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0. Introduction

Let X be an r-dimensional Noetherian scheme, proper over an Artinian ring
A. Let Y be a closed subscheme of X defined by a sheaf of ideals I, and let
’1T : X ~ X be the blowing-up of X with respect to I.

For sufficiently large n, Ramanujam [Ramanujam, 1973] proved that

is a polynomial in n of degree  r. Moreover, if E is the exceptional divisor of
qr, the leading coefficient of this polynomial is

Every coefficient of SI(n), except the last one, can be computed in terms of
the exceptional divisor E. In this paper, we prove that the last coefficient of
SIen) is the difference in the arithmetic genus: ~(X, OX) - X( X, OX). By the
way we obtain another proof of Ramanujam’s result and a calculation of all
the coefficients. The precise result is

Theorem

For sufficiently large n

The intersections E’ are to be taken in the Grothendieck ring K·(X) of coherent
locally free sheaves on X.
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1. Preliminaries

In this section X will denote a Noetherian r-dimensional scheme, proper over
an Artinian ring A.

K.(X) (resp. K·(X)) will denote the Grothendieck group of coherent (resp.
locally free) sheaves on X. The tensor product gives K(X) a ring structure
and turns K.(X) into a K’(X)-module.
We will use freely the following results on these groups:
Given a coherent sheaf (resp. locally free coherent sheaf) M, cl.(M) (resp.

cl’(M)) will denote the class of A in K.(X) (resp. K.(X)). Also, one writes
1 = cl’(OX), 03BE = cl.(OX), so obviously

holds for every locally free sheaf -,ff on X.
Kn(X) is the subgroup of K.(X) generated by sheaves whose support is of

dimension  n, that is sheaves that are concentrated in dimension  n.

Theorem 1.1. (SGA 6, XI.1.2)

For every coherent sheaf vit that is concentrated in dimension n, one has:

where the sum is taken over all the irreducible components Y of the support of JI(
and l(My) is the length of the (9 y -module My ( y being the generic point of Y)
and Z E Kn-1(X).
A simple consequence of this is:

Corollary 1.2.

If Z E Kn(X) and Y is an invertible sheaf on X, then

Notation 1.3.

For every effective Cartier divisor D, we will also denote by D the element
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Corollary 1.4.

For every effective Cartier divisor D on X and every Z E Kn(X) one has:
i) D. Z E Kn-1 (X). In particular Di = 0 in K.(X) for all i &#x3E; r.

ii) (1-D)-1.Z=(1+D+D2+... +Dr)_ Z.

Notation 1.5.

The linear difference operator

2. Hilbert and Samuel functions

Let X be an r-dimensional scheme, proper over an Artinian ring A, and let I
be a coherent ideal of (9x.

Definition 2.1.

The Samuel function with respect to I is:

The Hilbert function with respect to I is:

Notation 2.2.

If ’1T: X- X is the blowing up of X along the ideal I, E will be the

exceptional divisor of qr, defined by the sheaf of ideals

Lemma 2.3. (EGA III, 2.2.1)

For n large enough one has :
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Theorem 2.4.

For n large enough, one has

where the self-intersections E are taken in K’(X).

Proof

On the other hand, one has

Also

One concludes by taking the Euler characteristic.

Corollary 2.5. ([Ramanujam, 1973J)

Let U be a separated scheme, of dimension r, and of finite type over an Artinian
ring A. Let I be a coherent ideal defining a subscheme of U, proper over A.
Then, for sufficiently large n, the Hilbert function HI(n) is a polynomial of
degree  r - 1.

Proof

By a result of [Nagata, 1962], there exists an open immersion U - X where X
is proper over A. One concludes by 2.4.

Now let J be an invertible sheaf on X and F a coherent sheaf. Then
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where y n means J~n, is a polynomial function in n of degree less or equal
to the dimension of the support of F (Snapper; see [Kleiman, 1966]).

The degree of an invertible sheaf J is defined to be

In particular, with the notations of 2.4. and computing in K’(X), one has

So from 2.4. one gets that the leading coefficients of the polynomial SI(n) and
HI(n), for large n, are

The above result remains true if ’1T: X - X is supposed to be a birational
proper map, such that I - (2 x is principal. The reason for this is that Tf must

map through the blowing up of I:

But for every birational map h : X - X’, the degree of an invertible sheaf 2
verifies that

([Kleiman, 1966], 1. 2 Prop. 6). Taking J= I - (2 x’ we are in the case above.
One can get another version of theorem 2.4. when I is an ?nx-primary ideal,

where ?nx is the maximal ideal corresponding to a closed point x E X.
Suppose for a moment that X is projective and Y is an ample invertible sheaf
on X. Let qr : X ~ X be as in 2.2. Changing Y by !Rn, for a convenient n, one
can suppose that

is very ample on X ([Hartshorne, 1977], II.7.10). Let H be an effective Cartier
divisor corresponding to 2 (i.e. an hyperplane section).
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Theorem 2.6.

With the above notations and hypotheses, and for sufficiently large n one has

Proof

By 2.3., for large n, one has

One then has, computing in K.(X), that

but

and

So

which gives the first equality.
For the second one, observe that applying the difference operator A, the

second equality gives the first. So the difference between the two sides of the
second equality is constant. But both sides have equal coefficients in degree
zero, so they are equal.

Note 2.7.

Observe that ~(E’ Hi) does not depend on the choice of the ample invertible
sheaf J.
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Note also, that 2.6. gives, in particular, that the multiplicity of the ideal I in
OX,x is the same as the degree of the exceptional divisor E, as is well known.

Another result related with 2.6 can be found in [Severi, 1958], p. 71.

3. Applications

The coefficient of degree zero in SI(n) is the difference in the Euler character-
istic when blowing up the ideal I (cf. 2.4). We will use this fact to compute
this difference in some examples.

a) Let H be an hypersurface in a smooth ambient Z, proper over a field k.
Let v be the multiplicity of H at a closed point x. If m and are the
maximal ideals corresponding to x in Z and H, then there is an exact

sequence for n à v :

Taking the Euler characteristic one has

where d is the dimension of Z at x.
So the coefficient of degree zero in Sm(n) is

To conclude we put all this together in the following

Theorem 3.1.

Let H be an hypersurface of a smooth ambient variety Z, proper over k. Let
03C0 : H ~ H be the blowing up with center a closed point x of H. If d is the
dimension of Z at x and v is the multiplicity of H at x then

b) Let X be an r-dimensional scheme, proper over an Artinian ring A, and let
I c (9x be a coherent ideal. By 2.4., HI(n) is a polynomial function for n » 0.
Denote Pen) this polynomial, then
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Theorem 3.2.

With the notation of 2.4.,

Proof

A simple computation gives

Therefore

From the definitions, we obtain

and we conclude easily.

Corollary 3.3.

If the Hilbert function Hl (n) is a polynomial for all n  0, then
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