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1. Introduction

For an integer x &#x3E; 1, we denote by P(x) the greatest prime factor of x and we
write 03C9(x) for the number of distinct prime divisors of x. Further, we put
P(l) = 1 and a)(1) = 0. We consider the equation

in positive integers, b, d, k, l, m, y subject to P(b)  k, gcd(m, d) = 1, k &#x3E; 2, l  2.
There is no loss of generality in assuming that 1 is a prime number. We shall
follow this notation without reference. Erdôs conjectured that equation (1.1)
with b = 1 implies that k is bounded by an absolute constant and later he
conjectured that even k  3. The second author [20] made some conjectures for
the general case. We shall now mention some special cases of (1.1) which have
been treated in the literature. For more elaborate introductions, see [14] and

[20].
If P(y)  k in (1.1), then (1.1) asks to determine all positive integers d, k, m with

gcd(m, d) = 1 and k &#x3E; 2 such that

If d = 1, k = m - 1, then Bertrand’s Postulate, proved by Chebyshev, states that
there are no solutions. Sylvester [18] generalised this result to all cases with
m  d + k and Langevin [9] to m &#x3E; k. The authors [16] recently proved that
the only solution of (1.2) with d &#x3E; 1 is given by m = 2, d = 7, k = 3. If d = 1,
m  k, then (1.2) is valid if and only if 03C0(k) = 03C0(m + k - 1) which is equivalent to
a well-known problem on differences between consecutive primes, see e.g. [8].
From now on we assume that P(y) &#x3E; k.

1 Research supported in part by the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.) and by Grant # D.M.S.-8610730(1).
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If b = d = 1, then (1.1) reduces to the problem whether the product of k
consecutive positive integers can be a perfect power. Erdôs [ 1] and Rigge [ 11],
independently, proved that such a product can never be a square. Erdôs and

Selfridge [4] settled the problem completely by showing that there are no
solutions at all.

Another case which has received much attention is d = 1, b = k !. Putting
n = m + k - 1, the problem becomes to find all solutions of

in positive integers k, l, n, y subject to k  2, n  2k, y  2, 1 a 2. If k = 1 = 2,
then (1.3) is equivalent to the Pell equation x2 - 8y2 - 1 with x = 2n - 1, and it
is easy to characterise the infinitely many solutions. The only other solution
which is known is n = 50, k = 3, y = 140, 1 = 2. Erdôs [1], [2] has proved that
there are no solutions with k  4 or 1 = 3. It follows from a result of Tijdeman
[19] that there is an effectively computable upper bound for the solutions of ( 1.3)
with k = 2, l  3 and k = 3, l  2.

Marszalek [10] considered equation (1.1) with b = 1, d &#x3E; 1. He showed that k

is bounded if d is fixed. More precisely, he proved that, for any solution of (1.1)
with b = 1, d &#x3E; 1, we have

Actually he gave explicit values for the absolute constants Cl-C4.
Shorey [14] improved on Marszalek’s result. In particular Shorey [14]

applied the theory of linear forms in logarithms to show that (1.1) with 1  3
implies that k is bounded by an effectively computable number depending only
on P(d).
The results in this paper considerably improve on the results of Marszalek

and Shorey. As an immediate consequence of Corollary 3 and (2.7), we obtain an
elementary proof of the above mentioned result of Shorey. Further, for a fixed 1,
we show that k is bounded if 03C9(d) is fixed, in particular if d is a prime number, see
Corollary 3. Moreover, our results imply that for any e &#x3E; 0

see Corollary 4. For k larger than some constant depending on cv(d), we even
have
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see Corollary 4. In Theorem 3 we give bounds for the largest term m + (k - 1)d
of the arithmetical progression. Further, we notice that k is also bounded by a
number depending only on m and 03C9(d).

2. Statements of results

If we refer to equation (1.1), we tacitly assume that the variables b, d, k, 1, m, y are

positive integers satisfying P(b)  k, gcd(m, d) = 1, k &#x3E; 2, 1 &#x3E; 1, y &#x3E; 1 and

P(y) &#x3E; k. We further assume that 1 is prime. By C5, C6, ... , C25 we denote

positive, effectively computable numbers. Let dl be the maximal divisor of d
such that all the prime factors of dl are ~ 1(mod 1) and we set

Notice that d  di. On the other hand, it follows from Theorem 3, formula (2.19)
that

where C5  1 and C6 are effectively computable absolute constants. This is an
immediate consequence of (2.19). We write

for k &#x3E; ee. We start with the following result.

THEOREM 1. (a) There exists an effectively computable absolute constant C7
such that equation (1.1) with 1 = 2 implies that

(b) Let e &#x3E; 0 and 1 &#x3E; 3. There exist effectively computable numbers Cs and Cg
depending only on e such that for every divisor d’ of d satisfying

equation (1.1) with k  C9 implies that
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We may apply Theorem 1(b) with d’ - 1 to derive that

for k  Cg. We obtain the following sharpening of estimate (2.5).

THEOREM 2. There exist effectively computable absolute constants Clo and
C’o such that equation (1.1) with k  C’o implies that

By (2.6) and 9 a d2, we see that (1.1) implies that

This is an improvement of a result of Shorey [ 14] where (2.7) reads as d 1 &#x3E; 1 for

l  3 and k exceeding an effectively computable absolute constant.
Suppose that k exceeds a sufficiently large effectively computable number

depending only on e. Then, we see that (2.4) with d’ = d is satisfied for l  3
provided that 0  8  1/6 which involves no loss of generality in the next result.
Furthermore, by (2.1) and (2.7), we observe that

Therefore, the following result follows immediately from Theorem 1(b).

COROLLARY 1. Let e &#x3E; 0 and 1  3. There exists an effectively computable
number C11 depending only on 8 such that equation (1.1) with k  C11 implies that

and

So far, we have applied Theorem 1(b) for d’ = 1, d’ = d and d’ = di. It is useful
to consider some other values of d’. For example, d has a prime power divisor
d’  d1/03C9(d1)1 and, by (2.1) and (2.7),

Therefore, Theorem 1(b) and (2.7) admit the following consequence.
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COROLLARY 2. Let e &#x3E; 0 and

There exists an effectively computable number C12 depending only on e such that
equation (1.1) with k  CI2 implies that

and

The main aim of this paper is to prove the next two corollaries. Corollary 3 is
an immediate consequence of Theorem 1(a) and Corollary 1. Corollary 4 follows
from Theorem 1(a), Theorem 2 and Corollaries 1, 2.

COROLLARY 3. Suppose that equation (1.1) is satisfied. If 1  7, then k is

bounded by an effectively computable number depending only on 1 and w(d1). If
1 E {2, 3, 51 then k is bounded by an effectively computable number depending only
on co(d).

COROLLARY 4. Suppose that equation (1.1) is satisfied. Then
(a) there exist an effectively computable absolute constant C13 and an effectively
computable number C14 depending only on 1 such that

and

(b) Let e &#x3E; 0 and 1  7. There exists an effectively computable number C1 s
depending only on - such that for k  C15 and

we have
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Observe that (2.14) follows immediately from (2.3), (2.8), (2.9), (2.1) and

where C16 is an effectively computable absolute constant, since 03C9(d1)  w(d) - 1
if l = 2. For deriving (2.13), we refer to (2.7) to assume that

l  (log log k)/log log log k and then, it is a consequence of (2.14), Corollary 1 and
(2.17). For Corollary 4(b), we refer to Corollary 2 to suppose that 1 K 4w(dl) + 2
which, by (2.8), contradicts (2.15).

The results stated up to now do not involve m. The following result implies
that if k exceeds some absolute constant, then m is bounded from above by
d2k(logk)5 if 1 = 2 and C18k dl/(l-2) if 1  3.

THEOREM 3. There exist effectively computable absolute constants C17 and
C18 such that equation (1.1) with k  C17 implies that

and

Thus, since 03B8  d2, we see from (2.19) that (2.1) is valid. If k is sufficiently large
and co(d) is fixed, we refer to Corollary 3 to assume (2.10). Then, we combine
03B8  1, (2.19) and (2.11) to derive the following result.

COROLLARY 5. There exist effectively computable numbers C19 and C20
depending only on cv(d) such that equation (1.1) with k  C19 implies that

Observe that (2.19) and 03B8  1 imply that ll/(l-2)  2C18d2/(l-2) and con-
sequently, we derive from (2.1) the following estimate which sharpens (2.7) if
l &#x3E; k2+El for any el &#x3E; 0.

COROLLARY 6. There exist effectively computable absolute constants C21 and
C22 such that equation (1.1) with k  C21 implies that

Shorey [ 15] showed that there exist effectively computable absolute constants
C23 and C24 such that equation (1.1) with k  C23 implies that



313

Consequently, we can find an effectively computable absolute constant C2 5 such
that equation (1.1) with 1  C25 implies that k is bounded by an effectively
computable number depending only on m. This assertion for equation (1.1) with
1  C25 remains unproved. We may combine this result with Corollary 3 to
derive that equation (1.1) implies that k is bounded by an effectively computable
number depending only on m and co(d).
The proofs of our results are based on the following ideas. If (1.1) holds, we

can write

where each prime factor of aj is less than k (cf. (3.2), (3.3), (4.1)). Hence

In the cases 1 = 3 and 1 = 5, the proofs depend on a result of Evertse [6] on the
number of solutions of the diophantine equation axl - by’ = c in positive
integers x, y. In all other cases the proofs are elementary. If ai = aj for some i =1= j,
then

Put S = {ao, al, ... , ak-1}. If the number 181 of elements of S is relatively small,
then we combine such inequalities with congruence considerations and apply
the Box Principle. If 181 is larger, we consider equal products of two or even four
factors aj (cf. (4.22), (4.51), (4.54)).

In §5, we shall apply p-adic theory of linear forms in logarithms to sharpen
Corollary 4(b) whenever equation (1.1) with b = 1 is satisfied. It follows from

Theorem 4 that if b = 1 in Corollary 4(b) then (2.16) can be replaced by the
stronger inequality

3. The case 1 = 2

We assume that b, d, k, m and y are positive integers satisfying
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P(b)  k, gcd(m, d) = 1, k &#x3E; 2 and P(y) &#x3E; k. In the sequel cl, c2, ..., C7 denote
effectively computable positive absolute constants. In §3 the symbols d, and d2
have another meaning than in the rest of the paper.

For 0  i  k, we see from (3.1) that

where ai is square-free, xi &#x3E; 0 and P(Ai)  k. Further, for 0  i  k, we can also
write

where

Note that

Put

and

Since the left hand side of (3.1) is divisible by a prime &#x3E; k, we have, by (3.3),

First, we sharpen (3.8) in the next lemma.

LEMMA 1. Equation (3.1) implies that there is some effectively computable
constant c1 &#x3E; 0 such that

Proof. We may assume k  C2 for some sufficiently large c2 and
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By (3.8), we have

We denote by T the set of all y with k/4  03BC  k such that X03BC = 1 and we write
Tl for the set of all y with k/4  03BC  k such that 03BC ~ T. By a fundamental
argument of Erdôs (cf. [5] Lemma 2.1) and (3.11), we see that

Therefore

Further, notice that XI. &#x3E; 1 for every 03BC ~ T1 and hence, by (3.4) and (3.1), the
numbers X Il with p E Tl satisfy X, &#x3E; k and are pairwise distinct. Further, we
may suppose that X. is a prime number for every pe Ti, since otherwise
m + (k - 1)d  X203BC &#x3E; k4 for some y. Now, by (3.12), (3.3) and prime number
theory, we see that there exists a subset T2 of Tl such that

and

hence

For po E T2, we denote by v(AJlo) the number of distinct li E T2 satisfying
A03BC = A.0. First, we show that

Let 03BCo ~ T2 and suppose that

We see from (3.3) and (3.5) that there exist Z := 2w(d) + 2 pairwise distinct elements
Jll, ... , Jlz in T2 distinct from 03BCo such that for z = 1, 2, ... , Z, we have A03BCo = A03BCz
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and

where

for Zl =1= Z2 and 0  z1  Z, 0  Z2  Z. Now, we apply the Box Principle to
find zl, Z2 with 1  z,  z2  Z and positive divisors dl, d2 of d with d = dld2
and gcd(d1, d2) = 1 or 2 such that

Consequently

In particular,

We see from (3.3) that

which, together with (3.17), implies that

On the other hand, we derive from (3.3) and (3.15) that

Finally, we combine (3.18) and (3.19) to arrive at a contradiction. This proves
(3.16).
We denote by T3 the set of all p e T2 such that
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and we write T4 for the complement of T3 in T2. By (3.13) we observe that

On the other hand, we derive from (3.16) that

which, together with (3.21), implies that

We denote by S2 the set of all A03BC E S1 with J1 E T3 and we write S3 for the set of all
A m E S2 such that v(A03BC)  2. We suppose that

Then, we derive from (3.22) and (3.16) that k/32  |T3|  1821 + k/64. Thus
|S2|  k/64 which, together with (3.3) and (3.14), implies (3.9).
We may therefore assume that

Then we apply the Box Principle as earlier to conclude that there exist positive
divisors d,, d2 of d satisfying d = d1d2, gcd(d,, d2) = 1 or 2 and at least

distinct pairs (li, v) E T23 such that AJL = Av and

where r03BC,03BD and su,v are positive integers satisfying

in view of (3.20). By (2.17) and (3.10), we have
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We again utilise the Box Principle to derive that there exist distinct pairs (03BC1,03BD1)
and (,u2, v2) such that

We see from (3.23) and (3.24) that X03BC1 = X03BC2 and X,,1 = X’2 which imply that
J.1i = J.12 and Vi = V2. This is a contradiction. D

The following lemmas show that under suitable conditions inequality (3.9)
cannot hold.

LEMMA 2. Let S be given by (3.6). Suppose that ai, aj, ag and ah are elements of S
satisfying

and

where r1 &#x3E; 0, s 1 &#x3E; 0, r2 =1= 0 and S2 =1= 0 are integers and d1, d2 are positive divisors
of d satisfying

Then

Proof. There is no loss of generality in assuming that xi &#x3E; xj and x, &#x3E; xh. By
(3.26), we obtain

By (3.28) and (3.2), we derive that
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is divisible by d. By reading (3.29) modulo dl and d2 and using (3.27), we see that

which, by (3.26) and (3.27), implies that

and

If the right side of (3.31) vanishes, then it follows from the fact that ai and ag are
square-free that ai = ag, r2 = s2. If the right side of (3.32) vanishes, then ai = ag,
r1 = s1. Otherwise

hence

Without loss of generality we may assume that ai(xi - xj)2 is the maximal one.
Then we have

and, by (3.2) and (3.25),

Thus, by (3.34), (3.35), (3.25) and (3.2), dd2m  (aix2 - ajxJ)2  k2d2. This

implies

From (3.32) and (3.33) we derive

Since, by (3.25),
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and

we obtain

Hence dd1  16kd. This implies that d1  16k. Similarly, by considering (3.31)
and (3.33), we obtain d2  16k. We combine these estimates with (3.36) to
conclude that m + (k - I)d  16k3 + 256k3 = 272k3. D

LEMMA 3. Let e &#x3E; 0 and S be given by (3.6). There exists an effectively
computable number C26 &#x3E; 0 depending only on e such that equation (3.1) with
k  C 2 6,

and

implies that

Proof. Let 0  8  1. We may assume that k exceeds a sufficiently large
effectively computable number depending only on e. Observe that for every pair
(i,j) with 0  j  i  k and xi ~ xj, we have

gcd(xi + xj, Xi - xj, d) = 1 or 2, (3.40)
since gcd(m, d) = 1. By (3.38) we conclude that the set U of pairs (i,j) with
0  j  i  k and ai = aj satisfies

First, we prove the lemma with (3.37) replaced by
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We apply the Box Principle to find a subset U of U satisfying

and positive divisors dl, d2 of d with (3.27) such that

where ri,j, si,j are positive integers. Take an element (i, j) E U1. We argue as in the
proof of (3.16), but using Lemma 1 in place of (3.15), to conclude that the number
of y with 0  03BC  k satisfying a03BC = ai is at most 203C9(d)+2. Now, in view of (3.41),
we can find a pair (g, h) ~ U1 such that ai ~ ag. Thus all the assumptions of
Lemma 2 are satisfied and hence (3.39) is valid.

Therefore, we may assume that

which, together with (2.17), implies that

where C27 &#x3E; 0 is an effectively computable number depending only on 8. Put
03B51 = e/8. Then, by (3.37) and (3.38),

We again apply the Box Principle to secure two distinct pairs (i, j) and (g, h) in U
and positive divisors d1, d2 of d satisfying (3.25), (3.26) and (3.27) such that r2 &#x3E; 0

and s2 &#x3E; 0. Now, by Lemma 2, we may suppose that either

or

We give a proof for the first case and the proof for the second case is similar.
Suppose ai = ag, rl = sl. We see from (3.25) and (3.26) that r2 =1= s2. Thus, by
(3.25) and (3.26),
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Further, observe that (3.30), (3.31) and (3.32) are valid. Then, since r,  k, S2  k,
r2 =1= S2, ai = ag and gcd(m, d) = 1, we see that gcd(ai, d) = 1 and

Furthermore, by (3.43) and (3.44), the right sides of (3.31) and (3.32) are unequal
and both divisible by dd2. Therefore, by subtracting them and applying (3.43), we
have dd2 | 16ai(xixj - xgxh) ~ 0. Hence

On the other hand, we see by squaring the equality in (3.44) and applying (3.43)
and (3.2) that

By (3.46) and (3.47), we derive

and therefore, by (3.45) and (3.48),

which, together with (3.42), implies that k is bounded by an effectively
computable number depending only on 8. D

LEMMA 4. Let S be given by (3.6). There exist effectively computable constants

C4 &#x3E; 0 and c 5 &#x3E; 0 such that equation (3.1) with

implies that k  es.
Proof. Let 8 be an absolute constant with 0  03B5  1 which we choose later.

We may assume that k exceeds a sufficiently large effectively computable
number depending only on B. Further, we suppose that
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Then, since ao, ..., ak-1 are square-free, we derive that

We put gq = ordq(ao ··· ak-1), hq = ordq(k!) for q = 2, 3. Then

Also,

Therefore

Further, by (3.2) and the fact that P(ai)  k and ai is square free for o  i  k, we
have

In fact

We have

(see, for example, [7]). Consequently

Now we combine (3.50), (3.52) and (3.49) to derive that
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for k sufficiently large. Put E = 1 3log(31/42 - 1/3). Then (3.53) yields a

contradiction. 0

Proof of Theorem 1(a). We may assume that k exceeds a sufficiently large
effectively computable absolute constant. Then, we derive from Lemma 4 that

Assume that

Then we apply Lemma 3 with e = c4 and Lemma 1 to arrive at a contradiction.
Il

Proof of case 1 = 2 of Theorem 3. We assume that (3.1) holds and

and that k exceeds a sufficiently large effectively computable absolute constant
C6. We denote by S’ the set of all a03BC ~ S such that a03BC = a,, for some a03BD ~ S with
v ~ y. Then, we observe from (3.2) and gcd(m, d) = 1 that

For ail! E S’ and a42c- S’ with 03BC1 =1= ,u2, we first suppose that

Then we see from (3.2), (3.56) and gcd(xJll’ d) = 1 that

On the other hand, we derive from (3.2) and (3.55) that

We combine (3.58) and (3.57) to derive that m  k2 which, together with (3.54),
implies that d  kl/2. Now we apply Lemma 1 to arrive at a contradiction. Thus,
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we may suppose that

For real numbers a, 03B2 with 0  a  03B2 we denote by T[03B1,03B2] the set of aIl J1 with
0 K p  k such that a, E S’ and k03B1  03B103BC  kP. We claim that

for every positive integer r with

We suppose that (3.60) does not hold for such an r and denote the corresponding
set by T. Thus

Let p be a prime number satisfying

Note that such a prime exists. By (3.62) and (3.63) there exists a subset T( p) of T
satisfying

and

Suppose that

Then, we derive from (3.2) that

By J1 E T, (3.64), (3.63) and (3.54), we have
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Now (3.67) and (3.68) yield a contradiction. Therefore (3.66) is never valid.

Consequently, by (3.65), there are at least 2k’ -2 -’distinct au with J1 E T(p). This is

impossible, since 03B103BC  kl -2 for every such J1. Thus (3.62) is false and we have
proved (3.60) for every r satisfying (3.61).

Let ro be the largest integer r such that (3.61) holds. Put 5 = 2-r°. Then

Let 03BC ~ T[1 - 03B4,1]. Then 03B103BC = av for some v =4 J1. Now, by (3.54) and (3.69),

a contradiction. Consequently

It further follows from the definition of ro that

Hence, by (3.60),

Combining (3.70) and (3.71), we obtain

if c6 is sufficiently large. Now, we apply Lemma 4 to conclude that k  C7.
Hence, we conclude (2.18) for sufficiently large C17. D

4. The case 1 a 3

For 0  i  k, we see from (1.1) that
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where

Note that

We put

As stated in the beginning of Section 2 we assume in our results on (1.1) that
P(y) &#x3E; k. Hence, by (1.1),

which implies that

We recall that d 1 is the maximal divisor of d such that all the prime factors of

dl are ~ 1(mod l) and that d2 = d/d1. Let

We shall follow the above notation without reference.

We first give three lemmas basically due to Erdôs.

LEMMA 5. There exists a subset 82 of SI consisting of at least ISII - n(k)
elements such that

Proof. For every prime p  k, we choose an f(p) ~ S1 such that p does not
appear to a higher power in the factorisation of any other element of S1. We
denote by S2 the set obtained by deleting these elements out of S1. Then


