COMPOSITIO MATHEMATICA

LAWRENCE CORWIN

Inducing "supercuspidal" representations of unipotent *p*-adic groups from compact-mod-center subgroups

Compositio Mathematica, tome 84, nº 1 (1992), p. 85-89 <http://www.numdam.org/item?id=CM 1992 84 1 85 0>

© Foundation Compositio Mathematica, 1992, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Inducing 'Supercuspidal' Representations of Unipotent *p*-adic groups from compact-mod-Center Subgroups

LAWRENCE CORWIN*

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, U.S.A.

Received 10 January 1991; accepted 20 August 1991

Keywords: nilpotent *p*-adic Lie group, square integrable irreducible representation, supercuspidal representation, induced representation, compact open subgroup.

Abstract. Let G be a p-adic nilpotent Lie group, π an irreducible unitary representation of G with matrix coefficients that are L^2 functions modulo the center Z of G. It is proved that π is induced from a character on a subgroup that is compact modulo Z.

Let G be a totally disconnected locally compact group, with center Z. We shall say that an irreducible unitary representation π of G is *supercuspidal* if π has matrix coefficients with compact support modulo Z. In the case of reductive padic groups, this agrees with the standard definition (see [5]). For these groups, it is a "classical" conjecture that any supercuspidal representation is induced from a finite-dimensional representation on a subgroup that is compact mod Z; while some recent progress has been made, the conjecture is still open.

In this note, we show that the corresponding result for *p*-adic nilpotent groups is true. More precisely, we prove:

THEOREM. Let G be the group of \mathbb{Q}_p -rational points of a unipotent algebraic group over \mathbb{Q}_p , and let Z be the center of G. If π is an irreducible unitary representation of G with square integrable matrix coefficients mod Z, then there is an open subgroup $K \supseteq Z$ and a character χ on K such that K/Z is compact and $\pi = \operatorname{Ind}_K^G \chi$.

REMARK. It is clear that supercuspidal representations have matrix coefficients that are square integrable mod Z. For nilpotent *p*-adic groups, the converse is true (see below); for reductive *p*-adic groups, the converse is known to be false.

Before embarking on the proof, we recall some facts about representation theory for G. The basic principle (see [3]) is that the theory is the same as for real nilpotent Lie groups. We write P^n for the compact open subgroup $p^n \mathbb{Z}_p \subseteq \mathbb{Q}_p$.

^{*}Supported by NSF Grant DMS 89-02993.

Let ψ be the standard character on $\mathbb{Q}_p(\psi$ is trivial on \mathbb{Z}_p but not on P^{-1}), let g be the Lie algebra of G (over \mathbb{Q}_p), and let g* be the dual of g; g* \simeq g^ under the correspondence of $l \in g$ * with the homomorphism $X \mapsto \psi(l(X))$ of $g^* \to S^1$. G acts on g by Ad and on g* by the contragredient action, Ad*, and $G \simeq g^*/Ad^*(G)$, just as described by Kirillov theory for real groups. For $l \in g^*$, let $r_l = \{Y \in g: l([X, Y]) = 0 \text{ for all } X \in g\}$. There exists a subalgebra h of g such that $l|_{\mathfrak{h}}$ is a Lie homomorphism and 2 dim $\mathfrak{h} = \dim \mathfrak{g} + \dim \mathfrak{r}_l$ (as \mathbb{Q}_p -vector spaces). Define χ_l on $M = \exp \mathfrak{h}$ by $\chi_l(\exp Y) = \psi(l(Y))$. (If one realizes \mathfrak{h} as a Lie subalgebra of the strictly upper triangular matrices, then exp is the usual exponential,

$$\exp Y = \sum_{j=0}^{\infty} \frac{Y^j}{j!};$$

the sum is really finite.) Then $\operatorname{Ind}_{H}^{G}\chi_{l} = \pi_{l}$ is the element of G corresponding to l. For $\pi \in G$, we let \mathcal{O}_{π} be the corresponding $\operatorname{Ad}^{*}(G)$ -orbit; thus $l \in \mathcal{O}_{\pi_{l}}$.

For $\pi \in G$, the following conditions are equivalent:

- (a) π has square integrable matrix coefficients mod Z.
- (b) For all $l \in \mathcal{O}_{\pi}$, $\mathfrak{r}_l = \mathfrak{z}$ (the center of g, and the Lie algebra of Z).
- (c) For any $l \in \mathcal{O}_{\pi}$, $\mathcal{O}_{\pi} = l + \mathfrak{z}^{\perp}$.
- (d) Let X_1, \ldots, X_r span a subspace of g complementary to 3. Then the $r \times r$ matrix $A = (a_{ij}) = (l([X_i, X_j]))$ is invertible.

In fact, if one defines Haar measure on G/Z by exponentiating the Haar measure on $g/3 \simeq \mathbb{Q}_p X_1 + \cdots + \mathbb{Q}_p X_r$ that gives $\mathbb{Z}_p X_1 + \cdots + \mathbb{Z}_p X_r$ mass 1, then the formal degree d_{π} of π with respect to this measure is $|\text{Det } A|^{1/2}$, where $|\cdot|$ denotes the usual *p*-adic absolute value.

The equivalence of (a)–(d) and the other results on square integrable representations are proved in [4] and [1] for real groups; both proofs can be adapted to the *p*-adic situation. Further remarks on this matter can be found in [2], and further details will appear in a forthcoming book by F. P. Greenleaf and the author.

Van Dijk proved in [2] that any π satisfying the equivalent conditions (a)–(d) is in fact supercuspidal. (See our earlier remark.) We do not need van Dijk's result to prove the Theorem; thus we get a new proof that if π has square integrable coefficients, then π is supercuspidal. We say more about the results in [2] below.

Proof of the Theorem. We use induction on dim G; when dim G = 1, G is Abelian and the theorem is trivial. Let $Z = \exp_3$ be the center of G, let π have square-integrable matrix coefficients mod Z, and let $l \in \mathcal{O}_{\pi}$. If dim Z > 1, then there is a 1-dimensional subgroup $Z_0 \subseteq Z \cap \text{Ker } \pi$; this reduces the problem for G to one for G/Z_0 , where the inductive hypothesis applies. We may therefore assume that dim Z = 1 and that l is nontrivial on Z. Let $X_1 \in \mathfrak{Z}$ satisfy $l(X_1) = 1$, let \overline{Y} be central in $\overline{\mathfrak{g}} = \mathfrak{g}/\mathfrak{Z}$, and let Y be a pre-image of Y in \mathfrak{g} with l(Y) = 0. (Since Y and $Y + \alpha X_1$ map to \overline{Y} , this is possible.) Just as in the real case (see, e.g., Lemma 1.1.12 of [1]), the centralizer \mathfrak{g}_0 of Y in \mathfrak{g} is an ideal of codimension 1. We can pick a basis $\{X_1, \ldots, X_n\}$ of \mathfrak{g} such that:

- (i) for all j, $g_j = \text{span}\{X_1, \dots, X_j\}$ is an ideal of g;
- (ii) $g_0 = g_{n-1}$ and $Y = X_2$.

We may also assume (possibly rescaling elements X_j with j > 1) that all structure constants for this basis are in \mathbb{Z}_p ; i.e., $[X_i, X_j] = \sum_{k=1}^n c_{ijk} X_k$, with all $c_{ijk} \in \mathbb{Z}_p$. (In addition, $c_{ijk} = 0$ if $k \ge i$ or $k \ge j$, by (i) above.) We use this basis to define Haar measure on G and on G/Z so that $\exp(\sum_{j=1}^n \mathbb{Z}_p X_j)$ has mass 1 in G and its image in G/Z has mass 1 there.

By construction, $[X_2, X_j] = 0$ if j < n. Therefore the first row and first column of the matrix $A = (l([X_i, X_j]): 2 \le i, j \le n)$ have only one nonzero element each, namely $l([X_2, X_n])$ and $l([X_n, X_2])$ respectively. In \mathbb{G}_0 , the radical r_{l_0} of $l_0 = l|_{g_0}$ is $\mathfrak{z}_0 = \mathbb{Q}_p X_1 + \mathbb{Q}_p X_2$, the center of \mathbb{G}_0 . (Obviously $\mathfrak{z}_0 \subseteq r_{l_0}$, but dim $r_{l_0} \le \dim r_l + 1 = 2$.) The corresponding matrix $A_0 = (l_0([X_i, X_j]): 3 \le i, j \le n - 1)$ is nonsingular because Det $A = l([X_2, X_n])^2$ Det A_0 . Let σ be the representation corresponding to l_0 . The above computation of Det A_0 shows that σ_0 is square-integrable; Kirillov theory says that σ induces to π . In fact, the computation also shows that if we normalize Haar measure on G_0/Z_0 (where $Z_0 = \exp \mathfrak{z}_0$) by giving $\exp(\Sigma_{i=3}^{n-1} \mathbb{Z}_p X_j)$ mass 1, then the formal degrees of π , σ are related by $d_{\pi} = |l([X_2, X_n])|d_{\sigma}$.

Let K_0 be a compact-mod-center subgroup of G_0 such that σ is induced from χ_0 on K_0 . Then $K_0 = H_0 \exp(\mathbb{Q}_p X_1 + \mathbb{Q}_p X_2)$, where $\log H_0 \subseteq \operatorname{span}$ $\{X_3,\ldots,X_{n-1}\}.$ Let $K_1 \subseteq G_0$ be the group generated by $H_0 \exp \mathbb{Z}_p X_2 \exp \mathbb{Q}_p X_1$. K_1 is compact mod Z; the reason is that if we use exponential coordinates on G, we need only to worry that the X_2 coordinates of elements stay bounded, and the compactness of H_0 insures this. We may assume (by perhaps increasing K_1) that $K_1 = H_0 \exp(\mathbb{Q}_p X_1 + P^{g_0} X_2)$. Choose an open subgroup $P^h \subseteq \mathbb{Q}_p$, $h \ge 0$, such that $\exp(P^h X_n)$ normalizes K_1 and fixes χ_0 there. (Clearly exp tX^n normalizes K_1 if it normalizes $K_1 \mod Z_1$ and it fixes χ_0 if it fixes χ on the compact open group generated by $H_0 \mathbb{Z}_p X_2 \exp \mathbb{Z}_p X_1$. Because K_1/Z_1 is open and χ is locally constant, for every $\bar{x} \in K_1/Z_1$ there is an integer $n(\bar{x})$ and a neighborhood $U_{\bar{x}}$ of \bar{x} such that conjugation by any element of $\exp(P^{n(\bar{x})}X_n)$ maps $U(\bar{x})$ into K_1/Z_1 . Let $U(\bar{x}_1), \ldots, U(\bar{x}_m)$ cover K_1/Z_1 , and let $h_1 = \max(n(x_1), \dots, n(x_m))$. Then $\exp(P^{h_1}X_n)$ normalizes K_1/Z_1 and hence K_1 . The proof that we can choose $h \ge h_1$ so that $\exp(P^h X_n)$ also fixes χ_0 is similar.) Suppose that $[X_n, X_2] = aX_1$, so that $l([X_n, X_2]) = a$; choose an integer g so that $aP^{g+h} = \mathbb{Z}_p$. Since $h \ge 0$ and $a \in \mathbb{Z}_p$, $g \le 0$; also, $g \le g_0$. Then $|l(a)| = p^{-(g+h)}$. We know that χ_0 is trivial on $\exp \mathbb{Q}_n X_2$, since $\exp \mathbb{Q}_{p}X_{2} \subseteq \operatorname{Ker} \sigma_{0}$. Furthermore, $\exp(tX_{n})\exp(uX_{2})\exp(-tX_{n}) = \exp(tX_{n})$

 $(uX_2 + atuX_1)$; this shows that $\exp tX_n$ fixes χ_0 on $K_1 \exp P^g X_2 = K_0 \exp P^g X_2$. Define χ on $K = K_0 \exp P^g X_2 \exp P^h X_n$ by letting $\chi(k_0 \exp tX_2 \exp uX_n) = \chi_0(k_0)$; the definition of h and the above remarks show that χ is a character.

Proving directly that $\operatorname{Ind}_{K}^{G}\chi \simeq \pi$ presents some problems (though a direct proof does exist); the argument that follows has its own interest. Let $\rho = \operatorname{Ind}_{K}^{G}\chi$. Then $\rho|_{Z}$ is a multiple of $\chi|_{Z}$, and the same is true for $\pi|_{Z}$. Since the Kirillov orbit of π is $l + 3^{\perp}$, any irreducible agreeing with π on Z must be π . Therefore ρ is a multiple of π .

Realize σ as $\operatorname{Ind}_{K_0}^{G_0}\chi_0$; since $K_0 \setminus G_0$ is discrete, counting measure on cosets is an invariant measure. The function $\varphi: G_0 \to \mathbb{C}$ defined by

$$\varphi_0(x_0) = \begin{cases} \chi_0(x_0) & \text{if } x_0 \in K_0, \\ 0 & \text{if } x_0 \notin K_0 \end{cases}$$

is clearly in \mathscr{H}_{π_0} , and $\|\varphi_0\|_2^2 = 1$. It is easy to see that $\langle \sigma(x)\varphi_0, \varphi_0 \rangle = \varphi_0(x)$. Therefore the matrix coefficient $f_0 = f_{\varphi_0,\varphi_0}$ is equal to φ_0 , and

$$\|f_0\|^2 = \int_{G_0} |\varphi_0(x)|^2 \,\mathrm{d}x = \bar{m}_0(K_0),$$

where \bar{m}_0 is Haar measure on G_0/Z_0 . Since $||f_0||^2 = d_{\pi_0}^{-1} ||\varphi_0||^4 = d_{\pi_0}^{-1}$, this means that $d_{\pi_0}^{-1} = \bar{m}_0(K_0)$. Hence $d_{\pi}^{-1} = |a|^{-1}\bar{m}_0(K_0)$, where *a* was defined above. We have $K_0 = H_0Z_0$ and $K = (H_0 \exp(P^g X_2) \exp(P^h X_n))Z$; a Fubini-type argument (using the fact that the map of $g_0 \times \mathbb{Q}_p$ to *G* taking (X_0, t) to $\exp X_0 \exp tX_n$ preserves Haar measure; see §1.2 of [1] for the corresponding result in the real case) shows that

$$\bar{m}(K/Z) = \bar{m}_0(K_0/Z_0)|p^{g+h}|,$$

where \bar{m} is Haar measure on G/Z. Since $|p^{g+h}| = |a|^{-1}$, we have

 $d_{\pi}^{-1} = \bar{m}(K/Z).$

Because K/G is discrete, counting measure for cosets gives an invariant measure that we use to define \mathscr{H}_{q} . Define $\varphi: G \to \mathbb{C}$ by

$$\varphi(x) = \begin{cases} \chi(x) & \text{if } x \in K, \\ 0 & \text{if } x \notin K. \end{cases}$$

Then $\varphi \in \mathscr{H}_{\rho}$ and $\|\varphi\|_{2}^{2} = 1$. The same calculation as with φ_{0} shows that the matrix coefficient $f = f_{\varphi,\varphi}$ satisfies $\|f\|^{2} = \overline{m}(K/Z) = d_{\pi}^{-1}$.

The vector φ is clearly cyclic for ρ . Suppose that ρ is not irreducible and that $\mathscr{H}_{\rho} = \bigoplus_{j=1}^{r} \mathscr{H}_{j}$ is a decomposition of ρ into irreducibles (all equivalent to π ; r may be ∞). Write $\varphi = \sum_{j1}^{r} \varphi_{j}$ correspondingly, so that $\sum_{j=1}^{\infty} \|\varphi_{j}\|^{2} = 1$, and let $f_{j} = f_{\varphi_{j},\varphi_{j}}$ be the matrix coefficient corresponding to φ_{j} . Clearly $\langle \rho(x)\varphi_{i}, \varphi_{j} \rangle = 0$ if $i \neq j$; therefore

$$f = \sum_{j=1}^{r} f_j.$$

Now $||f|| = d_{\pi}^{-1/2}$ and $||f_j|| = d_{\pi}^{-1/2} ||\varphi_j||^2$. Hence

$$||f|| = \sum_{j=1}^{r} ||f_j||.$$

This is possible only if the f_j are all nonnegative multiples of f. Hence if U_j : $\mathscr{H}_1 \to \mathscr{H}_j$ gives the unitary equivalence of ρ_1 with ρ_j , then $U_j(\varphi_1) = c_j \varphi_j$ for some constants c_j . But it is then obvious that $\varphi = (\varphi_1, \varphi_2, ...)$ is not cyclic in \mathscr{H}_{ρ} . This contradiction completes the proof.

REMARK. Van Dijk proved in [2] not only that square-integrable π have compact-mod-center matrix coefficients, but, that if $v, w \in \mathscr{H}_{\pi}$ and $\varphi, \psi \in C_0^{\infty}(G)$ (the space of locally constant functions with compact support), then $f_{\pi(\varphi)v,\pi(\psi)w}$ has compact support mod Z. One can also prove this by mimicking the proof of the corresponding result for real groups (see Theorem 4.5 of [1]); we omit the details. There does not seem to be an easy way to modify the above proof to yield Van Dijk's result as well.

References

- 1. Corwin, L.J., and Greenleaf, F.P. Representations of Nilpotent Lie Groups and their Applications, Part I. Cambridge University Press, 1990.
- Van Dijk, G., Square integrable representations mod Z of unipotent groups, Compositio Math. 29 (1974), 141–150.
- 3. Moore, C.C., Decomposition of unitary representations defined by discrete subgroups of nilpotent Lie groups, Ann. Math. 82 (1965), 146-182.
- 3. Moore, C.C., and Wolf, J.A., Square integrable representations of nilpotent Lie groups, *Trans.* Am. Math. Soc. 185 (1973), 445-62.
- Silberger, A., Introduction to Harmonic Analysis on Reductive P-adic Groups. Mathematical Notes, #23. Princeton University Press, 1979.