdot 17 \cdot 31$. Note that $2^7 \cdot 17 \cdot 31 = 2^3(2^4 + 1)2^4(2^5 - 1)$ and recall that $2^3(2^4 + 1)$ is equal to the number of even theta characteristics on a smooth curve of genus 4 and $2^4(2^5 - 1)$ is the number of odd theta characteristics on a smooth curve of genus 5. In [D2], Dolgachev gave a map φ from $\tilde{\mathcal{M}}$ to $\mathcal{M}_{5,\text{cusp}}$ of degree $2^7 \cdot 17 \cdot 31$ which factorizes

 $\tilde{\mathcal{M}} \xrightarrow{\varphi_1} \mathcal{X} \xrightarrow{\varphi_2} \mathcal{M}_{5, \mathrm{cusp}}$

where \mathscr{X} is the moduli space of pointed curves of genus 4 and deg $\varphi_1 = 2^3(2^4 + 1)$, deg $\varphi_2 = 2^4(2^5 - 1)$. For the precise definition of φ_1 , φ_2 , we refer the reader to [D2]. Here we mention that a pointed curve (C, q) of genus 4 is obtained as the normalization of a plane quintic curve with two nodes and q is the point residual to the line passing through the nodes. The last one is naturally appeared as the Hessian of a net of quadrics in \mathbb{P}^4 . The base locus of this net is the branched curve of the morphism of degree 2 defined by |D| from Y to the intersection of two quadrics in \mathbb{P}^4 of rank 3, where (Y, D) is an Enriques surface with a superelliptic polarization D of degree 8. Also a plane quintic curve with a cusp is naturally appeared as the discriminant of the conic bundle associated to a cubic threefold. The last one is constructed from the canonical model of a curve of genus 4. Thus we have two maps of the same degree:

 $\mathcal{M} \xleftarrow{\psi} \tilde{\mathcal{M}} \xrightarrow{\varphi} \mathcal{M}_{5,\mathrm{cusp}}.$

This and the following suggest that \mathcal{M} may be rational too.

PROPOSITION (2.2) ([D1], §8, (e)). M_{5,cusp} is rational.

Proof. The moduli space of plane quartic curves with a cusp is rational

([D1], Example 5). The same proof implies the assertion.

3. K3 surfaces with some involution

The purpose of this section is to see that $\mathcal{M}_{5,\text{cusp}}$ is birationally isomorphic to the moduli space of the pairs of K3 surfaces X and its involution τ with $H^2(X, \mathbb{Z})^{\langle \tau^* \rangle} \simeq U \oplus D_8$.

(3.1) Let C be a plane quintic curve with one cusp q. Let L be the tangent line of C at the cusp. In the following, we assume:

ASSUMPTION (3.2). L meets C at another distinct two points p_1 , p_2 .

Consider the plane sextic curve $C \cup L$. Let X' be the double cover of \mathbb{P}^2 branched at $C \cup L$ and X the minimal resolution of X'. Then X' has a rational double point of type E_7 over q and two rational double points of type A_1 over p_1 , p_2 . The X is a K3 surface which is reconstructed as follows. Taking successive blowing-ups of \mathbb{P}^2 , we have a rational surface R with the following curves as in Figure 1.

Fig. 1.

where C' and L' are the proper transforms of C and L respectively, and the horizontal lines except C' (resp. the vertical lines) are smooth rational curves with self-intersection number -4 (resp. -1). Then X is obtained as the double cover of R branched at C' and the smooth rational curves with self-intersection number -4 in the Figure 1. Hence X has smooth rational curves as in Figure 2:

Fig. 2.

Let τ be the covering transformation of $X \to R$. Note that each curve in Figure 2 is preserved by τ .

LEMMA (3.3). $\operatorname{Pic}(X)^{\langle \tau^* \rangle}$ contains a sublattice isometric to $U \oplus D_8$.

Proof. The 9 curves except F_{10} in Figure 2 define an elliptic pencil with a singular fibre of type \tilde{D}_8 (type I^{*}₄ in the Kodaira's notation) and F_{10} is a section of this pencil. Hence these 10 curves generate a sublattice of $\operatorname{Pic}(X)^{\langle \tau^* \rangle}$ isometric to $U \oplus D_8$.

Taking an isometry $H^2(X, \mathbb{Z}) \simeq L = U \oplus U \oplus U \oplus E_8 \oplus E_8$, define

$$S = \{x \in L \mid \tau^* x = x\}, \qquad N' = \{x \in L \mid \tau^* x = -x\}.$$

We remark here that S and N' are primitive in L, i.e. L/S and L/N' are torsion free.

PROPOSITION (3.4). $S \simeq U \oplus D_8$ and $N' \simeq U \oplus U(2) \oplus E_8$.

Proof. Obviously $S \supset \operatorname{Pic}(X)^{\langle \tau^* \rangle}$. Note that both S and $U \oplus D_8$ are 2-elementary lattices. It follows from [N2], Theorem 4.2.2 that

$$(22 - r(S) - l(S))/2 = g(C') = 5,$$

 $(r(S) - l(S))/2 = \#\{\text{smooth rational curves fixed by } \tau\} = 4$

where r(S) (resp. l(S)) is the rank of S (resp. the number of minimal generator of A_S). Hence r(S) = 10 and l(S) = 2. By Lemma 3.3, $\operatorname{Pic}(X)^{\langle \tau^* \rangle}$ contains $U \oplus D_8$ which has the same invariants. Thus we have $S = \operatorname{Pic}(X)^{\langle \tau^* \rangle} \simeq U \oplus D_8$. Then N' is an even indefinite 2-elementary lattice with the invariant $(r(N'), l(N'), \delta(N')) = (12, 2, 0)$ because N' is the orthogonal complement of S in the unimodular lattice L ([N1], Proposition 1.6.1.). Since the isomorphism class of an even indefinite 2-elementary lattice is determined by (r, l, δ) ([N1], Theorem 3.6.2), we have N' $\simeq U \oplus U(2) \oplus E_8$.

Remark (3.5). Both S and N' are even indefinite 2-elementary lattices and hence the homomorphisms

 $O(S) \rightarrow O(q_S), \qquad O(N') \rightarrow O(q_{N'})$

are surjective ([N1], Theorem 3.6.3). By [N1], Proposition 1.14.1, any $\gamma \in O(S)$ or $\gamma' \in O(N')$ can be lifted to an isometry of *L*. In particular, if γ acts on A_s trivially, then it can be lifted to an isometry acting trivially on *N'*. Since $S \simeq U \oplus D_8$, $q_S \simeq q_{D_8}$. Hence $A_S \simeq (\mathbb{Z}/2\mathbb{Z})^2$ and $q_S \simeq \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}$. A direct calculation shows that $O(q_S) \simeq \mathbb{Z}/2\mathbb{Z}$ and the generator of $O(q_S)$ is induced

from the isometry ι in O(S) defined by $\iota([F_i]) = [F_i]$, $3 \le i \le 10$, and $\iota([F_1]) = [F_2]$ (Note that the classes $[F_i]$ of F_i ($1 \le i \le 10$) in Figure 2 give a base of S).

DEFINITION (3.6). Now we define:

$$\mathcal{D}' = \{ [\omega] \in \mathbb{P}(N' \otimes \mathbb{C}) | \langle \omega, \omega \rangle = 0, \langle \omega, \bar{\omega} \rangle > 0 \}, \quad \Gamma' = \mathcal{O}(N').$$

Then \mathscr{D}' is a union of two copies of bounded symmetric domain of type IV and of dimension 10, and Γ' acts properly discontinuously on \mathscr{D}' . By [B-B], \mathscr{D}'/Γ' is a quasi-projective variety. Put

 $\mathscr{H}' = \{ [\omega] \in \mathscr{D}' | \langle \omega, l \rangle = 0 \text{ for some } l \in N' \text{ with } \langle l, l \rangle = -2 \}.$

Then Γ' acts on \mathscr{H}' . By the same reason as in the case of Enriques surfaces ([H], II, Theorem 2.3), the period $[\omega_X]$ of any K3 surface X as above is contained in $(\mathscr{D}'/\Gamma')\setminus(\mathscr{H}'/\Gamma')$. We remark here that \mathscr{H}'/Γ' is a irreducible hypersurface in \mathscr{D}'/Γ' (see the following Proposition 3.9). By the similar proof as that of Enriques surfaces ([Na]), using the Torelli theorem for K3 surfaces [P-S] and the surjectivity of the period map [K], we have the following theorem. For our purpose, we do not use this theorem, and hence we omit the proof.

THEOREM (3.7). $(\mathscr{D}'/\Gamma')\setminus(\mathscr{H}'/\Gamma')$ is the coarse moduli space of the pairs (X, τ) where X is a K3 surface and τ is an involution of X with $\mathrm{H}^2(X, \mathbb{Z})^{\langle \tau^* \rangle} \simeq U \oplus D_8$.

DEFINITION (3.8) ([N3], [Na], Theorem 2.15). A vector l in N' with $\langle l, l \rangle = -4$ is called of *even type* if there is a vector m in $S = (N')^{\perp}$ with $\langle m, m \rangle = -4$ and $(m + l)/2 \in L$. By Remark 3.5, the set of (-4) – vectors in N' of even type is invariant under the action of Γ' . Put

 $\mathscr{H}'' = \{ [\omega] \in \mathscr{D}' | \langle \omega, l \rangle = 0 \text{ for some } (-4) \text{-vector } l \text{ in } N' \text{ of even type} \}.$

Then by the following proposition, \mathscr{H}''/Γ' is an irreducible hypersurface in \mathscr{D}'/Γ' .

PROPOSITION (3.9). Let *l* and *l'* be two (-2)-vectors in N' (or (-4)-vectors of even type). Then there is an isometry $\gamma \in \Gamma'$ with $\gamma(l) = l'$.

Proof. This follows from the same proof as in the case of Enriques surfaces ([Na], Theorems 2.13, 2.15 and Proposition 2.16). \Box

In the following, we shall see that the set

 $(\mathscr{D}'/\Gamma')_{0} = (\mathscr{D}'/\Gamma') \setminus (\mathscr{H}'/\Gamma') \cup (\mathscr{H}''/\Gamma')$

bijectively corresponds to the set of projective isomorphism classes of plane quintic curves with a cusp satisfying the Assumption 3.2.

LEMMA (3.10). Let X be a K3 surface constructed in (3.1) and $[\omega_X]$ its period. Then $[\omega_X] \mod \Gamma' \in (\mathscr{D}'/\Gamma')_0$.

Proof. As mentioned in (3.6), $[\omega_X] \in \mathscr{D}' \setminus \mathscr{H}'$ and hence it suffices to see that $[\omega_X]$ is not contained in \mathscr{H}'' . Assume $[\omega_X] \in \mathscr{H}''$. Then there exist (-4)-vectors m in S and l in N' with $(m+l)/2 \in L$ and $\langle \omega_X, l \rangle = 0$. Consider the lattice $S \oplus \langle -4 \rangle$ generated by S and l. By adding a vector (m+l)/2, we have a sublattice K in Pic(X) in which $S \oplus \langle -4 \rangle$ is of index 2. Then $d(K) = d(S) \cdot d(\langle -4 \rangle)/[K:S \oplus \langle -4 \rangle]^2 = 4$.

Recall that X has an elliptic pencil π with a section F_{10} and a singular fibre F of type \tilde{D}_8 (see the proof of Lemma 3.3). It gives a decomposition

 $S = U \oplus D_8$

where U is generated by the classes of a fibre and F_{10} , and D_8 is generated by $\{F_i\}_{1 \le i \le 8}$. Since U is unimodular, U is primitive in K, i.e. K/U is torsion free. By using the fact $A_U = \{0\}$ and [N1], Proposition 1.5.1, we can easily see that this U is also the component of a decomposition $K = U \oplus K'$, where K' is a negative definite even lattice of rank 9 with d(K') = 4 and $K' \supset D_8$.

If D_8 is not primitive in K', then there is an even lattice M of rank 8 with $K' \supset M \supset D_8$. Since $d(D_8) = 4$, d(M) = 1 and hence $M \simeq E_8$. Since E_8 is orthogonal to U, E_8 should be generated by components of F (see [Ko], Lemma 2.2), which is impossible.

If D_8 is primitive in K', then the orthogonal complement of D_8 in K' is isometric to $\langle -2m \rangle$ $(m \in \mathbb{N})$. The primitiveness implies that $K'/(D_8 \oplus \langle -2m \rangle)$ is embedded into $A_{D_*} \simeq (\mathbb{Z}/2\mathbb{Z})^2$ and $A_{\langle -2m \rangle} \simeq \mathbb{Z}/2m\mathbb{Z}$ ([N1], §1.5). Hence $K'/(D_8 \oplus \langle -2m \rangle) \simeq \mathbb{Z}/2\mathbb{Z}$. Therefore we have m = 2 by using the equation $d(K') = d(D_8) \cdot d(\langle -2m \rangle)/[K':D_8 \oplus \langle -2m \rangle]^2$. By [N1], Proposition 1.5.1, K' is obtained from $D_8 \oplus \langle -4 \rangle$ by adding an element $\alpha = x^* + y^*$ where $x^* \in D_8^*$ and $y^* \in \langle -4 \rangle^*$ with $q_{D_*}(x^*) = q_{\langle -4 \rangle}(y^*) = 1$. Note that such x^* and y^* are unique modulo D_8 and $\langle -4 \rangle$ respectively. Hence we can put

$$x^* = -\{[F_1] + [F_2] + 2([F_3] + \dots + [F_8])\}/2,$$

$$y^* = y/2 \text{ (y is a base of } \langle -4 \rangle).$$

Then $\alpha^2 = -2$, $\langle \alpha, [F_i] \rangle = 0$ $(1 \le i \le 7)$ and $\langle \alpha, [F_8] \rangle = 1$. Thus $K' \simeq D_9$, which is also impossible.

Remark (3.11). If we drop the assumption (3.2), i.e. L tangents to C at a smooth point, then there is a (-4)-vector of even type in Pic(X). Therefore, in this case, $[\omega_X] \in \mathscr{H}''$.

DEFINITION (3.12). Let X be a K3 surface with $[\omega_x] \in (\mathscr{D}'/\Gamma')_0$. Put

 $\Delta = \{\delta \in \operatorname{Pic}(X) | \delta^2 = -2, \delta \text{ is represented by an effective divisor} \}; \\ \Delta(S) = \Delta \cap S;$

P(X) = The connected component of $\{x \in Pic(X) \otimes \mathbb{R} \mid \langle x, x \rangle > 0\}$ containing an ample class;

 $P(S) = P(X) \cap S \otimes \mathbb{R};$ $C(X) = \{x \in P(X) | \langle x, \delta \rangle > 0 \text{ for any } \delta \in \Delta\};$ $C(S) = \{x \in P(S) | \langle x, \delta \rangle > 0 \text{ for any } \delta \in \Delta(S)\}.$

Note that $\overline{C(X)} \cap \operatorname{Pic}(X)$ is nothing but the set of classes of numerically effective divisors. The following is an analogue of [Na], Proposition 4.7.

LEMMA (3.13). $C(S) = C(X) \cap S \otimes \mathbb{R}$.

Proof. Obviously the left hand side contains the right. Let $x \in C(S)$ and $\delta \in \Delta \setminus \Delta(S)$. The primitiveness of S in L implies that $\tau^*(\delta) \neq \delta$. By the Hodge index theorem, $(\delta - \tau^*(\delta))^2 < 0$ and hence $\langle \delta, \tau^*(\delta) \rangle > -2$. Note that $\tau^*(\delta) \neq -\delta$ and $\langle \delta, \tau^*(\delta) \rangle \neq 0$, -1 because $[\omega_X] \in \mathscr{D}' \setminus (\mathscr{H}' \cup \mathscr{H}'')$. Hence $\delta + \tau^*(\delta) \in S$ with $(\delta + \tau^*(\delta))^2 \ge -2$. If $(\delta + \tau^*(\delta))^2 = -2$, then $\delta + \tau^*(\delta) \in \Delta(S)$, and hence $\langle x, \delta + \tau^*(\delta) \rangle > 0$. If $(\delta + \tau^*(\delta))^2 \ge 0$, then $\delta + \tau^*(\delta) \in \overline{P(X)}$ and hence $\langle x, \delta + \tau^*(\delta) \rangle > 0$. Since $\langle x, \delta \rangle = \langle \tau^*(x), \tau^*(\delta) \rangle = \langle x, \tau^*(\delta) \rangle$, we have $\langle x, \delta \rangle > 0$.

(3.14). For $\delta \in \Delta(S)$, define $s_{\delta} \in O(H^2(X, \mathbb{Z}))$ by

 $s_{\delta}(x) = x + \langle x, \delta \rangle \delta.$

Then the group W(S) generated by $\{s_{\delta} | \delta \in \Delta(S)\}$ acts on P(S) and $\overline{C(S)}$ is a fundamental domain with respect to its action on $\overline{P(S)}$ ([V]).

(3.15) Surjectivity. We shall see that each point in $(\mathcal{D}'/\Gamma')_0$ corresponds to a plane quintic curve with a cusp satisfying (3.2). Let X be a K3 surface with its period $[\omega_X] \in (\mathcal{D}'/\Gamma')_0$. First note that X has an involution τ with $H^2(X, \mathbb{Z})^{\langle \tau^* \rangle} \simeq U \oplus D_8$. In fact, the involution σ of $S \oplus N'$ defined by $\sigma|S = 1_S$ and $\sigma|N' = -1_{N'}$ acts on $A_S \oplus A_{N'}$ trivially because S and N' are 2-elementary. Hence by Remark 3.5, we can extend σ to an isometry $\tilde{\sigma}$ of $H^2(X, \mathbb{Z})$. Obviously $\tilde{\sigma}$ fixes the period of X. Moreover by Lemma 3.13, $\tilde{\sigma}$ preserves effective divisors on X. Therefore it now follows from the Torelli theorem for K3 surfaces [P-S] that $\tilde{\sigma}$ is induced from an involution τ of X with $\tau^* = \tilde{\sigma}$.

LEMMA (3.16). There exists an elliptic pencil $\pi: X \to \mathbb{P}^1$ with a singular fibre F of type \tilde{D}_n $(n \ge 8)$ invariant under the action of τ .

Proof. Consider an orthogonal decomposition $S = U \oplus D_8$ and take $f \in U$ satisfying that $f^2 = 0$ and f is primitive (i.e. $f = me, e \in U$, implies $m = \pm 1$). By

Lemma 3.13 and the fact stated in (3.14), we may assume that f is numerically effective, if necessary, replacing f by $\varphi(f)$ where $\varphi \in O(H^2(X, \mathbb{Z}))$ with $\varphi(S) \subset S$. Then f defines an elliptic pencil $\pi: X \to \mathbb{P}^1$ such that f is the cohomology class of a fibre of π ([P-S], §3, Theorem 1). Consider the negative definite sublattice K in {the orthogonal complement of f in Pic(X)}/ $\mathbb{Z}[f]$ generated by (-2)-elements. Then $K \simeq K_1 \oplus \cdots \oplus K_r$, where K_i is a lattice isometric to A_m , D_n or E_l . By the same proof as that of [Ko], Lemma 2.2, π has singular fibres of type $\tilde{K}_1, \ldots, \tilde{K}_r$. Since $D_8 \subset K$, π has a singular fibre F of type \tilde{D}_n ($n \ge 8$). Since τ^* acts trivially on this D_8 , F is invariant under the action of τ .

LEMMA (3.17). We keep the same notation as in Lemma 3.16. Then n = 8. Proof. Recall that F consists of the following smooth rational curves:

Fig. 3.

If $\tau(F_1) = F_2$ or $\tau(F_1) = F_n$, then $F_1 - F_2$ or $F_1 - F_n$ is (-4)-vector in N' of even type. Since $\langle \omega_X, \operatorname{Pic}(X) \rangle = 0$, this contradicts the assumption $[\omega_X] \in (\mathscr{D}' / \Gamma')_0$. Hence $\tau(F_i) = F_i$ $(1 \le i \le n+1)$. Now if $n \ge 9$, then S contains a degenerate lattice of rank $n + 1 \ge 10$ generated by components of F, which is impossible.

Thus the singular fibre F consists of smooth rational curves as in the following:

It follows from [N2], Theorem 4.2.2 that the set of fixed points of τ is the disjoint union of a smooth curve C of genus 5 and 4 smooth rational curves E_1, \ldots, E_4 (see the proof of Proposition 3.4). Since $\tau(F_i) = F_i$ ($1 \le i \le 9$), F_3 and F_7 are fixed curves of τ . This implies that F_5 is also fixed by τ and τ acts

on F_i (i = 1, 2, 4, 6, 8, 9) as an involution because the set of fixed points of τ is the disjoint union of smooth curves. Thus we may assume that $E_1 = F_3$, $E_2 = F_5$ and $E_3 = F_7$. Then F_i (i = 1, 2, 8, 9) meets either C or E_4 . If C meets all F_1 , F_2 , F_8 and F_9 , then $E_4 \cdot F_i = 0$ $(1 \le i \le 9)$ and hence $S = U \oplus D_8$ contains a degenerate lattice of rank 10 generated by components of F and E_4 . This is a contradiction. Also if C meets only F_1 and F_2 , then E_4 meets F_8 and F_9 . In this case, $(F_7 + F_8 + F_9 + E_4)^2 = C \cdot (F_7 + F_8 + F_9 + E_4) = 0$. This contradicts the Hodge index theorem. Similarly it does not occur that C meets only F_1 or C meets only F_1 and F_8 . Thus we may assume that C meets F_1 , F_2 , F_8 and E_4 meets F_9 . Note that this is the same situation as in Figure 2.

Now taking the quotient $X/\langle \tau \rangle$ and contracting exceptional curves on $X/\langle \tau \rangle$ successively, we have a plane quintic curve with a cusp satisfying the Assumption 3.2.

(3.18) Injectivity. Let C and C' be plane quintic curves with a cusp satisfying (3.2). Let X and X' be the corresponding K3 surfaces to C and C' respectively.

PROPOSITION (3.19). If $[\omega_X] = [\omega_{X'}]$ in $(\mathscr{Q}'/\Gamma')_0$, then C is projectively isomorphic to C'.

Proof. Let $\{F_i\}$ or $\{F'_i\}$ $(1 \le i \le 10)$ be smooth rational curves on X or X' as in Figure 2, respectively. It suffices to see that there exists an isomorphism between the pairs (X, τ) and (X', τ') which sends $\{F_i\}$ to $\{F'_i\}$. Let

 $\gamma: \mathrm{H}^{2}(X, \mathbb{Z}) \to \mathrm{H}^{2}(X', \mathbb{Z})$

be an isometry with $\gamma([\omega_X]) = [\omega_{X'}]$ and $\gamma \circ \tau^* = (\tau')^* \circ \gamma$. By Remark 3.5, if necessary, changing F_1 and F_2 , and replacing γ by $\gamma \circ \varphi$ for some $\varphi \in O(H^2(X, \mathbb{Z}))$ with $\varphi \circ \tau^* = \tau^* \circ \varphi$ and $\varphi | N' = 1_{N'}$, we may assume that $\gamma([F_i]) = [F'_i]$ $(1 \le i \le 10)$. Then by the following Lemma 3.20 and Lemma 3.13, $\gamma(C(X)) \subset C(X')$. Therefore it now follows from the Torelli theorem for K3 surfaces [P-S] that γ is induced from an isomorphism as desired.

LEMMA (3.20). $C(S) = \{x \in P(S) | \langle x, [F_i] \rangle > 0, 1 \le i \le 10 \}.$

Proof. The following proof is an analogue of [Na], Proposition 6.9. We use the same notation as in [V]. Let W be the subgroup generated by reflections $s_{[F_i]}$ $(1 \le i \le 10)$. Its Coxeter diagram Σ is defined as follows: the vertices of Σ correspond to $\{F_i\}_{1 \le i \le 10}$ and two vertices F_i and F_j are joined by a simple line iff $F_i \cdot F_j = 1$. Then Σ contains only two parabolic subdiagram \tilde{D}_8 and \tilde{E}_8 which all have the maximal rank 8. Also Σ contains no Lanner's diagram and no dotted lines. Hence it follows from [V], Theorem 2.6 that W is of finite index in O(S). Hence the polyhedral cone

 $\{x \in S \otimes \mathbb{R} \mid \langle x, [F_i] \rangle \ge 0, 1 \le i \le 10\}$

is contained in $\overline{P(S)}$ (see [V], p. 335. By a direct calculation, we can also see

the last assertion without using the above Vinberg's theory). If there exists a smooth rational curve E with $E \neq F_i$ and $[E] \in S$, then $E \cdot F_i \ge 0$ for all i and hence $[E] \in \overline{P(S)}$, i.e. $E^2 \ge 0$, which is impossible. Similarly there is no smooth rational curve E with $\tau(E) \cdot E = 1$. Now let $\delta \in \Delta(S)$ and $x \in P(S)$. Let D be a irreducible component of δ which is a smooth rational curve. Then the above implies that $D = F_i$ for some i or $\tau(D) \cdot D \ge 2$ (Since $[\omega_X] \in (\mathscr{D}'/\Gamma')_0$, $\tau(D) \cdot D \ne 0$). In the latter case, $(D + \tau(D))^2 \ge 0$ and hence $\langle x, [D + \tau(D)] \rangle > 0$. Thus $\langle x, \delta \rangle > 0$ for any $x \in P(S)$ with $\langle x, [F_i] \rangle > 0$ ($1 \le i \le 10$).

Thus $(\mathcal{D}'/\Gamma')_0$ bijectively corresponds to the set of projective isomorphy classes of plane quintic curves with a cusp satisfying (3.2).

Let \mathcal{M}_0 be an open set of $\mathcal{M}_{5,cusp}$ consisting plane quintic curves with a cusp satisfying (3.2). For any family $\mathscr{C} \to S$ of plane quintic curves with a cusp, we can construct a family $\mathscr{X} \to S$ of K3 surfaces with an involution as above. Associating its period with each member of \mathscr{X} , we obtain a holomorphic map from S to \mathscr{D}'/Γ' . Therefore we have a holomorphic map $\lambda: \mathcal{M}_0 \to (\mathscr{D}'/\Gamma')_0$ which is bijective by the above argument. Let $\overline{\mathcal{M}}_0$ be a compactification of \mathcal{M}_0 with normal crossing boundary. Then by Borel's extension theorem [B], λ can be extended to a holomorphic map from $\overline{\mathcal{M}}_0$ to the projective compactification of \mathscr{D}'/Γ' due to Bairly-Borel [B-B]. Hence by GAGA, λ is regular. Since λ is smooth and bijective on a Zariski open set, we now conclude:

THEOREM (3.21). $\mathcal{M}_{5, cusp}$ is birationally isomorphic to \mathcal{D}'/Γ' .

4. Proof of the rationality

The main purpose of this section is to prove the following:

THEOREM (4.1). $\mathscr{D}/\Gamma \simeq \mathscr{D}'/\Gamma'$ (as quasi-projective varieties).

Proof. For a lattice (L, \langle , \rangle) , we denote by L(1/2) the free \mathbb{Z} -module L with the symmetric bilinear form $\langle , \rangle/2$ valued in \mathbb{Q} . Fix an orthogonal decomposition $N = U \oplus U(2) \oplus E_8(2)$. Then $N(1/2) = U(1/2) \oplus U \oplus E_8$ and the sublattice $2U(1/2) = \{2x | x \in U(1/2)\}$ of U(1/2) is isometric to U(2). Under this isomorphism, we consider the lattice $N' \simeq U(2) \oplus U \oplus E_8$ as a sublattice $2U(1/2) \oplus U \oplus E_8$ in $U(1/2) \oplus U \oplus E_8$. Let O(N(1/2)) be the group of isomorphisms of \mathbb{Z} -module preserving the form $\langle , \rangle/2$. Obviously N and N(1/2)define the same bounded symmetric domain \mathcal{D} and O(N) = O(N(1/2)). Let e_1 ,

$$e_2$$
 be a base of $U(1/2)$ with the matrix $(\langle e_i, e_j \rangle) = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}$ and e_3, \dots, e_{12}

a base of $U \oplus E_8$. With respect to this base, any $g \in O(N(1/2))$ has a matrix decomposition

$$g = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad A: U(1/2) \to U(1/2), \quad B: U \oplus E_8 \to U(1/2),$$
$$C: U(1/2) \to U \oplus E_8, \quad D: U \oplus E_8 \to U \oplus E_8.$$

For $g' \in O(N')$, similarly, $g' = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix}$ with respect to a base $\{2e_1, 2e_2, e_3, \ldots, e_{12}\}$ of N'.

LEMMA (4.2). For $g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in O(N(1/2))$, $g' = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \in O(N')$, any entries of B and C' are even integers.

Proof. Put
$$H = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}$$
 and $K = (\langle e_i, e_j \rangle)_{3 \le i,j \le 12}$. Then

$$g \in O(N(1/2)) \Leftrightarrow {}^{t}AHA + {}^{t}CKC = H, {}^{t}AHB + {}^{t}CKD = 0, {}^{t}BHB + {}^{t}DKD = K.$$

Let $\{b_i\}_{1 \le i \le 10}$ be the first row vector of B, $\{b'_i\}_{1 \le i \le 10}$ the second row vector of B and $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$. Since $U \oplus E_8$ is even, the diagonals of K, tCKC and tDKD are even integers. Then the equation ${}^tAHA + {}^tCKC = H$ implies that $a_1 \cdot a_3 \equiv 0$, $a_2 \cdot a_4 \equiv 0$ and $a_1 \cdot a_4 + a_2 \cdot a_3 \equiv 1 \pmod{2}$. Since any entries of tCKD are integers, the equation ${}^tAHB + {}^tCKD = 0$ implies $a_1 \cdot b'_i + a_3 \cdot b_i \equiv 0$, $a_2 \cdot b'_i + a_4 \cdot b_i \equiv 0 \pmod{2}$, $1 \le i \le 10$. These imply that b_i and b'_i are even. Next let $g' = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \in O(N')$. Let $\{c_i\}_{1 \le i \le 10}$ be the first column vector of

C', ${}^{t}(a_1, a_3)$ the first column vector of A'. Then

$$g'(e_1) = a_1e_1 + a_3e_2 + \sum_{i=1}^{10} (c_i/2)e_{i+2}.$$

Note that $N(1/2) = (N')^*$ and e_1 , e_2 generate $A_{N'} = (N')^*/N'$. Since g' preserves $A_{N'}$ and $U \oplus E_8$ is unimodular, $\sum (c_i/2)e_{i+2} \in U \oplus E_8$ and hence c_i is even. Similarly any entries of the second column of C are even.

Let $z = \sum_{i=1}^{12} z_i e_i \in \mathcal{D}$ and $z' = z'_1(2e_1) + z'_2(2e_2) + \sum_{i=3}^{12} z'_i e_i \in \mathcal{D}'$ be homogeneous coordinates. We define a biholomorphic map

$$\varphi: \mathscr{D} \to \mathscr{D}', \quad \varphi(z) = (z_1/2, z_2/2, z_3, \dots, z_{12}).$$

Also by Lemma 4.2, the homomorphism

$$\psi$$
: O(N(1/2)) \rightarrow O(N'), $\psi \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) = \begin{bmatrix} A & B/2 \\ 2C & D \end{bmatrix}$

is well-defined and an isomorphism of groups. Since $\varphi(g(z)) = \psi(g)(\varphi(z))$ for any $g \in O(N(1/2))$, φ induces an isomorphism from $\mathscr{D}/\Gamma = \mathscr{D}/O(N) = \mathscr{D}/O(N(1/2))$ to $\mathscr{D}'/\Gamma' = \mathscr{D}'/O(N')$. Since N(1/2) and N' define the same rational structure on \mathscr{D} , φ can be extended to an isomorphism between the projective compactifications of \mathscr{D}/Γ and \mathscr{D}'/Γ' due to Bairly-Borel [B-B]. Thus we have proved Theorem 4.1.

Combining Theorem 4.1 and Theorem 3.21, we have:

THEOREM (4.3). \mathcal{D}/Γ is birationally isomorphic to $\mathcal{M}_{5,cusp}$.

By Proposition 2.2, we now conclude:

COROLLARY (4.4). The moduli space \mathcal{M} of Enriques surfaces is rational.

Remark (4.5). The author does not know the geometric meaning of the isomorphism in Theorem 4.1, in particular, whether there is a birational isomorphism g from $\mathcal{M}_{5,\text{cusp}}$ to \mathcal{M} forming the following commutative diagram (using the notation of §2), which is conjectured by Dolgachev [D2]:

Acknowledgement

This work was begun while the author was a visitor at the University of Michigan. I would like to thank Igor Dolgachev for inviting me and for valuable conversations.

References

- [B-B] Baily, W. L. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, *Ann. Math.*, 84 (1966), 442-528.
- [B-P] Barth, W. and Peters, C., Automorphisms of Enriques surfaces, Invent. math., 73 (1983), 383-411.

- [B] Borel, A., Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Diff. Geometry 6 (1972), 543-560.
- [C-D] Cossec, F. and Dolgachev, I., Enriques surfaces I, Boston: Birkhäuser 1989.
- [D1] Dolgachev, I., Rationality of fields of invariants, in "Algebraic Geometry, Bowdoin 1985", Proc. Symp. Pure Math., 46 (1987), Part II, 3-16.
- [D2] Dolgachev, I., Enriques surfaces: what is left, in "Proc. Conference on algebraic surfaces", Cortona, 1988.
- [H] Horikawa, E., On the periods of Enriques surfaces I, Math. Ann., 234 (1978), 73-108; II, ibid., 235 (1978), 217-246.
- [Ko] Kondō, S., Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75–98.
- [K] Kulikov, V. S., The epimorphicity of the period map for surfaces of type K3, Uspehi Mat. Nauk, 32 (1977), 257–258 (Russian).
- [Na] Namikawa, Y., Periods of Enriques surfaces, Math. Ann., 270 (1985), 201-222.
- [N1] Nikulin, V. V., Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14 (1980), 103-167.
- [N2] Nikulin, V. V., Factor groups of groups of the automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. Soviet Math., 22 (1983), 1401–1475.
- [N3] Nikulin, V. V., On the description of groups of automorphisms of Enriques surfaces, Soviet Math. Dokl., 227 (1984), 1324-1327 (Russian).
- [P-S] Piatetskii-Shapiro, I. and Shafarevich, I. R., A Torelli theorem for algebraic surfaces of type K3, Math. USSR-Izv., 5 (1971), 547-588.
- [V] Vinberg, E. B., Some arithmetic discrete groups in Lobachevsky spaces, in "Discrete subgroups of Lie groups and applications to Moduli", Tata-Oxford (1975), 323-348.