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1. Introduction

The notion of singular automorphic forms on the Siegel upper half space was
introduced by Maass [10] in the holomorphic case, and by Howe [4] in the
adelic setting. As the word “singular” indicates, such forms are very degenerate.
For example, their matrix coefficients tend to zero very slowly at infinity, and in
particular can not be tempered in the sense of Harish-Chandra. It has been
expected for several years [12] that singular forms can not be cuspidal. The
purpose of this paper is to confirm this expectation.

Let k be a global field of characteristic not equal to 2 and let (D, ¢) be a k-
algebra with involution of one of the following three types:

k case 1
D ={a quadratic extension F/k case 2 (1)
a quaternion algebra with center k case 3

and
id case 1
o = { the Galois involution of F/k case 2 2
the standard involution case 3

Let V be a finite dimensional vector space over D endowed with a non-
degenerate sesqui-linear form ( , ) which is either o-hermitian or o-skew
hermitian. We let # = 1 or —1 to indicate the two possibilities. Let G be the
isometry group of the form ( , ).

Let X and Y be maximal totally isotropic subspaces of ¥ which are non-
degenerately paired by ( , ). Let ¥, be the orthogonal complement of X + Y. Let
P = Py be the maximal parabolic subgroup of G preserving X. The unipotent
radical N of P is at most two-step nilpotent. Let Z = N be the subgroup
consisting of elements which act as identity on V;. Then both Z and Z\N are
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abelian. The latter can be identified with Homp(¥,, X) and we have the short
exact sequence

Z - N - Hom(V,, X)

Let ' = —#. The group Z is isomorphic to the vector space B(Y,n’) of all
sesquilinear forms on Y having the opposite symmetry as ( , ) under inter-
change of the two variables. The dual space of B(Y, 1’) is isomorphic to B(X, #’) in
a natural way. Let A be the ring of adeles of k. We fix a non-trivial character y of
A/k. The Pontrjagin dual of Z(A)/Z(k) is then identified with B(X,#’). For
Te B(X,n') we let Y1 be the corresponding character of Z(A)/Z(k).

For a smooth function ¢ in L*(G(k)\G(A)) and Te B(X, ') we let ¢, be the
Fourier coefficient along Z defined by

orlg) = J P(zgWr()dz (g€ G(A)) 3)
Z(k)\Z(A)

MAIN THEOREM. Let n = L3G(k)\G(A) be a cusp form. Then for any smooth
function @ in the space of © there exists a T € B(X, n') of maximal rank, such that

or #0.

For an application of this result to the construction of automorphic L-
functions see [11].

A comparison with the situation for GL(n) is interesting. It is a well known
fact (due independently to Piatetski-Shapiro and Shalika) that cusp forms on
GL(n) are generic. While this is certainly not valid for any groups other than
GL(n), our result here provides the best possible analog of the result of Piatetski-
Shapiro and Shalika for type I classical groups.

Jacquet and Shalika [5] have given the best possible estimate of matrix
coefficients for generic unitary representations of GL(n). Because of the fact that
cusp forms are generic, their estimate is valid for cusp forms on GL(n). Likewise,
when coupled with the local results of Howe [3], the above result will lead to
non-trivial estimates of matrix coefficients of cusp forms for other classical
groups.

A proof of the above theorem in the symplectic group case was briefly
indicated in [9, Lemma 1.1]. It was insufficient for the general case.

2. The theory of singular forms
For T e B(X, ') we define its rank, denoted rank(T), as follows. First suppose D

is a quaternion algebra. We let rank(T) be twice the dimension over D of a
maximal subspace of X which is non-degenerate with respect to T.
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In any other case rank(T) is defined to be the maximal dimension over D of
subspaces of X which are non-degenerate with respect to T.

Next we define an integer rg as follows. (i). If D =k, n = 1 then r is the
largest even integer not greater than dim, X. (ii). If D is a quaternion algebra
r¢ = 2-dimp(X). (iii). In all other cases r; = dimp(X).

DEFINITION 2.1. Let n be an irreducible automorphic representation of G(A)
and r an integer.

(a) We say that n has rank r if (i) For any smooth ¢ e and any T e B(X, )
with rank(T) > r we have ¢ = 0. (ii) There exists ¢ e and T with rank(T) = r
such that ¢, # 0.

(b) We say = is singular or of low rank if it has rank <rg.

The notion of rank has its local analog [3], [8], [14]. Let v be a place of k.
First assume D is a quaternion algebra which splits at v. Then G(k,) is
isomorphic to an orthogonal or symplectic group. We describe this isomorph-
ism (see [13]). There is a decomposition

V®k, =V, @V, @)

where V, and V', are vector spaces over k, of dimension 2 - dim, V. There will be a
non-degenerate bilinear form ( , ), on ¥, which is symmetric or skew-symmetric
according as n = —1 or 1, and G(k,) is isomorphic to the isometry group of
(,), Let X,, Y,, V,, respectively be the projections of X(k, (=X ®.k,), Y(k,)
and Vy(k,) to V,. Set D, = k,; n, = —n' = n in this case. Then Z(k,) ~ B(Y,,n.),
the vector space of bilinear forms on Y, which are symmetric or skew-symmetric
according as 7, = 1 or — 1. The linear dual of B(Y,,#,) is B(X,, ;). Note that
under the inclusion B(X, n') < B(X,, ,), the rank of an element Te B(X,n') as a
member of B(X, n’) is the same as the rank of T as a member of B(X,, n,).

Next assume D = F is a quadratic extension of k and v is a place at which the
extension splits. Then G(k,) is isomorphic to a general linear group. We have a
decomposition as in (4) with V, of dimension over k, equal to the dimension of V
over F. Define X, Y, and V,, as before. The group Z(k,) is now isomorphic to
the vector space of all k,-linear maps from Y, to X,. To have a consistent
notation we denote this space by B(Y,, n,). Its linear dual is the vector space of all
linear maps from X, to Y, and is denoted B(X,, ,). The rank of an element in it
is just its rank as a linear transformation.

In the remaining cases we let V, = V(k,), X, = X(k,) etc. Let (, ), be the
obvious extension of ( , ) to ¥, and n, = n'. Then B(Y,,n,) and B(X,, ;) have
obvious meaning.

Now our basic character ¥ is a product of local characters: Y = ITy,. Using
the local character ¥, we identify the Pontrjagin dual of Z(k,) with B(X,,7.).

DEFINITION 2.2. Let r be an integer. The representation «, of G(k,) is of Z(k,)-
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rank < r if whenever feL!(Z(k,) is such that its Fourier transform f a
continuous function on B(X,,#,), vanishes on the subvariety of forms of
rank < r, we have n,(f) = 0. It is of rank r if it has rank < r but not strictly less
than r.

Let now X, and Y/, be maximal totally isotropic subspaces of V, containing X,
and Y, respectively, such that the form ( , ), is non-degenerate on X, + Y. (In
the case D = F is a quadratic extension of k splitting at v we just require X, and
Y, to have trivial intersection. In the following similar remarks apply in many
places but we will not mention it again). Let Z/ be the (unipotent abelian)
subgroup of G(k,) leaving X, and the orthogonal complement of X + Y,
pointwise fixed. Then as with Z(k,) we have Z, ~ B(Y, n,) and the Pontrjagin
dual of Z, is identified with B(X,,#,). Thus we can define the Z-rank of
representations of G(k,) as before.

LEMMA 2.3. Let n, be a unitary representation of G(k,) of Z(k,)-rankr <rg.
Then m, also has Z,-rank r.

The proof is exactly the same as that of [3, Lemma 2.9] so we omit it.

LEMMA 2.4. Let 1 = ®mn, be an irreducible automorphic representation of G(A)
occurring discretely in L(G(k)\G(A)). Suppose © has rankr < rg. Let v be a place
of k. Then m, is a representation of Z,-rank r.

Proof. Arguing exactly as in the proof of [4, Lemma 2.4] we see that x, has
Z(k,)-rank equal to r. But then the previous lemma says n, also has Z,-rank r
since r < rg. Q.E.D.

The restriction of n, to Z(k,) is determined by a projection valued measure y,
on the Pontrjagin dual of Z(k,) (see [3] or [8]), namely on B(X,, 11;). Now P(k,)
normalizes Z(k,) so it acts on its dual B(X,, #,). For Te B(X,, ;) let 0% denote
its orbit under P(k,). This orbit is of course just the set of sesqui-linear forms on
X, which are equivalent to T.

LEMMA 2.5. Let m, v and r be as in Lemma 2.4. Choose Te B(X,n) so that
rank(T) = r and there is a smooth function ¢ in the space of © such that ¢ # 0.
Then the representation n, has Z(k,)-spectrum p, supported on the closure of 0.

Proof. The representation =, is irreducible and has rank r < rg. So a priori its
Z(k,)-spectrum is supported on (the closure of) a single orbit by [3, Theorem
2.10] and [8, Theorem 3.1]. From the proof of [4, Lemma 2.4] we see that this
must be the orbit of T. Q.E.D.

In fact, one can use the Hasse principle to further conclude that the set of rank
r forms T € B(X, n’) for which there exist a ¢ € © with ¢4 # 0 must belong to the
same P(k)-orbit. See [4, Theorem 2.3].
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3. Proof of the main theorem

Let n be an irreducible automorphic representation of G(A) occurring discretely
in L*(G(k)\G(A)). Assume that = is of rank r < r. Let H® be the space of smooth
functions belonging to n. Fix a TeB(X, ') of rank r such that there exists
e HY with ¢ #0.

PROPOSITION 3.1. Let Rad(T) < X be the radical of the form T. Let Q be the
maximal parabolic subgroup of G preserving Rad(T) and let R denote the
unipotent radical of Q. Then the linear functional ¢ — @1(1) on HY is invariant
under R(A).

The following result, which we state in the non-archimedean case only, is in
fact valid for any place v. Let y be the character of Z(k,) corresponding to T.

LEMMA 3.2. Let v be a finite place. Let HY be the space of smooth vectors for n,,.
If 1 is any linear functional on HY which satisfies the condition

Am,(2)¢) = Y 1(2)- M) ®)
for all ze Z(k,) and ¢ € HY, then A is invariant under R(k,).

The proof of this lemma will be given in the next section. We now use it to
prove our proposition.

First observe that R = P and hence R normalizes Z. In fact it is not difficult to
see that

Yr(rzrY) = Yr(z) for all ze Z(A), re R(A) (6)

Let y e R(k). We have for pe H?
or(y) = f Pz 1(z)dz
Z(k\Z(A)

= f @@y~ 2y r(2)dz
Z00\Z(A)
= or(1) 7

by an obvious change of variable and (6).

Choose a finite place v of k. By Lemma 3.2 the functional ¢ — @,(1) is
invariant under R(k,). By (7) it is invariant under R(k). Using strong approxi-
mation for unipotent groups [6] we get R(A) = R(k)- R(k,). Hence the functional
is invariant under R(A). This concludes the proof of Proposition 3.1.

Now let 7 be a cusp form of rank r < r; and choose T as in Proposition 3.1.
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We normalize the Haar measure so that

f dr =1
R(K)\R(A)

Then Proposition 3.1 implies

or(l) = f @r(r)dr
R(K)\R(A)

Substituting (3) into the above formula gives

or(1) = f J Y r(2)e(zr)dzdr
R(\R(A) J Z(k)\Z(A)

Making the change of variable z — rzr ~! in the inner integral and using (6) we
obtain

or(l) = J J Yr(2)p(rz)dzdr
R(Kk\RA) JZ()\Z(A)

= j Vr(2) J @(rz)drdz
Z(k\Z(A) R(K)\R(A)

The inner integral in the last formula is zero since = is cuspidal. Thus ¢(1) =0
for all ¢ € H? and hence ¢ = 0 for all ¢. This contradicts the choice of T. The
contradiction comes from our assumption of having a singular cusp form n. This
proves the Main Theorem of Section 1.

4. A technical lemma

The purpose of this section is to prove Lemma 3.2. Everything in this section will
be local so we drop the subscript v in our notations. Thus k is a non-
archimedean local field of characteristic not equal to 2, V = V,, X = X, and so
on.

Let T be as in Lemma 3.2 but considered as a form on X = X, now. Let
Rad(T) be the radical of the form T and set V' = X/Rad(T). Then T defines a
nondegenerate form ( , ) on ¥’ which is of the opposite symmetry to the form
( , ) that we have on V. Let G’ be the group of isometries of ( , ). Then (G, G')
form what is called a reductive dual pair [1]. The k-vector space W = V ®, V' is
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endowed with a symplectic form whose isometry group we denote by Sp. Then G
and G’ are mutual centralizers inside Sp.

Since n = m, is of rank <rg and its Z-spectrum is concentrated on the P-orbit
Or (Lemma 2.5), the main result of [8] implies that = must occur in Howe’s
duality correspondence with G'. Let Sp be the metaplectic two fold cover of Sp
and let w be the Weil representation of Sp corresponding to our chosen
character . Let #® be the space of smooth vectors for w. Since n is a
representation of G the covering Sp — Sp essentially must be split over G. Thus
o restricts to a representation of G. Let H™ be the space of smooth vectors for .
Since 7 occurs in the duality correspondence H® may be realized as a quotient
of H*:

H® ~@~/] ®)

where J is a certain G-invariant subspace of #®.
Let A and the group R be as in Lemma 3.2. By (8) we may lift A to a linear
functional on #®. Thus we are finally reduced to the following:

LEMMA 4.1. Let A be any linear functional on %* satisfying the condition

N(2)$) = Y1(2)- A(P) ©®

forall zeZ, pe¥*. Then A is invariant under R.

Proof. We review a mixed model realization of w (see for example [ 7, pp. 246—
247]). Using the form ( . ) we may identify V with its own linear dual. This leads
to the isomorphism W ~ Homp(V,V’). Recall the decomposition
V =X + V, + Y. The subspace W, = Homp(V,, V') (consisting of linear maps
which vanishes on X + Y) is non-degenerate with respect to the symplectic form
on W. So we may define H(W,), the Heisenberg group attached to the symplectic
space W,, as in [3]. Let p, be the unique irreducible unitary representation of
H(W,) with central character . Let % be the space of smooth vectors for p,. Set
X = Homp(X, V’). Then @ may be realized on

H* =CrX, F),

the space of locally constant compactly supported functions on X with values in
Z . We describe the action of (part of) G in this model. Let M, be the subgroup of
P preserving the decomposition V =X + V, + Y and leaving V, point-wise
fixed. Then M, ~ GL(X). If ge M,, is of determinant (or reduced norm) one
then for ¢ e

(g)PNw) = ¢(u-g) (10)
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Next define the so called orbit parameter map
X - B(X, n), ur—> T(u)
by the identity
TW)(xq, x5) = (u(x,), u(x,)) (x1, X, €X)
We have
2 PNw) = Y1 (2) du) (z€Z) (11)
Finally, one may construct a cross section
Homy(V,, X) > N
in analogy with ([2], formula (16)). This enables us to write
N ~Homp(V,, X)® Z
as set. Then if Te Homp(V,, X) we have
(T)P)u) = polu° TY(w) (12

We can now come to the proof of our lemma. We first claim that (9) and (11)
implies 4 must factor through evaluation on the subset

X, = Hom,(X/Rad(T), V') < X

For any open compact subgroup L < Z let

¢L

ST j VD o))z

Then (9) implies A(¢~) = A(¢). By (11) we have

¢t =

T j V@) Y@z $lw)

Hence for L large ¢ has support in a small neighborhood of X; and if ¢Z(u) # 0
then ¢*(u) = ¢(u). But ¢ is locally constant and compactly supported. Hence its
value in a small enough neighborhood of X, is determined by its restriction to
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X,. Hence for L large enough ¢* is determined by the restriction of ¢ to X,. This

proves our claim.
Now we have R = M- N. Using (10), (11) and (12) above one immediately
verifies the following relation: we have

o(r)(9)x, = dlx,

for all p e ¥, re R. Hence Aw(r)¢)) = A(¢p) for all ¢ and re R. This proves our
lemma and concludes the paper.
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