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Preface

This work is devoted to the problem of factorizing a birational morphism
through blowing ups at regular centers [9].
The problem is resolved in case of surface. Zariski [1] proved around 1944

that every birational morphism between smooth surfaces over a field k
is a composition of blowing ups at closed points. Later, around 1966
Shafarevich [2] proved the same theorem for regular schemes of dimension 2.
This leap was fundamental for questions of number theory and the classi-
fication of algebraic surfaces. Counterexamples are known (see [3]) to the
factorization theorem in general in dimension n. Nevertheless, in 1981

Danilov [4] managed to generalize the Zariski theorem. The theorem, which
he proves, is that every projective and birational morphism between smooth
algebraic varieties whose fibre are of dimension ~ 1 is a composition of
blowing ups at smooth centers of codimension 2. In this work, Danilov
admits the difficulties in the regular case. In the present work we prove the
theorem for regular schemes thus being valid in number theory and provid-
ing a further step in the later classification of algebraic varieties. The
theorem states:

THEOREM 5.3: Let n : X’ -+ X be a proper and birational morphism between
regular schemes whose fibres are of dimension ~ 1. n then factors, locally,
through a blowing up at a regular center of codimension 2. Furthermore if n
is projective then n is a composition of blowing ups at regular centers.

This theorem is obtained as a corollary of a more general theorem in
codimension d which states:

THEOREM 5.2: Let 03C0: X’ ~ X be a proper and birational morphism between
regular schemes. Let H1, ... , Hs be the hypersurfaces of the exceptional
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cycle of n and let v, be the valuations centered at Hi and whose center on X is
zi. We assume that:

(a) The exceptional fibres of n are equidimensional and of dimension d - 1.

(b) For every i, the factorization of the pair (OX,zt, (Ovt) is by local regular rings
of the same dimension d.
Then 03C0 factors, locally, through the blowing up at a regular center of codimen-
sion d. Furthermore, if n is projective then n is a composition of blowing ups
at regular centers of codimension d.

We also obtain as a corollary of this theorem a necessary and sufficient
condition for a birational morphism to be a composition of blowing ups at
closed points. The theorem states:

THEOREM 5.4: Let n: X’ - X be a proper and birational morphism between
regular schemes whose locus is a closed point x. Let vl, ..., vn be the
valuations centered at the hypersurfaces of the exceptional cycle of n. Then n
is a composition of blowing ups at closed points if and only if the factorization
of the pair (9v,) is by regular rings of same dimension.

Another theorem obtained as a corollary of theorem 5.2 is a different version
of a Moishezon theorem [5] when the exceptional fibre has a unique irreduc-
ible component.

THEOREM: Let n: X’ - X be a proper and birational morphism such that the
reduced exceptional cycle H is simple. Then, n(H) = Z is regular and n is the
blowing up at Z.

Before proving the theorem of factorization it is necessary to prove the

regularity of the centers of blowing up centers and concerning this we have
the following theorem.

THEOREM 4.4: Let n: X’ ~ X be a proper and birational morphism between
regular schemes whose exceptional fibres are equidimensional. For every x
belonging to the locus of n, there exists an irreducible component of the locus
regular at x.

The methodology used in this work is the systematic use ôf valuations and
their properties (Section 1) and the duality theory for birational morphisms
(Section 3). Thanks to the duality one can define, given an integral scheme
X and a valuation v of its quotient field, one invariant which only depends
on X and v whose existence and properties have become very useful for the
study of birational morphism.
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Preliminaries and notations

In this work, it is assumed known the general theory of birational mor-
phisms which can be seen in [8]. The notations used in this paper also are
in [8]. All the rings and schemes, in this paper, are noetherian and excellent.
The following theorem is used no to mention

THEOREM: If X’ ~ X is a proper and birational morphism between noetherian
schemes where X is regular, then the closed set Z where n is not an isomorphism
(locus of n) has codimension ~ 2 and 03C0-1 (Z) has codimension 1.

1. Valuations

Let 1 be a field. All valuations, in this work, will be discrete of rank 1. We
shall denote the valuation ring of a valuation v by Ov and the maximal ideal
of Ov by pv.

DEFINITION 1.1: Let X be a scheme having a function field E. We shall say
that the valuation v centres on X at the point x E X (or at the irreducible
subscheme Y = {x} c X) if its valuation ring (9v dominates the local ring
of X at x, (9xx.

REMARK: Let 03C0: X’ - X be a birational morphism. If u centres on X’ at the
point x’ then v centres on X at the point x = 03C0(x’).

DEFINITION 1.2: If x ~ X is a regular point, we define the normal valuation
of x (or mx-adic valuation) as the valuation îx such that: for each f ~ OX,x,
iff e n n, 1.
closure set of x in X.

This valuation is the multiplicity function at x ; that is vx(f) = multiplicity
of (f)0 at x.

REMARK: If X is normal and x E X is a point of codimension 1 then there

exists a unique valuation centred at x (its normal valuation). Indeed: OX,x is
a valuation ring and there are no dominating morphisms between valuation
rings.

DEFINITION 1.3: Let (9 be a local ring and let (9vl and (9v2 be two valuation
rings containing O. We shall say that v1 ~ v2 (with respect to O) if
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PROPOSITION 1.4 : Let O be a local regular ring with a closed point x.
(a) For every y E Spec (9 and z ~{y}, vy ~ vz.
(b) If v is a valuation with center x on Spec (9, then ux ~ v.

Proof.- (a) Is satisfied because the multiplicity is an upper semicontinuous
function [6].
(b) If Ov ~ (9 and pv n O = mx then v(f) ~ 1 for every f E mx. As
v(f.g) = v(f) + v(g) and v(f + g) ~ min{v(f), v(g)} then f ~ mnx
implies u(f) ~ n.

PROPOSITION 1.5 : Let 03C0: X ~ Y be a birational and proper morphism between
regular schemes. If Vy is the normal valuation of y E Y then Vy centres on X at
an irreducible component F of 03C0-1(y) and coincides with the normal valuation
of F.

Proof.- Assume that Vy centres on X at x E X and let F be the irreducible
component of 03C0-1(y) which goes through x. By proposition 1.4 vF ~
vx ~ Vy with respect to (9,,x. Furthermore, by (b) of the same proposition
vy ~ VF with respect to OY,y. As OY,y ~ (9,,x, we have vF ~ vx ~ vy ~ VF
with respect to OY,y. Therefore vF = Vx = Vy and so {x} = F.

DEFINITION 1.6: Let (9 be a local ring, a an ideal of O and Ov ~ O a valuation
ring. The value of v on oc is v(03B1) = minf~03B1 (v(f)} = minimum value v of a
set of generators of oc. v(03B1) does not depend on the ring O in the following
sense: If (9 c O’ c Ov, then v(a) = v(03B1 · O’) because if f, , ..., fn generate
a, they also generate oc - · O’.

PROPOSITION 1.7 : Let O be a local regular ring having a closed point x; let a
be an ideal such that (03B1)0 has an irreducible component of codimension 1 and
let v be a valuation with center x. If v(a) = 1 then oc is principal.

Proof.- Let H be the irreducible component of (03B1)0 of codimension 1.

03B1 = (f1, ... , fn) ~ pH = (g), 1 = v(03B1) = v(fi) = v(g · xi) = v(g) +
(xi). Therefore v(xi) = 0 and so xi is an invertible. Hence g = f |xi E oc and
= (g) -

COROLLARY 1.8: Let O be a local regular ring and let oc be an -ideal of (9 whose
radical is the maximal ideal Wlx. Let n: X ~ X = Spec O be the blowing up
along mx . If, for each point y E n -’(x), vy(03B1) = 1, then a = Wlx.

Proof.- By the previous proposition a · OX is a principal ideal at each point
of X. Let fi, ... , fk a system of generators of oc. As vx(a) = 1 we can
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assume that vx(fi) = 1 for each i. Let Hi = (fi)0 and Hi the strict transform
of Hi by n. We have that: a Wj = (g) · (f1 , ... , fk ) where g = 0 is the
local equation of n-’(x) and f - 0 is the local equation of H1. Since
a · OX = (g) one has that fl, n ... n Hk - ~. Now, H; n n- 1 (x) is a

hypersurface in 03C0-1(x) ~ Pn-1 whose degree is equal to vx(fi) = 1.

Therefore H, n 03C0-1(x), ..., Hk n 03C0-1(x) are hyperplane without any
point in common. So there exists n of them: Ri n 03C0-1 (x), fin n 03C0-1(x)
which do not meet. This says that f., ... , fn are linearly independent on
m/m2. Therefore f, , ..., ,,f’n is a system of generators of m. Q.E.D.

DEFINITION 1.9: Let (9x be a local ring having a closed point x and let v be
a valuation with center x. Let X, 03C0 Spec (9 be the blowing up at x and Ox1
the local ring of XI at x, (the center of v on X, ). One has (9x  Ox1 Ov.
We repeat this with Ox1 and so on; one has (9x  (9x,  Ox2 
... c Ov. This process is called the factorization of the pair «9x, Ov) by
monoidal transformations.

THEOREM 1.10: Let 03C0: X - Y be a proper and birational morphism where X
is normal. Let O be the local ring of Y at y and v a valuation with center y.
If u centres on X at a point x of codimension 1, then the factorization of the
pair «9, (9,,) is finite.

Proof: 03C0 is a morphism of finite type and so, locally at x, it is O ~ O [ f, If,
..., fn /f ] = B, fi, f ~O and (9,, = Bx. Therefore, it is sufhcient to show
that fs/f ~ (9x,, for some i. Let a = (f, fs). We have to prove that a (9x, is
principal for some i. a · Ox1 c= my · Ox1 = (g, ). Therefore a · Ox1 = (gl) - · 03B11.
If a · Ox1 is not principal, then 03B11 ~ mx1. a, · Ox2 c mx2Ox2 = (g2 ) and
a, · Ox2 = (92) - OC2 and so on; we have a · Ox1 = (g1) (g2) · .... (gi) · 03B1i,

v(03B1) = V(’y - · OXi) = v(g, ) + V(92) + ° ° · + v(g,) + v(03B1i). Therefore for
some i, v(a;) = 0 and hence a · Oxl = (g1 · · · · · gi).

REMARK: The only valuations which will be used in this work will be those
of the valuations of the above theorem.

2. Dualizing sheaf for a birational morphism

We use the theorems of the general theory of duality. These theorems and
the notations used have appeared in [6].

If 03C0: X’ ~ X is a birational and proper morphism, we will call locus of
03C0 the closed set of points where 03C0 is not an isomorphism and we will call
exceptional fibre of rc, 03C0-1 (locus of 03C0).
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THEOREM 2.1: Let X be a regular scheme and let X 03C0 X be a proper and
birational morphism where X is normal. If Dg/x is the dualizing complex of n,
then there exists an open set U c X containing the points of codimension 1 of
X such that

(a) Hi(D.X/X) |U = 0 for i =1= 0 and H0(D.X/X)|u - 03C9X/X is an invertible sheaf
(b) If f: X’ ~ X is another proper and birational morphism where X’ is

normal and U and U’ are as in (a), then

Pro of. We can assume, locally at X, that one has the commutative diagram:

If U is the set of regular points of X we have that i, restricted to U, is a
regular immersion. By the theory of duality for immersions one obtains, on
U, that

Since D.X/PdX ~ i * Dp1/X in derived category and

one can conclude (a).
(b) Is deduced from the following formula in derived category

THEOREM 2.2: Let 03C0: X ~ X be as above. Then

(a) The dualizing sheaf wX/x defines a unique divisor Kx/x on U whose support
is contained in the exceptional fibre of n.
(b) If f: X’ ~ X is another morphism as in the previous theorem, then

Kx’/x = Kx’/x + f * Kx/x on V = U’ n f -’(U).
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Proof: (a) As 03C9X/X = OX out of the exceptional fibre of 03C0, there exists a

divisor KX/X associated to Ú)x/x whose support is contained in the exceptional
fibre. If KX/X is another divisor in the conditions of Kx/x then KX/X - Kx/x =
D ( f ) where f has neither zeros nor poles in X outside the exceptional fibre.
Since the locus of 03C0 has codimension 2 we have that f has neither zeros
nor poles in X. That is to say it is an invertible and so D(f) = 0.

(b) By part (b) of the previous theorem KX/X + f* . KX/X is a divisor
associated to 03C9X/X whose support is contained in the exceptional fibre of x o f.
By (a) one concludes.

3. Définition of v(D) = value of divisor D for a valuation v

Let X be a regular scheme and let D be a Cartier divisor of X. Let E be the
function field of X and v a valuation of X. Let X 03C0 X be a proper and
birational morphism where X is normal and v centres, on X, at a point Xv
of codimension 1. We define v(D) = coefficient of (n*D + KX/X) on xv,
KX/X being the divisor associated to ffix/x (dualizing sheaf of rc).

THEOREM 3.1: v(D) does not depend on the chosen scheme X.

Proof : Let X’ be another scheme in the same conditions as X. We can
assume that there exists a morphism f : ÀÎ’ - X since one can compare both
schemes with the normalization of the graph of the birational transforma-
tion existing between X and X’.

Let x’v and xv be the centers of v on X’ and X respectively. By part (b) of
theorem 2.2 we obtain that

Since as f is an isormophism at x’v one has that

Therefore:
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Properties of v(D)

We shall call the divisor zero on X, OX.
(a) The compute of u(D) is local; that is to say, if v centres at x E X and

Ui: - X is an open set of X containing x then v(D) = v(i *D).
(b) If v centres on X at a subscheme H of codimension 1 then v(D) =

coefficient of D on H.

(c) v(Ox) = v(KX/X) where 03C0: X ~ X is such that v centres on X at a
point of codimension 1.

(e) If f : X’ - X is a proper birational morphism where X’ is normal and
v centres on X’ at a point where KX’/X is defined, then

In particular, for D = Ox, u(OX) = v(Kx,lx).
(f) If f c- E and D( f ) is the divisor of zeros and poles of f, then

Proof.- (a), (b) and (c) are proved by the definition.
(d) Let X ~ X be such that u centres on X at a point of codimension 1.

By (b) and (c). v(D1 + D2) = v(03C0*D1 + 03C0*D2 + Kx/x) = v(03C0*D1 +
KX/X + ’l*D2 + KX/X - KX/X) = v(D1) + v(D2) - v(Ox).

(e) Let X X X’ be such that v centres on X at a point of codimension
1 v (D) = v(03C0*f*D + KX/X) = v(x*f *D + Kx/x’ + n*Kx/x) = v(f*D) +
v(03C0*KX’/X) = v(f*D) + v(n*Kx’/x + Kx/x’ - KX/X’) = v(f*D) +
v(Kx’/x) - v(Kx/x’) = v(f*D) + v(KX’/X) - v(Ox’).

(f) Let X 03C0 X be such that v centres on X at a point of codimension 1
v(D(f)) = v(03C0*D(f) + Kilx) v(D(f)) + v(KX/X) = v(f) + v( Ox).
Since every Cartier divisor is locally D( f ), the properties (a) and (f) permit
one to reduce the computation of v(D) to the computation of v(Ox).
Furthermore, we can get, by blowing ups, v to centre at a point of codimen-
sion 1 (theorem 1.10). So, by property (e), in order to compute v(Ox) it
suffices to compute Kx,lx where X’ ~ X is the blowing up a point.

PROPOSITION 3.2: Let O be a regular local ring with a closed point x. If p:
i - X = Spec (9 is the blowing up at x then KII, = (n - I)E where
E = p-1(x) and n = dim (9.

Proof.- E is the divisor associated with the sheaf OX(1). As úJx/x is equal to
(9j outside E, one has that 03C9X/X = OX(K) · p-1(x) = Pn-1K 

1 
= projective
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n - 1 space over K = Spec O/mx. On the one hand 03C9p-1(x)/K = (9PK-1( -n),
and on the other; 03C9E/Spec K = j *03C9X/X ~ 03C9E/X where j: E  X is the canoni-
cal embedding. coeli = (pE/P2E)* = (9E(- 1). Therefore (9E(-n) = OE(K) Q
OE(-1) = (9E(K - 1).

COROLLARY 3.3: In the conditions of the theorem, if Vx is the normal valuation
of x then vx(OX) = dim O - 1.

Proof.- Vx = VE by proposition 1.5 and so, vx(Ox) = vx(Kx/x) =

COROLLARY 3.4: In the conditions of the corollary above, if D = 03A3ri=1 ni Hi
is a divisor of X then vx(D) = 03A3ri=1 nimxHi + n - 1 where mxHi =
multiplicity of Hi at x.

Proof: D = D ( f ) where f = ftl ..... fnrr and (fi)0 = Hi . By the property

PROPOSITION 3.5: Let X be a regular scheme and let v be a valuation having
a center x E X. If the codimension of x is n then v(OX) ~ (n - 1)v(mx) the
equality being given if and only if v = Vx.

Proof: We can assume that X = Spec O and let X p X be the blowing up

If v centres on X at a point of codimension 1 then v = Vx (proposition
1.5) and v(OX) = 0. If v =1= Vx we repeat the process and obtain v(Og) =
(K - 1)v(mx) + v(Og,) where x is the center of v on X and X’ in the
blowing up of Spec OX,x at x and so on. We repeat the process up to centres
at a point of codimension 1 and we have then finished.

PROPOSITION 3.6: Let n: X - Y be a proper and birational morphism between
regular schemes whose exceptional fibre is formed by the hypersurfaces
HI, ... , Hr . For each point y E Y the following is satisfied.

Fy = {x} being the irreducible component of 03C0-1(y) at which vy centres on X
and mxHi = multiplicity of Hi at x.
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Proof.- If n = codimension of y and K = codimension of x then

The last equality is held by corollary 3.4.

4. Regularity of the centers of blowing up

PROPOSITION 4.1: Let n : X’ ~ X be a proper and birational morphism between
regular schemes such that the exceptional,fibres are equidimensional. For any
x E locus of n, the normal valuation of x, vx, centres on X’, precisely at the
irreducible component of 03C0-1(x), Fx, such that:
(a) There exists a unique irreducible component H of the exceptional cycle
going through Fx.
(b) H is regular at the generic point of Fx.
(c) The normal valuation of H coincides with the normal valuation of 03C0(H);
that is VH = v03C0(H).

Proof.- Since the exceptional fibres are equidimensional, the irreducible
components Z, , ... , Zs of the locus of 03C0 are equidimensional and all

hypersurfaces Hi of the exceptional cycle fulfill the expressions 03C0(Hi) = Zj.
Assume the codimension of Z¡ = d, and so.the dimension of the exceptional
fibres are d - 1. By proposition 3.6 one has:

By proposition 3.5, vHi(OX) ~ codimension of n(Hl) - 1 = d - 1.

Therefore, there can only be one hypersurface, H, of the exceptional cycle
containing F,. Furthermore, ?nFxH = 1 and VH (OX) = d - 1.

Part (c) is deduced from proposition 3.5.

mFxHi + vFx(OX’). Since (a), (b) and (c) are satisfied, one has that

where d = codimension of n(H) and K = codimension of Fx.
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Therefore vFx(OX) = d - 1 + n - (d - 1) - 1 = n - 1 where n =
dim (9x@.,. By proposition 3.5 we conclude that vFx = vx.

PROPOSITION 4.2: Let n: X’ ~ X be a proper and birational morphism between
regular schemes and let x E X. If the normal valuation of x, vx, centres on X’,
at x’, then wzx - · OX’,x’ = mx’.

Proof- By corollary 1.8, it suffices to prove that vx(mx) = 1 for each x E

p-1(x’), p: X ~ Spec OX’,x being the blowing up along mx,. Since the problem
is local, we can assume that X = Spec (9,,x. Let n = dim OX,x, K = codimen-
sion of x’ in X’ = dim (9x,,x, and s = codimension of i in X = dim OX,x.
One has n ~ K ~ s because 03C0(x’) = x and p(x) = x’. Assume that

Kx,lx, the relative dualizing divisor of n is, locally at x’, the divisor of zeros
of g and assume that f = 0 is the local equation, at x, of p-1(x’). We know,
by proposition 1.5, that ux = vx’,

That is to say vx’(g) = n - K, (1).
By proposition 3.5

If g = 0 is the local equation of the strict transform of g = 0 by p and
m = multiplicity of g = 0 at x’, then one has that g = f - - g and

Therefore vx(g) = m + ux(g) ~ 2 · vx,(g).
Going back to (*) we have that

Therefore ux(mx) = 1.
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LEMMA 4.3: Let (9  O’ be a finite morphism between complete local rings
with maximal ideals m and m’ respectively. Assume that O’ is regular, O is
integrally closed and oz - · O = m’. Then O is regular and O  O’ is a

faithfully flat morphism.

Proof.- We will prove this by induction on n = dim O. For n = 0 there is
nothing to say and suppose the theorem is true until n - 1. Let f ~ m and
fi m’2 . f · O’ ~ O = (f) = p. Indeed: Let x E U such that x E f (9 We
have that x = f · t, t ~ O’. Therefore x/f ~ O’ and (9  (9 [xlf ]  (9".

Since (9  (9 [xlf ] is a finite morphism and as O is integrally closed we
conclude that x/f E (9. If (91f is integrally closed, applying induction over the
morphism O/f  (9’lf one has that (91f is regular and so O is regular. Let
us show that (91f is integrally closed: Let O1 be the integral closure of (91f. We
have O/f  O1 1  (9"lf and (9, = 03C0-1((O1), being n: O’ ~ O’/f the
canonical projection. As 03C0-1(0) = f · O’ c O1 we can deduce that fzl =
f · O1 is a prime ideal and (9, - O1/f. Tensoring by Wp (localized at p).
Op ~ O1p we obtain a finite morphism such that · O1p = (f) = p1. By
Nakayama (9, = O1p and so U and (9, are birational. Therefore (9 = (91.
In order to prove that (9  U’ is a faithfully flat morphism it suffices to
prove that U’ is a free (9-module. Let K = dimO/m O/m’. By Nakayama’s
lemma (9’ has K generators. Therefore, there exists the exact sequence:
0 ~ N ~ O ~K-th · · · ~ O ~ O’ ~ 0. Tensoring this sequence by (9l.n
we have Nlffln N 9" ~k O/mn ~ (9,,I.,,n ~ 0, (1). If N, = Im (Pn, taking
lengths we obtain:

Therefore:

lO(O/mn) = lO’(O’/m’n) because Samuel’s polynomial is the same for all

local regular rings with the same dimension.
Therefore l(Nn) = 0 and so qJn = 0. Taking 1 m in the exact sequence (1)

we obtain

That is to say
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THEOREM 4.4: Let X’ 03C0 X be a proper and birational morphism between
regular schemes such that the exceptional fibres are equidimensional. For each
x E X, there exists an irreducible component Z of the locus of n which is

regular at x.

Pro of. For each x E X, let Fx be the irreducible component of 03C0-1(x) at
which Vx centres. Let H be the irreducible component of the exceptional fibre
given by proposition 4.1. We will prove that Z = n(H) is regular at x. Let
x’ e X’ be the center of Vx on X’. So {x’} - Fx and Vx’ .= Vx. Let O and O’
be the local ring of X and X’ at x and x’ respectively. We know that
mxO’ = mx’ by proposition 4.2.

Firstly, we will show that we can suppose that O is complete. If we
complete with respect to the ideal mx in the morphism O/pz  O’/pH we
obtain O/pz  O’/pH ~O  O’/pH where O’pH is the completion of
O’/ ftH with respect to the ideal mx’. Since H is regular at x’ we have that
O’pH is integral and so O/pz is also integral. As O/pz is regular if and only
if O/pz is regular, taking the morphism X’xSpecO Spec  03C0 Spec  instead
of n we can suppose that O is complete.
By proposition 4.1, there exists a closed point y e Fx where H and Fx are

regular and mx (9x’,y = ftFx. If dim Fx = K, let ZI be a regular subscheme
of H of codimension K which meets Fx transversally at y. Restricting the
morphism n to Z1, we obtain a finite morphism Te: Z1 ~ Z. Applying lemma
4.3 we conclude if we prove that Z is integrally closed.

Let Z be the integral closure of Z. We have Z1 ~ Z ~ Z where Z ~ Z
and Z1 ~ Z are finite morphisms. Let x = ~-1(x). By lemma 4.3

OZ,x  OZ1,y is a faithfully flat mor p hism. Therefore my = mx ~OZ OZ1 =
mx · OZ ~OZ OZ1 and so mx = mx. · OZ. By Nakayama’s lemma we finish if
OZ/mx = OZ/mx. In order to see this it suflices to prove that O’/mx’ has no
algebraic elements over O/mx. If Vx is the normal valuation of x then
O ~ O’ c Ovx and K = O/mx c O’/m’ c Ovx/pvx.

Let mx = (x1, ..., xn) be a minimal system of generators of mx,
O ~ O[x2/x1, ..., xn/x1] = O1 c Ovx and ftvx ~ O1 = (XI) - mx · O1.
Therefore Ovx/pvx = K(x2Ix1, ... , xn/x1). Q.E.D.

5. Theorems of factorization

DEFINITION 5.1: We shall say that the birational morphism n: X’ ~ X
factors locally through a blowing up along a regular subscheme if for every
x E X there exists an open set U and a regular subscheme Z containing x
such that 03C0-1(U) 03C0 U factors through the blowing up at U n Z.


