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00

In what follows, K denotes an algebraic number field. Let f(z) = 03A3akzek
k=0

be a power series with nonzero coefficients ak E K, the convergence radius
R &#x3E; 0 and increasing nonnegative integers ek satisfying the condition

where Ak = max{1, a0,..., ak} and Mk is positive integer such that
Mkao,..., Mkak are algebraic integers. By [Cijsouw and Tijdeman, 1973], the
number f(03B1) is transcendental for any algebraic a with 0  |03B1|  R. More-

over by [Bundschuh and Wylegala, 1980], the numbers f(03B11),...,f(03B1n) are
algebraically independent for any algebraic numbers aI’...’ an with 0  |03B11|
 ···  |03B1n|  R. In this paper, we shall establish necessary and sufficient

conditions for algebraic independence of the values f(03B11),..., f(03B1n) at alge-
braic numbers aI’...’ an . Definition. We say the algebraic numbers aI’..., as
are (ek }-dependent if there exist a number Y, roots of unity 03B6l (1  i  s) and
algebraic numbers d1,..., d, not all zero such that

for any sufficiently large k.

Then we have the following theorem.

THEOREM 1. Let aI’...’ an be algebraic numbers with 0  1 ai |  R(1  i  n).
Then the following three properties are equivalent.
i) f(/)( ai) (1  i  n, 0  1) are algebraically dependent over the rationals,

where f (1)(z) denotes the lth derivative of f(z).
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ii ) There is a non-empty subsets 03B1is} of {03B11,...,03B1n} such that

al , ... , at are {ek}-dependent.
iii ) 1, f ( al ), ... , f ( an ) are linearly dependent over the algebraic numbers.

00

Example 1. Let f(z) = L zk! and 03B11,..., an be algebraic numbers with

0  |03B1l|  1(1  i  n ). Then f(l)(03B1l) (1  i  n, 0  l) are algebraically inde-
pendent if and only if 03B1i/03B1j is not a root of unity for i =1= j. This result was
conjectured to be true by Masser.

00

Example 2. Let f(z) =  zk!+k and al, ... , an be algebraic numbers with

0  |03B1l|  1 (1  i  n). Then f(l)(03B1l) (1  i  n, 0  l) are algebraically inde-
pendent if and only if 03B1l ~ 03B1j for i ~ j.

Proof of Theorem 1. Obviously the property ii) implies the property iii) and the
property iii) implies the property i). We prove the property i) implies the
property ii). Suppose the property i) is satisfied. We may assume f(l)(03B1i)
(1  i  n, 0  1  L ) are algebraically dependent and f(l)(03B1l) are algebraically
independent for any subset of n - 1 numbers al. Changing the indices of the
a’s, we may suppose

are roots of unity,

are not roots of unity.

Define U and Um E Cn(L+1) by

where P0(X) = 1, Pl(X) = X( X - 1)... (X - 1 + 1). Then lim Um = U and
there is a nonzero polynomial F~Q[{y(l)iq}1it+1,1qsi,0lL] such that
F( U ) = 0. We may assume F has the least total degree among such polynomi-
als and algebraic integer coefficients. By the assumption on the minimality of
n, for any i and q (1  i  t + 1, 1  q  s,) there exists an integer 1 (0  1  L)
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such that ~F/~y(l)iq * 0. Since the total degree of ~F/~y(l)iq is less than the total
degree of F, ~F/~y(l)iq(U) ~ 0. By Taylor expansion, we have

where J = (j(l)iq)1 with .(1) being nonnegative integers
and |J|, J!, ~|J|/~yJ and ( U - Um )’ are defined in the usual way. There is a
positive number 0  1 such that e.L a m I alllem = O(03B8em). (In what follows,
the constants implicit in the symbol 0 and positive constants cl, c2, ...

depend only on K, f(z), aI’’’.’ an and F.) Then we have

By the fundamental inequality: for any algebraic a =1= 0, log |03B1 1 
- [Q( a): Q]{log 03B1 + log(den 03B1)}, we have log 1 am |  - [K : Q]{log Mm +
log Am}, Therefore by (1), ()em+l = O( 1 am Il all |em03B8em) and

Let g be the total degree of F and d be a positive integer with a, d (1  i  n )
being algebraic integers. Then 1 F(U,,,) = O((Am-1cem-11)g) and (Mm-1
dem-1)gF(Um) is an algebraic integer. Hence by (1), (2) and the fundamental
inequality, we have F( Um ) = 0 for sufficiently large m. By (2),

where A is a number with max (|03B1t+1,1|, |03B111|03B8)A |03B111|. For each i,
l(1  i  t, 0  1  L), let Q(l)l be a maximal subset of {1,2,...,sl} such that
~F/~y(l)iq ( q E Q(l)i) are linearly independent over the algebraic numbers. Then
we have

where Q SI 3 (d(l)iq1,..., d(l)iqal) ~ (0,... ,0). By assumption, for any i there exists 1
(0lL) with Q(l)i being non-empty. Let 03B1iq = 03B6iq03B3l (1  q  sl), 03BENiq = 1
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(1  i  t, 1  q  sl), and take a triplet ( i, l, q ) with 1  i  t, 0  l  L and

q E Q(l)i. We assert that L d(l)iqp03B6ekip = 0 for any sufficiently large k. This

implies the property ii). On the contrary, suppose that there is an integer a

(0  a  N) such that em = a(mod N) for infinitely many m and  d(l)iqp03B6aip ~
p=1

0. Define

for each i, 1, q with 1  i  t, 0  1  L, q ~ Q(l)i, and

Then B is not empty. Let D be a positive integer with DD(l)iq (( i, 1, q) ~ B)
being algebraic integers, and define

for each ( i, l, q ) E B. Since lim Um = U, there is a positive constant M such
that E(l)iq(m) ~ 0 for any ( i, l, q ) E B and any m &#x3E; M. By (3) and (4), if

em ~ a(mod N), then

We may assume 03B11,..., an, 03B31,..., -y,, D(l)iq and the coefficients of F are in K,
by extending K if necessary.

Before proceeding, we must here explain Evertse’s theorem, which will play
an important role to prove our theorem. By a prime on K we mean an
equivalence class of non-trivial valuations on K. We denote by SK the set of
all primes on K by S~ the set of all infinite primes on K. For every prime v
on K lying above a prime p on Q, we choose a valuation ~·~v such that

Then we have the product formula:

For
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By the product formula, this height is well-defined. Put

Then we have the following fundamental inequality:

where S is any set of primes on K. Let S be a finite set of primes on K,
enclosing S~, and c, d be constants with c &#x3E; 0, d  0. A projective point
X ~ Pn(K) is called (c, d, S)-admissible if its homogeneous coodinates

xo, xl, ... , xn can be chosen such that

i) all xk are S-integers, i.e. ~ xk~v  1 if v 5É S, and

ii) FI H ~xk~vcH(x)d.
vES k=0

The following theorem is due to [Evertse, 1984]: let c, d be constants with

c &#x3E; 0, 0  d  1 and let n be a positive integer. Then there are only finitely
many (c, d, S)-admissible projective points X = (x0 : x1 : ... : xn) ~ Pn(K)
satisfying

but

for each proper, non-empty subset {i0, i1,..., is} of (0, 1,..., n}.
Let S be a finite set of primes on K which includes SOC) and all prime

divisors of 03B11,..., 03B1n. Then E(l)iq(m)03B3emi((i, 1, q) ~ B, m &#x3E; M) are nonzero

S-integers and

PROPOSITION 1. Let (ij, lj, qj) E B( j = 1, 2), i1 =1= i2 and m1 &#x3E; m2 &#x3E; M. If m1
is sufficiently large, then

Proof. Suppose the proposition is not true. Then
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hence

for infinitely many m1. Since 03B3l1/03B3i2 is not a root of unity and so h(03B3l1/03B3l2) &#x3E; 1,
this contradicts the equality (1).

PROPOSITION 2. Let Bo be any non-empty subset of B. If m is sufficiently large,
then

Proof. We prove the proposition by induction on the cardinal number 1 Bo 1 of
Bo. If |B0| = 1, then the proposition is true. Let |B0|  2 and suppose that

for infinitely many m. First we consider the case where io is the only integer
such that (io, 1, q ) E Bo for some q and 1. Define

Then

for infinitely many m. When we divide both sides by Plo(em ) and let m tend to
infinitely, we have

Since the total degrees of ~F/~y(l0)i0q(q ~ Q(l0)i0) are less than the total degree of
F,
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This contradicts that ~F/~y(l0)i0q(q~Q(l0)i0) are linearly independent over the
algebraic numbers. Next we suppose there exist two triplets (ij, lj, qj) ~ Bo
( j = 1, 2) with i 1 ~ i2. Let E be any positive number  1. By Proposition 1
and the induction hypothesis on |B0|, applying Evertse’s theorem to the
equality (7) as c = 1 and d = 1 -~, we have

for infinitely many m. By the facts that TI Il Yi Il v = 1 and there exists a prime
UES

v on K such that I ~03B3i1/03B3i2~ v &#x3E; 1, we have

This is a contradiction.

Now we can complete the proof of Theorem 1. For infinitely many m with
em = a (mod N ), we have, by (5),

where E(l)iq(m)03B3emi and 8m are S-integers. First we consider the case where i0 is
the only integer such that (io, 1, q ) E B for some 1 and q. Define

Then

When we divide the both sides by Plo(em)Ylôm and make m tend to infinity, we
have

since A  |03B1111 = |03B3i0 |. This is a contradiction. Next we suppose that there
are two triplets (ij, lj, qj) ~ B ( j = 1, 2) with i1 ~ i 2. Let E be any positive
number  1. We may assume K is not a real field and |·|2 = Il.11 Vo for some
infinite prime vo on K. By Proposition 1 and Proposition 2, applying the
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Evertse’s theorem to the equality (8), we have

for sufficiently large m with em --- a (mod N ). By (6) and (8), the left hand side
of the equality (9) is not greater than

On the other hand, taking a triplet ( i o, l0, qo ) E B, we have

Since

Then we have
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for infinitely many m. As m tends to infinity, we have

Since e is any positive number  1, this implies log A  log|03B111|. This
contradicts the fact A  |03B111|. This completes the proof of Theorem 1.

In [Nishioka, to appear in J. Number Theory], the p-adic analogue of Example
1 is proved. Here we have the following theorem. Let p be a prime number
and denote by Cp the p-adic completion of Q p with respect to the valuation
|·|p. Let the convergence radius Rp of f(z) in Cp be positive. For an
algebraic number a with 0  |03B1|p  Rp we denote by f ( a) p the value of f ( z )
at z = a in Cp.

THEOREM 2. Let aI’...’ an be algebraic numbers with 0  1 ai p  Rp(1  i  n).
Then the following three properties are equivalent.

i ) f ( aI) p’ ... , f(03B1n)p are algebraically dependent over the rationals.
ii) There is a non-empty subset {03B1i1,..., 03B1is} of {03B11,..., 03B1n} such that

as , ..., ai are {ek}-dependent.
iii) 1, f(03B11)p,..., f(03B1n)p are linearly dependent over the algebraic numbers.

Theorem 2 is proved in the same way as Theorem 1, but ignoring the

derivatives of f ( z ) (i.e. L = 0).
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