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1. Introduction

The notion of singular automorphic forms on the Siegel upper half space was
introduced by Maass [10] in the holomorphic case, and by Howe [4] in the
adelic setting. As the word "singular" indicates, such forms are very degenerate.
For example, their matrix coefficients tend to zero very slowly at infinity, and in
particular can not be tempered in the sense of Harish-Chandra. It has been
expected for several years [12] that singular forms can not be cuspidal. The
purpose of this paper is to confirm this expectation.

Let k be a global field of characteristic not equal to 2 and let (D, a) be a k-
algebra with involution of one of the following three types:

and

Let V be a finite dimensional vector space over D endowed with a non-

degenerate sesqui-linear form ( , ) which is either 03C3-hermitian or a-skew

hermitian. We let il = 1 or -1 to indicate the two possibilities. Let G be the

isometry group of the form ( , ).
Let X and Y be maximal totally isotropic subspaces of V which are non-

degenerately paired by ( , ). Let vo be the orthogonal complement of X + Y. Let
P = Px be the maximal parabolic subgroup of G preserving X. The unipotent
radical N of P is at most two-step nilpotent. Let Z c N be the subgroup
consisting of elements which act as identity on Yo. Then both Z and ZBN are
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abelian. The latter can be identified with HomD(V0, X) and we have the short
exact sequence

Z ~ N ~ HomD(V0, X)

Let 11’ = -11. The group Z is isomorphic to the vector space B(Y, ~’) of all
sesquilinear forms on Y having the opposite symmetry as ( , ) under inter-
change of the two variables. The dual space of B( Y, 11’) is isomorphic to B(X, ~’) in
a natural way. Let A be the ring of adeles of k. We fix a non-trivial character 03C8 of
A/k. The Pontrjagin dual of Z(A)/Z(k) is then identified with B(X,l1’). For
TEB(X,l1’) we let 03C8T be the corresponding character of Z(A)/Z(k).
For a smooth function ç in L2(G(k)BG(A)) and T ~ B(X, ~’) we let ~T be the

Fourier coefficient along Z defined by

MAIN THEOREM. Let n z L2(G(k)BG(A) be a cusp form. Then for any smooth
function qJ in the space of n there exists a T E B(X, ~’) of maximal rank, such that
~T ~ 0.

For an application of this result to the construction of automorphic L-
functions see [11].
A comparison with the situation for GL(n) is interesting. It is a well known

fact (due independently to Piatetski-Shapiro and Shalika) that cusp forms on
GL(n) are generic. While this is certainly not valid for any groups other than
GL(n), our result here provides the best possible analog of the result of Piatetski-
Shapiro and Shalika for type 1 classical groups.

Jacquet and Shalika [5] have given the best possible estimate of matrix
coefficients for generic unitary representations of GL(n). Because of the fact that
cusp forms are generic, their estimate is valid for cusp forms on GL(n). Likewise,
when coupled with the local results of Howe [3], the above result will lead to
non-trivial estimates of matrix coefficients of cusp forms for other classical

groups.
A proof of the above theorem in the symplectic group case was briefly

indicated in [9, Lemma 1.1]. It was insufficient for the general case.

2. The theory of singular forms

For T E B(X, ri’) we define its rank, denoted rank(T), as follows. First suppose D
is a quaternion algebra. We let rank(T) be twice the dimension over D of a
maximal subspace of X which is non-degenerate with respect to T.
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In any other case rank(T) is defined to be the maximal dimension over D of
subspaces of X which are non-degenerate with respect to T.
Next we define an integer rG as follows. (i). If D = k, ~ = 1 then ro is the

largest even integer not greater than dimkX. (ii). If D is a quaternion algebra
rG = 2· dim,(X). (iii). In all other cases rG = dimD(X).

DEFINITION 2.1. Let n be an irreducible automorphic representation of G(A)
and r an integer.

(a) We say that 03C0 has rank r if (i) For any smooth 9 c- n and any TeB(X, ~’)
with rank(T) &#x3E; r we have ~T = 0. (ii) There exists ç E 7r and T with rank(T) = r
such that ~T ~ 0.

(b) We say 03C0 is singular or of low rank if it has rank  rG.

The notion of rank has its local analog [3], [8], [14]. Let v be a place of k.
First assume D is a quaternion algebra which splits at v. Then G(k") is

isomorphic to an orthogonal or symplectic group. We describe this isomorph-
ism (see [13]). There is a decomposition

where V, and V’ v are vector spaces over kv of dimension 2 - dimD v There will be a
non-degenerate bilinear form ( , )v on Vv which is symmetric or skew-symmetric
according as il = - 1 or 1, and G(kU) is isomorphic to the isometry group of
( , )v. Let Xv, Yv, Yo" respectively be the projections of X(kv)(= X Qe kv), Y(kv)
and V0(kv) to Vv. Set D" = kv; ~’v = -il’ = il in this case. Then Z(kv) ’" B( Yv, ~’v),
the vector space of bilinear forms on § which are symmetric or skew-symmetric
according as il’ = 1 or -1. The linear dual of B(Yv, rw) is B(X", ~’v). Note that
under the inclusion B(X, l’) 9 B(Xv, ~’v), the rank of an element T E B(X, il’) as a
member of B(X, il) is the same as the rank of T as a member of B(Xv, ~’v).
Next assume D = F is a quadratic extension of k and v is a place at which the

extension splits. Then G(k") is isomorphic to a general linear group. We have a
decomposition as in (4) with V, of dimension over kv equal to the dimension of V
over F. Define Xv, Yv and Yo" as before. The group Z(k") is now isomorphic to
the vector space of all kv-linear maps from Yv to Xv. To have a consistent
notation we denote this space by B( Yv, ~’v). Its linear dual is the vector space of all
linear maps from X" to Yv and is denoted B(X", ~’v). The rank of an element in it
is just its rank as a linear transformation.

In the remaining cases we let Jt:, = Y(k"), Xv = X(k") etc. Let ( , )v be the
obvious extension of ( , ) to Y" and q§ = ~’. Then B(Yv, ~’v) and B(X", ~’v) have
obvious meaning.
Now our basic character 03C8 is a product of local characters: 03C8 = 03A003C8v. Using

the local character t/I v we identify the Pontrjagin dual of Z(kv) with B(Xv, ~’v).

DEFINITION 2.2. Let r be an integer. The representation nv of G(k,,) is of Z(k")-
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rank  r if whenever fEL1(Z(kv)) is such that its Fourier transform f, a
continuous function on B(Xv, ~’v), vanishes on the subvariety of forms of
rank  r, we have 03C0v(f) = 0. It is of rank r if it has rank  r but not strictly less
than r.

Let now X’v and Y’v be maximal totally isotropic subspaces of Vv containing Xv
and Yv respectively, such that the form ( , )v is non-degenerate on X’v + Y’v. (In
the case D = F is a quadratic extension of k splitting at v we just require X’v and
Y’v to have trivial intersection. In the following similar remarks apply in many
places but we will not mention it again). Let Z’v be the (unipotent abelian)
subgroup of G(kv) leaving X’v and the orthogonal complement of X’v + Y’v
pointwise fixed. Then as with Z(k") we have Z’v ~ B(Y’v, ~’v) and the Pontrjagin
dual of Z’v is identified with B(X’v, ~’v). Thus we can define the Z’v-rank of
representations of G(kv) as before.

LEMMA 2.3. Let nv be a unitary representation of G(kv) of Z(kv)-rank r  rG.
Then nv also has Z’v-rank r.

The proof is exactly the same as that of [3, Lemma 2.9] so we omit it.

LEMMA 2.4. Let n = ~03C0v be an irreducible automorphic representation of G(A)
occurring discretely in L2(G(k)BG(A)). Suppose Te has rank r  rG. Let v be a place
of k. Then nv is a representation of Z’v-rank r.

Proof. Arguing exactly as in the proof of [4, Lemma 2.4] we see that nv has

Z(k")-rank equal to r. But then the previous lemma says nv also has Z’v-rank r
since r  rG . Q.E.D.

The restriction of nv to Z(kv) is determined by a projection valued measure 03BCv
on the Pontrjagin dual of Z(k") (see [3] or [8]), namely on B(Xv, ~’v). Now P(k")
normalizes Z(k") so it acts on its dual B(Xv, ~’v). For TE B(X v’ ~’v) let OvT denote
its orbit under P(kv). This orbit is of course just the set of sesqui-linear forms on
X v which are equivalent to T.

LEMMA 2.5. Let n, v and r be as in Lemma 2.4. Choose TE B(X, 11) so that

rank(T) = rand there is a smooth function ~ in the space of n such that ~T ~ 0.
Then the representation nv has Z(k")-spectrum J.1v supported on the closure of OvT.

Proof. The representation nv is irreducible and has rank r  rG. So a priori its

Z(k")-spectrum is supported on (the closure of) a single orbit by [3, Theorem
2.10] and [8, Theorem 3.1]. From the proof of [4, Lemma 2.4] we see that this
must be the orbit of T. Q.E.D.

In fact, one can use the Hasse principle to further conclude that the set of rank
r forms T ~ B(X, ri’) for which there exist a ~ e 7r with ~T ~ 0 must belong to the
same P(k)-orbit. See [4, Theorem 2.3].
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Let 03C0 be an irreducible automorphic representation of G(A) occurring discretely
in L2(G(k)BG(A)). Assume that n is of rank r  rG. Let Hr: be the space of smooth
functions belonging to n. Fix a T ~ B(X, ri’) of rank r such that there exists
qJ E Hîr with qJT =F 0.

PROPOSITION 3.1. Let Rad(T) ~ X be the radical of the form T. Let Q be the
maximal parabolic subgroup of G preserving Rad(T) and let R denote the

unipotent radical of Q. Then the linear functional qJ -.. ~T(1) on Hr: is invariant
under R(A).

The following result, which we state in the non-archimedean case only, is in
fact valid for any place v. Let t/lT be the character of Z(kv) corresponding to T.

LEMMA 3.2. Let v be a finite place. Let H’ be the space of smooth vectors for nv.
If À is any linear functional on H’ which satisfies the condition

for all z ~ Z(kv) and ~ ~ H~v, then À is invariant under R(k").

The proof of this lemma will be given in the next section. We now use it to
prove our proposition.

First observe that R ~ P and hence R normalizes Z. In fact it is not difficult to

see that

by an obvious change of variable and (6).
Choose a finite place v of k. By Lemma 3.2 the functional ~ ~ ~T(1) is

invariant under R(k"). By (7) it is invariant under R(k). Using strong approxi-
mation for unipotent groups [6] we get R(A) = R(k) · R(k,). Hence the functional
is invariant under R(A). This concludes the proof of Proposition 3.1.
Now let 03C0 be a cusp form of rank r  rG and choose T as in Proposition 3.1.
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We normalize the Haar measure so that

Then Proposition 3.1 implies

Substituting (3) into the above formula gives

Making the change of variable z ~ rzr-l in the inner integral and using (6) we
obtain

The inner integral in the last formula is zero since 03C0 is cuspidal. Thus ~T(1) = 0
for all ~ ~ H~03C0 and hence qJT = 0 for all ç. This contradicts the choice of T. The
contradiction comes from our assumption of having a singular cusp form n. This
proves the Main Theorem of Section 1.

4. A technical lemma

The purpose of this section is to prove Lemma 3.2. Everything in this section will
be local so we drop the subscript v in our notations. Thus k is a non-

archimedean local field of characteristic not equal to 2, V = Vu, X = Xv and so
on.

Let T be as in Lemma 3.2 but considered as a form on X = X v now. Let
Rad(T) be the radical of the form T and set V’ = X/Rad(T). Then T defines a
nondegenerate form ( , )’ on V’ which is of the opposite symmetry to the form
( , ) that we have on V Let G’ be the group of isometries of ( , )’. Then (G, G’)
form what is called a reductive dual pair [1]. The k-vector space W = V ~D V’ is
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endowed with a symplectic form whose isometry group we denote by Sp. Then G
and G’ are mutual centralizers inside Sp.

Since n = n, is of rank  rG and its Z-spectrum is concentrated on the P-orbit
(9, (Lemma 2.5), the main result of [8] implies that 7r must occur in Howe’s
duality correspondence with G’. Let S"p be the metaplectic two fold cover of Sp
and let co be the Weil representation of Sp corresponding to our chosen
character 03C8. Let y~ be the space of smooth vectors for co. Since 03C0 is a

representation of G the covering 9’p -+ Sp essentially must be split over G. Thus
cv restricts to a representation of G. Let HOO be the space of smooth vectors for 03C0.

Since 7r occurs in the duality correspondence H°° may be realized as a quotient
of y~:

where J is a certain G-invariant subspace of OJIOO.
Let 03BB and the group R be as in Lemma 3.2. By (8) we may lift 03BB to a linear

functional on y~. Thus we are finally reduced to the following:

LEMMA 4.1. Let 03BB be any linear functional on y~ satisfying the condition

for all z ~ Z, ~ ~ y~. Then 03BB is invariant under R.
Proof. We review a mixed model realization of w (see for example [7, pp. 246-

247]). Using the form ( . ) we may identify V with its own linear dual. This leads
to the isomorphism W £r HomD(V, V’). Recall the decomposition
V = X + Yo + Y The subspace Wo = HomD(Yo, V’) (consisting of linear maps
which vanishes on X + Y) is non-degenerate with respect to the symplectic form
on W So we may define H(Wo), the Heisenberg group attached to the symplectic
space Wo, as in [3]. Let po be the unique irreducible unitary representation of
H(Wo) with central character 03C8. Let F be the space of smooth vectors for po. Set
X = HomD(X, V’). Then cv may be realized on

the space of locally constant compactly supported functions on X with values in
F. We describe the action of (part of) G in this model. Let Mo be the subgroup of
P preserving the decomposition V = X + V0 + Y and leaving V0 point-wise
fixed. Then M0 ~ GLn(X). If g E Mo is of determinant (or reduced norm) one
then for ~ ~ y~
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Next define the so called orbit parameter map

by the identity

We have

Finally, one may construct a cross section

in analogy with ([2], formula (16)). This enables us to write

as set. Then if T E HomD(V0, X) we have

We can now come to the proof of our lemma. We first claim that (9) and (11)
implies must factor through evaluation on the subset

For any open compact subgroup L ~ Z let

Then (9) implies 03BB(~L) = 03BB(~). By (11) we have

Hence for L large q5L has support in a small neighborhood of X1; and if ~L(u) ~ 0
then ~L(u) = ~(u). But 0 is locally constant and compactly supported. Hence its
value in a small enough neighborhood of X, is determined by its restriction to
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X1. Hence for L large enough 0’ is determined by the restriction of 0 to X1. This
proves our claim.

Now we have R ~ M0 · N. Using (10), (11) and (12) above one immediately
verifies the following relation: we have

for all ~ ~ y~, r E R. Hence 03BB(03C9(r)(~)) = 03BB(~) for all 0 and r E R. This proves our
lemma and concludes the paper.
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