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BOREL’S THEOREM FOR C*-FUNCTIONS ON A
NON-ARCHIMEDEAN VALUED FIELD

W.H. Schikhof

In this note we prove the following theorem (for explanations see below).

THEOREM 1: Let K be a non-archimedean nontrivially valued field. Let A,
A, A,,... be any sequence in K. Then there exists a C®-function f:
K — K such that D, f(0)=A\,, forallne{0,1,2,...}.

DEFINITION ([1], [2]): For each n €N let V"K = {(&, §,,...£,) € K" if
i#j then §,#§;}. Let f: K— K.

Define ®,f: v""'K > K inductively as follows. ®,f:=f and, for
neN,

®,f (&1, €2 s bunn) = = (81 =€) (Bumif (€2, &3, Earnes Erit)
—@, 1 f(&1, &, €as- s 0i1))
(4, &,....6,1)EVTK).
Let neNU{0}. f is a C"-function if ®,f can be extended to a
continuous function ®, f on K"*'. For such a C"-function we set (for

neNU{0}, x, yeK)

D, f(x)=®,f(x, x,...,x)
T (x,2)= L (x=)'BI0)

Rn+1f(x’ y) :=f(x) - ]—;1+1f(x’ y)

f is a C*®-function if f is a C"-function for each n € N U {0}.

REMARK 1: The “ordinary” definition of a C”"-function (f is n times
differentiable and f" is continuous) does not lead to nice properties.
The stronger definition of above restores somewhat the damage caused
by the absence of the Mean Value Theorem.
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REMARK 2: The following statements can be obtained by elementary and
straightforward arguments (see [2]).
(i) A C"*!-function is also a C”"-function. (Locally) analytic func-
tions are C*-functions, “f is a C"-function” is a local property.
(i1) (Taylor) if f is a C"-function then

R,f(x,y)=(x=y)"®,f(x, y, y,....,y) (x, yEK)

so that

fim RS p oy (e
(x,y)~(a.a) (x—y)
Further, we have n! D, f=f.

(i) (Polynomials). Let % denote the function x — x (x € K). Then
Dx"=(")*""/(0<j<n). For a polynomial function f defined
by f(x)=Ag+ A x+ ..., x"(x €K)wehave D f(0)=A, (0<j
<m)and @, ,f=0.

REMARK 3: Observe that the characteristic of K is allowed to be # 0. For
this reason we prefer to work with D, rather than the less informative
n-th derivative.

The next theorem reduces the number of variables involved.

THEOREM 2. ([2], 10.7): Let K be as in Theorem 1, let n € N. The following
conditions on a C"~'-function f: K — K are equivalent.

(@) fis a C"-function.

(B) For eacha€ K, lim, ,,_, , o(x—y) "R, f(x, y) exists.

For the proof of Theorem 1 we need two estimates on polynomial
functions K — K.

LEMMA 1: Let Q: x—=>Ay+ A x+ ... +A,x° be a polynomial function.
Then

1D,Q(x) | <max([Aql, [Ar]s---s [A1)
(jeNU{0}, xeK, |x|<1).
If, in addition, Ay =\, = ... =\, =0 for some m < s then
1D,Q(x) 1 < |x|™ 7 max(|X i1l [A])

(JeENU{0}, jsm+1,x€K, |x|<1).
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ProOF: Everything follows from the formula
Do) = T[]
=j

LEMMA 2: Let P: x—>Ay+Ax+...+A,x" be a polynomial function
and let n€N U {0}, n<m. Then

|(x—y) "R,P(x, y)—A,| <max(|x], |y])-
max(|[Ag|,.., [A,]) (x, yEK, |x|<1,|y| <1, x#y).

PrROOF: We have @, ; P =0 so that

m+15x

R, P(x,y)=(x—-y)"" ®, P(x,y,y,...,y)=0

for all x, y € K. Hence

P(x)= T, .1 P(x, y)

and
R,P(x, y)=P(x)=T,P(x, y)=T,.P(x, y) —T,P(x, y)
=Y (x=»)'DP(y).
Jj=n
We find for x, y €K, |x| <1, |y| <1, x+#y that

(*) (x—y) "R,P(x,y)=\,=D,P(y)-A\,

b Y (x-y) "DP(y)

Jj=n+1
Now
D,,P(y):x,,+)\,,+1(”j1‘1)y+...+>\m(’,’:)y’"*"
so that
ID,P(y)=A,| <|yl(max|Agl,..., |A,]).

Further, by Lemma 1 we have

| D,P(y)| <max(|Aql,..., [A,])
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SO

Y (x=y) " "DP(y)|<|x—yl-max([Agl,..., [A])-

Jj=n+1
Together with (*) this proves Lemma 2.

PrOOF OF THEOREM 1: Let

ryi={n(max(|Al, [A],..os [N, 1) +1)) (nEN).

Then
n>r>.., limr=0
n— oo
and
max( [Ao], |A;] A, )<n!
T Aol 1AL [AL]) <

for each n. Define f: K — K as follows.

0 if |x|>n
P(x)=Ag+Ax+...+A,x"
fneN,r <|x|<r,

Apifx=0

f(x)=

Clearly f is a C*-function at a foreach a € K, a#0.If r,,, < |x| <71,
for some m € N then

If(x)‘)‘o| = |Pm(x)_>‘0| = |7\1x+}\2x2+...+}\mx”’|
< |xmax(| Ay |, [Azl,.0s [AL])
<r, max(|Agl, [Ar],..s A ) <sm™ L

We have proved the case n=0 of the following statement. For each
n €N U {0} the function f is C" and D, f(0)=A; (0 <j<n). To prove
the step from n — 1 to n it suffices, according to Theorem 2 and Remark
2 (i1), to show that

lim  (x—y) "R,f(x, y)=A,.
(x. 7)=(0,0)

In its turn, this statement follows, by continuity of R, from “if

k=2n, 0<|x|<r,0<|y|<r,x#y
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then

(x=y) "R, f(x, )=\, | <k7'”

and it is the latter statement that we are intended to prove. So let
Tl < | X<ty Fepr < |y <7

for some m, s> k. Then
R,f(x, y)=P,(x)-T,P(x, y).

We consider two cases.

(i) s>m. Writing P,=P, + Q where Q(¢)=X,,¢" '+ ... +A¢°
we obtain

[(x=») "R, f(x, ») =N, =l(x=y) "(P,(x)=T,P,(x, y))
_>\n +(X _y)“n(Tan(x’ y)_ T;,P_‘.(x, y))l
<|(x=y) "R, P,(x, y)=\,|VI|x=y|"IT,Q(x, y)|.

By Lemma 2 the first part is < max(|x]|, |y]|) -max(|Ay],
A heeos [N D <7, max(|Ag ], [Ar]ee (A Dsm P <k
To estimate the second part we may assume that s >m. Then |[x —y| >
| ¥|. Using this, the definition of 7,, and Lemma 1, we obtain

n—1

Ix=y|"IT,0(x, y) =1 L (x=y)" "DO(y)|

Jj=0

< max |x =y /7" y|" T max(| Ao ..., [A])
0gj<n

m+1—n 1

<|yl max(|Agl,.... A, | <rymax(Agl,.... [A ) <s™

(ii) s <m. Then set P, =P, + Q where Q(£)=A, * '+ ... +A
We find

tm

m

(x—») "R, f(x, y) =N, I =(x=y) "(P(x) = T,P(x, y))
A, +(x=y) (P, (x)=P(x))|

<1(x=y)"R,P(x, y) =N, | VI(x=y) "Q(x)].
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By Lemma 2 the first part is < max(|x|, | y|)-max(|Ag],..., |A;])<
r, max(|Ag|,..., |A;])<s '<k~'. For the second part observe that
[x —y|>]x|] and |Q(x)| = | A, x*T 4+ ... +A,x"| <
|x|**! max(|Ag|,---» |A,,])- Then

[(x=y) "Q(x) < [x " " max (Ao ..., IN,,1)
< |xmax (|Xol,..., [A,1)

<1, max(|Agl,. .oy [A ) <m '<kTh
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