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Introduction

This paper addresses Clemens’ conjecture [2] that a generic quintic
threefold contains a finite non-zero number of smooth rational curves of

’any given degree.
The paper is organized as follows.
In §1, the conjecture is reduced to producing an infinitesimally rigid

curve, and proving the irreducibility of the incidence correspondence of
smooth rational curves on quintics. Irreducibility is proven for d  7.

The construction of a rational curve on a generic quintic threefold
(Theorem 2.1) proceeds by finding one on a quartic K3 surface, then
using Clemens’ argument given in [1] to deform the curve to a generic
quintic. As a corollary (2.4), Clemens’ conjecture is true for d  7.

The number (609,250) of conics on a generic quintic is computed in
§3.

Finally, in three appendices, we explicitly compute the normal bundle
of any rational curve C of degree d  3 on any quintic threefold, smooth
along C. This explicitly exhibits a curve for d  3 whose existence was
guaranteed by Theorem 2.1.

I’d like to express my thanks here to Ron Donagi and Bob Friedman
for helpful conversations, to the referee for suggesting a simplification of
Theorem 2.1, and especially to Herb Clemens for sharing his numerous
insights and suggestions with me.

1. Formulation of the problem and a method of attack

In this paper, the term ’quintic threefold’ refers to a hypersurface of
degree 5 in P4C.

As stated in the introduction, this paper is primarily concerned with
the

CONJECTURE 1.1: Let d be a positive integer. Then the scheme of smooth
rational curves of degree d on a generic quintic threefold is finite, non-

empty, and reduced.
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REMARK: Here, ’generic’ means that the accompanying statement is true
for all quintics except those parameterized by a proper subvariety of the
moduli space of quintics.

Let C c p4 be an irreducible rational curve of degree d. Then C can
be parameterized by 5 forms 03B10(t, u),..., 03B14(t, u), homogeneous of
degree d on P1.

Let Iffd be the moduli space of smooth rational curves of degree d.
Taking into account the above description and the ambiguity arising
from the GL(2) action of P1, we see that Md is irreducible of dimension
5(d+1)-4=5d+1.

Let P = PH0(P4 OP4(5)) be the projective space of quintics in P4.
Let Y denote the incidence variety

with projection maps i7l: F~Md, 03C02 : Je P. If we use the same letter F
to describe the equation of the quintic, then Y is defined inside JI! d X P
by the equation

The left hand side of [1.2] is a polynomial of degree 5d, hence its
vanishing imposes at most 5d + 1 conditions on Md X P comparing with
dim Md = 5d + 1 gives that dim F  dim P.

CLAIM 1.3: Conjecture [1.2] is true provided that
(a) S is irreducible
(b) There exists a smooth rational curve C of degree d on some

smooth quintic threefold F with normal bundle N = Ne/p = OC(-1) ~
OC(-1).

REMARK: OC(k) denotes the unique invertible sheaf of degree k on P1.
In particular, this notation does not refer to the projective embedding
C  p 4.

PROOF of claim: Define the open set fo c Y by

together with KF ~ OF and deg T. = 2 shows that deg NCIF - - 2. Thus,
either Nc / F * OC(-1) ~ OC(-1), or H0(NC/F) ~ 0.
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Let L= {(C, F, p ) EJo X P4 | p ~ C) be the " universal curve", and
F= {(C, F, p) E Jo X P4 | p ~ F} be the " universal quintic". Then Nrc/.:F
is coherent and flat over Jo’ so that dim H0(NC/F) is an upper semicon-
tinuous function on Jo’ This says that Jo has the stratification J0 ~ J1
D 

..., where

Now (b) says that 5i is a proper subvariety of 50,
Suppose that 03C02(J1) were dense in P. Then for generic F ~ P,

7’2 l(F) ~ J1 would be a non-empty proper subvariety of 03C02-1(F) ~ J0
of positive codimension. But 03C02-1(F) n 50 - 03C02-1(F) n 51 is finite, since
any (C, F) in this set would have H0(NC/F) = 0, which says that C is
rigid in F. But then 03C0-12(F) ~ J1 could not be a nonempty proper
subvariety of positive codimension. This contradiction proves finiteness
for any smooth F in the dense open subset P - -u2 The non-emp-
tiness follows by (b) and by dim J0  dim P. Reducedness follows since
the tangent space is H0(N) = 0.
We conclude this section by showing that hypothesis (a) of (1.3) is

valid for all d  7.

LEMMA 1.4: 5 in irreducible if d  7.

PROOF: By [5], if C c P 4 is rational of degree d, then C is 6-regular,
hence H0(P4, OP4(5)) ~ H0(C, OC(5)) is surjective. So the fibers of ff,
are (irreducible) projective spaces of constant dimension 124-5d. Since
Md is also irreducible, we conclude that 5 is irreducible.

2. Smooth rational curves of arbitrary degree

The goal of this section is to prove that hypothesis (b) of (1.3) is valid for
all d.

THEOREM 2.1: Let F be a generic quintic threefold, d a positive integer.
Then there exists a smooth rational curve C c F of degree d, with NCIF =
OC(-1) ~ OC(-1).

REMARK: Theorem (2.1) was proven for infinitely many integers d in [1].
We first assert that there exists a smooth quartic surface S c P3 which

contains a smooth rational curve D of degree d. This is just a special
case of a theorem of Mori [11], which says that you can find such a
configuration D c S if

g = genus(D)  d2/8, (g, d) ~ (3, 5).
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The proof concludes by applying the deformation argument of [1] to
the curve D and quartic surface S to yield a curve with the required
properties on the generic quintic threefold.

REMARK: For d = 1, 2, 3, explicit examples of C c F having the proper-
ties of Theorem (2.1) will be given in the appendices. It is hoped that the
computational methods given there will find application elsewhere.

COROLLARY 2.2: Clemens’ conjecture (1.1) is true for d  7.

3. The number of conics on the generic quintic threefold

THEOREM 3.1: Let F be a generic quintic threefold. Then F contains

609,250 smooth conics.

REMARK: The formula for conics on quartic threefolds analogous to
cll( B ) given below can be found in [3]. A different line of reasoning is
given here, which gives an intrinsic interpretation of the vector bundle B.
We review some of the notation and results of [3].
Let vif be the moduli space of conics in p4. Then -4Y may be

identified with P(S2U*), where U denotes the universal bundle on the
Grassmanian G = G(3, 5) of planes in P4, and P( E ) denotes the projec-
tive bundle of lines in the vector bundle E.
We describe the Chow ring of vif. Let z E A1(M) denote the class of

C9p(E)(l). Then the Chow ring of vif is generated over the Chow ring of
G by z.

The Chow ring of G is well-known. It is generated multiplicatively by
Schubert cycles. Let x = class in A1(G) of ai = set of 2-planes meeting a
given line, and y = class in A2(G) of a2 = set of 2-planes passing
through a given point. By the canonical injection of A*(G) in A*(M),
we can view x and y as classes in A*(M). Thus every element of
A*(M) can be represented as polynomial in x, y, z.

For enumerative purposes, it is necessary to work with A11(M) = Z ·
[point]. The non-zero monomials of weight 11 in x, y, and z are [3]:
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Next, we let W be the scheme of conics on F, and proceed to

compute the class of W in A*(M).
Let 03C0: M ~ G denote the natural map. Then an equation for F

induces a section of S5U*, hence of 03C0*S5U*. At a point of vit repre-
senting a conic C, this section represents the plane quintinc cut out by
the 2-plane supporting C. C will lie on F if and only if this quintic
factors into C and a cubic. The set of quintics factoring in this way
globalizes to the vector bundle T ~ 03C0*S3U*, where T is the tautological
bundle on -4Y = P(S2U*) (whose sheaf of sections is O(-1)). There is a
natural inclusion of T~03C0*S3U* into 03C0*S5U*; consider the quotient
bundle B = 03C0*S5U*/(T ~ 03C0*S3U*). Then W is precisely the zero locus
of the section of B induced by an equation for F. Since F is generic, W
is finite. Thus, the number of conics on F (including multiplicity) is

cll( B). Using standard techniques for calculating Chern classes (and a
computer), this class is

This number accurately represents the number of smooth conics on F,
since: (a) There are no pairs of lines on F that meet, hence there are no
reducible conics on F: Let I be the variety of pairs of distinct intersect-
ing lines in p4. I is 10 dimensional. Let Q be the projective space of all
quintics. Let C = {(~1, e2, f) ~ I  Q |~1 ~ ~2 ~ F}. Since all pairs of
distinct intersecting lines are equivalent under PGL(5), we may choose
coordinates (X0, ... , X4) for p4 so that t1 is defined by Xl = X3 = X4 =
0, and ?2 is defined by X2 = X3 = X4 = 0. A necessary and sufficient
condition for a quintic F to lie in 03C0-11(~1, e2) is that F have an equation
of the form

where f4, f4 are quartics, and f3 is a cubic. This shows that the fibers of

iri are all 114-dimensional. Thus C is 124 dimensional. Since Q is

125-dimensional, the generic quintic cannot lie in the image of 03C02.
(b) The scheme of lines on F is reduced, hence here are no non-re-

duced conics.
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(c) The scheme of conics on F is reduced, hence each conic counts
exactly once in the above Chern class computation.

Appendix A. Lines on quintic threefolds

In these appendices, we compute the normal bundle of rational curves
with d  3 on a quintic threefold, and give an example of a curve with
NC/F ~ OC(-1) ~ OC(-1). In this appendix, we consider d = 1.

Let L c F be a line on a smooth quintic threefold. We can assume
that L is given parametrically by (t, u, 0, 0, 0), with homogeneous
coordinates (X0,..., X4) on P4, and (t, u ) on L ~ P1. Since L is the

complete intersection of hyperplanes X2 = X3 = X4 = 0, we can write the
equation of F as

where the f, are homogeneous in the Xt ( = 0, ... , 4) of degree 4.
To compute N = NLIF, we use the standard exact sequences

valid for any C c F, where T denotes a tangent sheaf. We know that
every vector bundle on L splits into a sum of line bundles [4]. By the
syzygy theorem [10] applied to P1, we know that given generators (h) of
an ideal, homogeneous in two variables, we can find a set of relations
among the ft which generate all of the relations, without higher syzygies.
This technique will allow us to compute all of the bundles in [4.2].
We start with [4.2a]. The map OL ~ OP4(1)5 |L has matrix t(X0 X1

X2 X3 X4) = t(t u 0 0 0). The cokernel must be described by the rela-
tions, which are given by the matrix

Comparing degrees, we see that TP4 | L ~ (fl L (2) ~ OL(1) ~ OL(1) ~ OL(1).
Turning next to [4.2b], we observe that TP4 | L ~ O(5) | L is induced by

££8 /8 £ - 03A3~~F/~Xi. Now aF jaXo 1 L = ~F/~X1 L = 0; ~F/~Xi L
= fi | L for i = 2, 3, 4. We abuse notation by omitting the restriction to
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L, writing fi in place of fl 1 LI thinking of the f, as quartics in t, u. So if
TP4 | L ~ O(5) | L has matrix (a1 a 2 a3 a4) in the basis for TP4 | L just
described, then we have

Solving, ai = 0, and a = fi f or i = 2, 3, 4. So we get the matrix

Again, the syzygy theorem gives the matrix of the kernel TF | L ~
T p4 L. Because of the 0 in the matrix [4.5] there is the relation given by
’(1 0 0 0), but there must also be two others among the fi.

There are always at least two independent sextic relations 03A3qifl = 0,
with the qi quadratic; this is because the qi depend on 3 - 3 = 9 parame-
ters, while sextics depend on 7. So if there are no relations of lower
weight than 6 (the generic case), these two relations will complete the
description of the kernel. In this case, TF | L ~ OL (2) ED OL(-1) ~ OL(-1).
If there happens to be a quintic relation E tih = 0 with linear ?’i, but no
quartic relation, then there will be a factor of OL in TF L. Considering
degrees in [4.2b] shows that det TF | L = deg TP4 | L - deg (QL(5) = 5 - 5
= 0, hence in this case, TF | L ~ CL (2) ~ OL ~ OL(-2). Finally, if there is
a quartic relation Y- cifi = 0 with sçalars cl , we get TF | L ~ OL (2) ED L(1)
~ (9L ( - 3).

Having computed TF 1 LI we now turn to [4.2c]. We could compute
explicitly as before, but we merely observe that since TL = (QL(2), then
the matrix of TL ~ TF | L must contain zeros at the locations correspond-
ing to factors of (QL(a) in TF | L, with a  2. With this observation, we
conclude that
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Now choose F so that f2 = t4, f3 = t2u2, f4 = u4. Then there are
clearly no relations of weight 5 or 4 among the fi, hence N ~ L(-1)~
L(-1) by [4.6].

REMARK: The number of lines on a generic F has been computed to be
2875 [6]. Since N = (!)( -1) ~ O(-1), it follows that HO(N) = 0, so the L
has no first order deformations in F, implying that L has multiplicity
one in F. This gives another proof that all lines occur with multiplicity
one.

Appendix B. Conics on quintic threefolds

Let C c F be a smooth conic on a smooth quintic threefold. We can
assume that C is given parametrically by (t2, tu, u2, 0, 0). Since C is
defined by the equations X12 - X0X2 = X3 = X4 = 0, we can write the
equation of the quintic F in the form

For some cubic f, and quartics f3, f4.
Now the matrix of OC ~ O(1)5|C in [4.2a] is 1(t2 tu u2 0 0), so the

cokernel may be described by the matrix of relations

so that TP4 | C ~ OC(3) ~ OC(3) ~ Oc (2) ~ OC(2).
Turning next to [4.2b] the matrix (a b c d ) of TP4 | C - O(5) | C ~

OC(10) is such that

where the right hand side is the vector of partial derivatives of F. Here,
we think of f as a sextic, and f3, f4 and octics, in the variables t, u.

Solving [5.3] for ( a b c d ), we get the matrix
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so TF 1 e is computed by finding relations among them. For now, assume
that f ~ 0. The relation t ( - uf ) + u ( tf ) = 0 gives an me(2) factor. Look-
ing for additional relations is equivalent to looking for relations between
f, f3, and f4. There are always at least 2 independent relations of weight
11 qf + c3f3 + c4f4 = 0 with q a quintic, and ci cubics, since (q, c3, c4)
depends on 6 + 4 + 4 = 14 parameters, while degree 11 polynomials
depend on 12 parameters; if these are the relations of lowest weight, this
gives TF | C ~ OC(2) ~ OC(-1) ~ OC(-1); a relation of weight 10 would
give TF | C ~ OC(2) ~ OC ~ OC(- 2); a relation of weight 9 would give
TF | C ~ OC(2) ~ OC(1) ~ OC(- 3); a relation of weight 8 would give TF |c
= me(2) ~ OC(2) ~ OC(-4).

Finally, considering [4.2c], we conclude as before that if f ~ 0

Now, let F be such that f = t6, f3 = t3u5, f4 = U8. By [5.5], N = OC(-1)
~ C9c( -1).

REMARK: If f = 0, then the plane P defined by X3 = X4 = 0 is tangent to
F along C. In that case, C deforms to first order to F by moving in any
direction in P, and NC/F ~ OC(4) ~ (9c(- 6).

Appendix C. Twisted cubics on quintic threefolds

The case of the twisted cubic is complicated somewhat by the fact that it
is not a complete intersection.

Let C c F be a twisted cubic curve on a quintic threefold. We can
assume that C is given parametrically by (t3, t2u, tu2, u3, 0). Let
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Then C is given by the equations QO = Ql = Q2 = X4 = 0. We can write
the equation of the quintic F in the form

where the f are cubics, and g is a quartic. As before, we consider [4.2a]
and compute a matrix of relations for t(t3 t2u tu 2 U3 0) to get

giving T4 | C ~ Oc (4) ~ OC(4) ~ OC(4) ~ OC(3), which in turn yields as a
matrix for the map TP4 | C ~ O(5) | C ~ OC(15) of [4.2b]

Here deg a = deg b = deg c = 11, deg g = 12. So TF 1 c is computed by
finding relations among a, b, c, g. The relation t2a + tub + u2c = 0,
which has weight 13, gives an OC(2) factor. This relation may reduct to
lower weight, in special cases. Rather than include the exhaustive analy-
sis here, we content ourselves with a few observations.

1. a, b, c cannot be all zero. For then the three weight 11 relations
1 · a = 1 · b = 1 · c = 0 would give TF | C ~ OC(4) ~ (9c(4) ~ OC(4), which
contradicts deg TF 1 c = 0.

2. There cannot be two independent weight 11 relations. For if there
were, then there would be a non-zero polynomial a of degree 11 and
scalars a’, b’, c’, not all zero, such that a = a’«, b = b’a, c = c’a. But
then t2a + tub + u 2c = 0 becomes (a’t2 + b’tu + c’u2)03B1 = 0, which is
impossible.

3. There are always at least two independent weight 16 relations ql a +
q2b + q3c + qg = 0, where the qi are quintics and q is a quartic. This
is because the data ( ql, q2, q3l q) depends on 23 parameters, but
needs to be reduced to 19 because of the set of trivial relations
et 2a + etub + eu2c = 0 for any cubic e, while degree 16 polynomials
depend on 17 parameters.

Summarizing, we get the following chart for the relations of lowest
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weight

REMARK: It would be very interesting to know what the number of
twisted cubics on a generic quintic is. A more detailed understanding of
the moduli space of twisted cubics is necessary. In [9], we see that this
number is divisible by 5, by studying the degeneration of the quintic to a
union of 5 hyperplanes, along the lines of [8].
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