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MACAULAY’S THEOREM AND LOCAL TORELLI
FOR WEIGHTED HYPERSURFACES

Loring Tu

Compositio Mathematica 60: 33-44 (1986)
e Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

The Torelli problem for a family of varieties deals with the question of
whether the periods of a variety determine its isomorphism class in the
family; in other words, whether the period map from the base space of
the family to a period matrix space is injective. For smooth hyper-
surfaces of a fixed degree in a projective space, several weaker variants of
the Torelli problem have been solved. With the exception of a few
degrees, Griffiths [10] proved that the differential of the period map is
injective (the local Torelli theorem) and Donagi [6] proved that the
period map has degree one (the generic Torelli theorem). On the other
hand, Catanese [3] and Todorov [15] have constructed complete intersec-
tions in a weighted projective space which turn out to be counterexam-
ples to the Torelli problem for surfaces of general type. Since the

weighted hypersurfaces are in some sense the intermediate case between
the usual hypersurfaces and the weighted complete intersections, it is

therefore of interest to study the Torelli question for the weighted
hypersurfaces.

In [10] Griffiths gave a cohomological description of the local Torelli
problem and a polynomial description of the Hodge theory of a hyper-
surface. In terms of Grifiths’ descriptions a sufficient condition for the
local Torelli theorem is as follows. Let X be the smooth hypersurface of
degree d in pn+1 given by the homogneous polynomial f. Then the
differential of the period map at X is none other than the cup product
map:

where 0 is the tangent bundle of X. Define the Jacobian ring of X to be
the graded algebra

and denote by Ra the graded piece of degree a in R. All the cohomology
groups in (0.1) can be identified with appropriate graded pieces of the
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Jacobian ring; moreover, under this identification the cup product
corresponds to polynomial multiplication. Hence, the injectivity of the
multiplication map

for some p = 0, 1,..., n implies the local Torelli theorem. In this way
Griffiths deduces the local Torelli theorem for hypersurfaces in pn+1 as
a consequence of Macaulay’s theorem in algebra.

MACAULAY’S THEOREM: Let fo, .. - , fn+1 be a regular sequence of homoge-
neous polynomials of degree d o, ... , dn+1 respectively in C[xo’...’ Xn+1]
and let R = C[x0,...,xn+1]/(f0,...,fn+1). Then R is a finite-dimensional
graded C-algebra with top degree 03C3 = 03A3( di - 1) and the multiplication
map

is nondegenerate for a + b  a.

At first sight the local Torelli problem for the weighted hypersurfaces
appears to be a routine extension of Griffiths’ result for the usual

hypersurfaces. It is made interesting by the fact that Macaulay’s theorem
is in general false in the weighted case. Macaulay’s theorem has proven
to be of interest in other context. It is for instance a crucial ingredient in
Donagi’s proof of generic Torelli for hypersurfaces. Thus, we have two
intertwining goals in this paper. First, we would like to determine some
conditions under which Macaulay’s theorem holds for a weighted ring.
This is the content of Theorem 2.8. Secondly, we would like to show that
under appropriate hypotheses on the weights and the degree d the local
Torelli theorem holds for quasismooth weighted hypersurfaces of degree
d.

To state the second result, recall that a weighted hypersurface X is the
solution set of a weighted homogeneous polynomial f(x0,...,xn+1) = 0
in a weighted projective space P(q0,...,qn+1). Such a hypersurface is
said to be quasismooth if the partial derivatives ~f/~x0,..., ~f/~xn+1 do
not vanish simultaneously on X. For the weighted projective space
P(q0,...,qn+1) let

m = the least common multiple of the weights

and

s = the sum of the weights = 03A3qi.

Our second main theorem is as follows.
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THEOREM: Suppose d is a positive integer of the form s + km, where k is an
integer  2. Then the local Torelli theorem holds for quasismooth hyper-
surfaces of degree d in P(q0,..., qn+1).

By making some hypotheses on m and s, we can prove the local
Torelli theorem for other degrees as well. See Theorem 2.10.

In Section 1 we review the Hodge theory of weighted hypersurfaces.
In Section 2 we first present a counterexample to Macaulay’s theorem in
the weighted case and then give a condition under which the theorem is
true. Next we apply a result of Delorme [4] to show that with ap-
propriate restrictions on the weights and degrees this condition is satis-
fied and therefore the local Torelli theorem follows.

It is a pleasure to thank Ron Donagi for many helpful discussions.

§1. The Hodge theory of weighted hypersurfaces

The basic facts about weighted projective spaces and weighted hyper-
surfaces may be found in Al-Amrani [1], Delorme [4], Dolgachev [5],
Mori [13], and Steenbrink [14]. We summarize here what will be needed
later.

Let q0,...,qn+1 be positive integers and let C* = C-{0} act on

Cn+2-{0} by

The quotient is the weighted projective space P(q0,...,qn+1). The
weighted projective space may also be represented as the quotient of
p n 11 by the finite group 7L q o  ...  Zqn+1. Thus it is in general a
singular variety with quotient singularities.

The weight of a monomial xK = xk00 ... xkn+1n+1 is defined to be 03A3kiqi. A
polynomial f ( xo, ... , Xn+1) = 03A3aKxK is weighted homogeneous of degree
d if it is a sum of monomials each of which has weight d. The zero locus
X of f is a weighted hypersurface. If the partial derivatives

a f/axo, ... , ~f/~xn+1 have no common zeros on X, then X is said to be
quasismooth.

PROPOSITION 1.1: A quasismooth hypersurface is a V-variety (a variety
which is locally the quotient of a smooth variety by a finite group).

PROOF: With the notations above, Let P = P(q0,...,qn+1),
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and

We claim that C ~ Vi is a smooth hypersurface in Cn+1. For simplicity,
let i = 0. Then

Since f is weighted homogeneous of degree d, Euler’s formula holds:

Let F(x1,...,xn+1) = f(1, x1,....xn+1) be the equation of C~V0 in
Cn+1. Then aF /axi = a f/axl and if aF /axi ( i = 1,,..., n + 1) all vanish
at a point of C~V0, by Euler’s formula af/axo would also vanish at that
point, contradicting the quasismoothness of X. Therefore, C n Vo is
smooth. The natural map 770: C ~ V0 ~ X ~ U0 represents X r1 Uo as the
quotient of C ~ V0 by the finite group Zg0. It follows that X is a

V-variety. D

The complex cohomology of a V-variety has a pure Hodge structure in
each dimension (Steenbrink [14]). In the case of the quasismooth weighted
hypersurface X the Hodge structure may be described as follows. Let 2
be the singular locus of X, i : X - 03A3 ~ X the inclusion, 03A9pX-03A3 the sheaf
of germs of holomorphic p-forms on X - 03A3, and ex- 1 the tangent
bundle of X - 2. Define

Then 03A9pX plays the role of 03A9p for a smooth variety and the Hodge
decomposition assumes the form

Just as for a smooth projective hypersurface in pnll 1 the Hodge
theory of a quasismooth weighted hypersurface may be described in
terms of polynomials. Let J = J(f) = (~f/~x0,...,~f/~xn+1) be the

weighted Jacobian ideal and R = C[x0,...,xn+1]/J the weighted
Jacobian ring.

THEOREM 1.2: (Steenbrink [14]). Let Hp,n-p be the primitive ( p, n - p)-
cohomology of the quasismooth weighted hypersurface X of degree d and R a
the graded piece of the Jacobian ring in degree a. Then there is an

isomorphism
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Because X is a V-variety, its Kuranishi space exists and the Zariski
tangent space to the Kuranishi space is isomorphic to H1(X, 0398X) (Fujiki
[8, (3.4)]). We let H1(X, 0398X)proj denote the subspace of H1(X, 0398X)
corresponding to first-order projective deformations. Then as in the

unweighted case, there is a canonical identification

Since we are concerned only with projective transformations, by the
locall Torelli theorem for X we will mean the injectivity of the natural
map

By the same argument as in the unweighted case, after making the
identifications (1.3) an (1.4), v is simply polynomial multiplication.

§2. Local duality and Macaulay’s theorem f or a weighted ring

Let S = C[x0,..., xn+1] be the polynomial ring in the weighted variables
x0,...,xn+1, and let J = (f0,...,fn+1) be the ideal generated by a
sequence of weighted homogeneous polynomials of degrees d0,...,dn+1.
We call the quotient ring R = C[x0,...,xn+1]/J a weighted Jacobian
ring or a weighted ring. Let qi = weight of xl.

PROPOSITION 2.1: If f0,...,fn+1 is a regular sequence in S, then R is a
finite-dimensional graded algebra over C with top degree a = 03A3(di - qi)
and the Poincaré polynomial of R is

PROOF: Since f0,...,fn+1 is a regular sequence, the zero locus of
J = (f0,..., fn+1) in Cn+2 is the origin. Let m be the ideal of the origin.
By Hilbert’s Nullstellensatz, mr ~ J for some positive integer r. Hence,
there is a surjection S/mr ~ S/J. Since S/mr is finite-dimensional, so is
R = S/J. Furthermore, the Poincaré series of R is actually a polynomial.
The computation of the Poincaré polynomial may be found in Bott and
Tu [2, p. 294]. The degree of this polynomial is 03A3(di - qi), which is
therefore the top degree of R. D

REMARK: In Proposition 2.1 since the coefficient of ta in the Poincaré
polynomial Pt(R) is 1, the top degree piece R Q is isomorphic to C.
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THEOREM 2.2: Local duality for a weighted ring. Let fo,..., fn+ 1 be a

regular sequence of weighted homogeneous polynomials in C[x0,..., Xn+1]
and let R = C[xo, ..., xn+1]/(f0,..., fn+1). Suppose ql = weight of xi and
di = deg fi. Then for any a such that 0  a  a, the pairing

given by multiplication is nondegenerate, where a = 03A3(di - qi) is the top
degree.

The simplest way to prove this theorem is probably to use the teory of
socles. Recall that the socle of a graded algebra A over a field k is
defined to be

In general the socle of A may be empty or it may contain elements in
various degrees, but if A is the weighted Jacobian ring R =

C[x0,..., xn+1]/(f0,..., fn+1) with f0, ..., fn+1 a regular sequence as in
Proposition 2.1, then Soc R turns out to be a 1-dimensional vector space
over k, generated by the top degree elements; more precisely, Soc R = R03C3,
where Q is the top degree of R. A proof of this fact may be found in the
Appendix.

PROOF OF THEOREM 2.2: The theorem is clearly true for a = Q. So we
may assume 0  a  Q.

LEMMA: Given f ~ 0 E R a, where a  a, there is an xl such that fxi ~ 0 in
R.

PROOF: If fxl = 0 for all i, then f would be in Soc R, but by Corollary
A3 of the Appendix Soc R exists only in degree Q. D

Thus, given any f ~ 0 in R a, by repeated application of the lemma we
can multiply it successively by the variables xl’s until we land in R03C3, at
which point we have a monomial XK such that fxK ~ 0 is in R a . This
proves the nondegeneracy of the multiplication map Ra  R03C3-a ~ R03C3 on
the first factor. The local duality theorem follows by symmetry. D

A counterexample to Macaulay’s theorem f or a weighted ring

Let x and x have weights 1 and 2 respectively and let J = (x20, x31) in
C[xo, xl]. Then R = C[x0, xl]/J has the following set of monomials as
a basis over C :
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Consider the multiplication map

Since x0 · R3 = 0 but Xo =1= 0, Il is not nondegenerate and Macaulay’s
theorem is false. Note however that local duality holds.

The truth of Macaulay’s theorem is closely related to the surjectivity
of the multiplication map.

PROPOSITION 2.3: Let R be a weighted ring for which local duality holds
and let o be the top degree of R. Given nonnegative integers a and b
satisfying a + b  a, if

is surjective, then Ra ~ Hom(Rb, Ra+b) is injective.

PROOF : Suppose Sb X S03C3-(03B1+b) ~ S03C3 - a is surjective. From the commuta-
tive diagram

we see that

is also surjective. Suppose u E R a and u. Rb = 0. By the surjectivity of
(2.4), u.R03C3-a = u.Rb.R03C3-(a+b) = 0. By local duality u = 0 in R a, so

Ra ~ Hom( R b, Ra+b) is injective. ~

For the weighted projective space P(q0,.... qn+1) let

and

If J = (J1,..., jv) is a subset of f 0, 1,..., n + 1} we set as in Delorme [4]

m(q|J) = lcm(qj1,...,qjv)
and
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For the unweighted proj ective space pn+1, s = n + 2, m = 1, and G = -1.
A routine computation, making use of the inequality m(q | J)  m,
simplifies (2.5) to the more palatable estimate:

THEOREM 2.7: (Delorme [4, prop. 2.2, p. 207]). Let 1 be a nonnegative
integer  G + 1. For any nonnegative integer k every weighted monomial
of degree 1 + km is divisible by a weighted monomial of degree km.

This, in conjunction with Proposition 2.3, turns out to be precisely
what we need for a formulation of the weighted Macaulay’s theorem.

THEOREM 2.8: (Weighted Macaulay’s theorem). Let R = C[x0,...,
xn+1]/J be the weighted ring defined by the ideal J of a regular sequence
f0,..., fn+1. Set di = deg fi, qi = weight xi , and Q = 03A3(di - qi). The natu-
ral map

is injective

(i) if b is a multiple of m and a - ( a + b )  max( G + 1, 0), or
(ii) if a - ( a + b) is a multiple of m and b  G + 1.

PROOF: (i) By Delorme’s theorem if 1  G + 1, then Skm X Sl - SI+km is
surjective. Set 1 = a - ( a + b) and km = b. Since a - ( a + b)  max
( G + 1, 0), the hypothesis of Delorme’s theorem is satisfied. Hence,
Sb X S03C3-(a+b) ~ Sa-a is surjective. By Proposition 2.3, the natural map
Ra ~ Hom(Rb, Ra+b) is injective. The proof of (ii) is similar with the
role of b and a - ( a + b) interchanged. ~

COROLLARY 2.9: Let R be as in Theorem 2.8. Suppose d, = d - qi for
some d. Let p be an integer between 1 and n inclusive for which gcd( m, p)
divides s. Then there are infinitely many nonnegative integers k 
(( n + 1)p/(n + 1 - p)) - (sim) such that d = (km + s)/p is a positive
integer. For any such d the natural map

is injective.

PROOF : Since di = d - q,, Q = ( n + 2) d - 2s. By Proposition 2.3 the

injectivity of the natural map
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follows from the surjectivity of the multiplication map

Since gcd( m, p) | s, the congruence mk ~ -s(mod p) has infinitely many
solutions for k, which moreover form an arithmetic progression. For
such a k, d = ( s + km )/p will be an integer. Set 1 = ( n - p + 1) d - s and
km = pd - s in Delorme’s theorem. By taking k large enough we can
ensure that l  G + 1 and hence that (2.9.1) is surjective. In fact, k 
(( n + 1)p/(n + 1 - p )) - (s/m ) will do. D

THEOREM 2.10: Let p be an integer between 1 and n inclusive for which
gcd(m, p) divides s. Then there are infinitely many nonegative integers
k  (( n + 1)p/(n + 1 - p )) - (s/m) for which d = (s + km)/p is a posi-
tive integer. The local Torelli theorem holds for quasismooth hypersurfaces
of degree d in P( qo, ... , qn+1).

PROOF: In terms of the polynomial identifications (1.3) and (1.4) the
local Torelli theorem is equivalent to the injectivity of Rd ~
Hom(R(n- p+1)d-s, R(n-p+2)d-s) for some p in {1,..., n}. So the theo-
rem follows from Corollary 2.9.

Taking p = 1 in Theorem 2.10 we obtain the local Torelli theorem for
quasismooth hypersurfaces of degree s + km for any integer k  2.

Appendix: The socle of a weighted algebra

1 would like to thank Craig Huneke for many helpful discussions on the
socle. According to him, among commutative algebraists the theory of
the socle is considered part of the folklore. My reasons for including this
appendix are twofolds. First, the socle does not appear to be widely
known among algebraic geometers. Second and more importantly, there
is no specific reference in the literature to the result on the socle of a
weighted algebra which we need. If any lesson is to be drawn from the
failure of Macaulay’s theorem for a weighted ring, it is that one cannot
blithely extrapolate from the unweighted to the weighted case. For these
reasons it is desirable to have a more or less self-contained exposition of
the socle of a weighted algebra, assuming only familiarity with the
Koszul complex and the Tor functor as in Lang [12, pp. 593-604] and
Hilton and Stammbach [11, Ch. IV]. The proofs below follow essentially
Frôberg and Laksov [7, pp. 130-131], but are recast in the context of a
weighted algebra.

Let k be a field and S = k[XI’...’ xr] a weighted polynomial ring
over k, with qi = weight of xi. Given a sequence f l, ... , fr of polynomials
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in S, the Koszul complex K.( f ) is the sequence of S-modules

where

and

If fI,..., fr is a regular sequence, then the Koszul complex is exact. By
assigning a degree to each symbol ei’ namely deg ei = dl = deg f , we can
make each Kp ( f ) into a graded S-module and each differential d into a
degree 0 homomorphism. For a graded module A, define a new graded
module A [ n ] by A[n]m = An+m. In this notation there is then a degree-
preserving isomorphism of graded S-modules

where the sum ranges over all il  ...  i p .
The socle of a graded k-algebra A is defined to be

PROPOSITION AI: Let I be an ideal in S = k[x1,..., xr] and let R = SjI.
Then TorSr(R, k) = (Soc R)[-03A3qi].

PROOF : Since k ~ Sj(XI’...’ xr), the Koszul complex K.(x):

if a free resolution of k and can be used to compute TorSr(R, k). By
definition,
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Since the isomorphism above decreases the degree by ’2.ql’ there is a

degree-preserving isomorphism TorSr(R, k) ~ (Soc R)[-03A3qi] of graded
S-modules. 0

Let I be an ideal in S. By the Hilbert syzygy theorem the graded
S-module S/I has a resolution of the form

where each differential has degree 0 and is given by multiplication by a
polynomial of positive degree on each nonzero component.

PROPOSITION A2: Let I be an ideal in S = k[XI’’’.’ xr]’ R = SjI, and
s = Eqi. Then there is a degree-preserving isomorphism of graded S-mod-
ules

(The field k can be viewed as an S-module via the isomorphism
k ~ S/m, where m is the maximal ideal (xl, ... , x,.).)

PROOF: If we tensor the resolution ( * ) by k = Slm, all the differentials
become zero. So

By Proposition Al,

COROLLARY A3: Suppose f1,..., fr is a regular sequence of weighted
homogenous polynomials of degrees d1,..., dr in S and R = S/(f1,..., fr).
Then Soc R = R03C3, where a = 03A3(di - qi).

PROOF: In the Koszul resolution K.( f ) of R, Kr(f) ~ S[-03A3di]. By
Proposition A2, there is a degree-preserving isomorphism Soc(R) ~
k[-03A3(di-qi)]. This should be interpreted as saying that there is an

isomorphism Soc R ~ k which lowers the degree by 03C3 = 03A3(di-qi).
Hence, Soc R is 1-dimensional and is generated by elements of degree a.
a
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