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In this note we prove the following theorem (for explanations see below).

THEOREM 1: Let K be a non-archimedean nontrivially valued field. Let Xo,
XI’ .. be any sequence in K. Then there exists a C’-function f:
K ~ K such that Dnf(0) = 03BBn for all n E (0, 1, 2, ... 1.

DEFINITION ([1], [2]) : For each n E N let ~nK := {(03BE1, 03BE2,... 03BEn) E Kn: if
i =1= j then 03BEi ~ ej 1. Let f: K - K.

Define èPnf: ~n+1K ~ K inductively as follows. èPof:= f and, for
n E N,

Let n ~ N ~ {0}. f is a Cn-function if 03A6nf can be extended to a

continuous function 03A6nf on Kn+1. For such a Cn-function we set (for
n ~ N ~ {0}, x, yEK)

f is a C~-function if f is a Cn-function for each n E N ~ {0}.
REMARK 1: The "ordinaiy" definition of a Cn_function ( f is n times
differentiable and f(n) is continuous) does not lead to nice properties.
The stronger definition of above restores somewhat the damage caused
by the absence of the Mean Value Theorem.
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REMARK 2: The following statements can be obtained by elementary and
straightforward arguments (see [2]).

(i) A Cn+l-function is also a C"-function. (Locally) analytic func-
tions are C’-functions, "f is a Cn-function" is a local property.

(ii) (Taylor) if f is a Cn-function then

so that

Further, we have n ! Dn f = f(n).
(iii) (Polynomials). Let  denote the function x H x (x e K). Then

Djn = (n)n-J(0  j  n). For a polynomial function f defined
by f(x) = Ào + 03BB1x + ... Àmxm(x E K) we have DJ(0) = ÀJ (0  j
 m) and 03A6m+1f = 0-

REMARK 3: Observe that the characteristic of K is allowed to be ~ 0. For
this reason we prefer to work with Dn rather than the less informative
n-th derivative.
The next theorem reduces the number of variables involved.

THEOREM 2. ([2], 10.7): Let K be as in Theorem 1, let n E N. The following
conditions on a Cn-1-function f : K - K are equivalent.

( a) f is a Cn function.
(03B2) For each a E K, lim (x, y) ~ a, a)(x - y)-nRnf(x, y) exists.

For the proof of Theorem 1 we need two estimates on polynomial
functions K - K.

LEMMA 1: Let Q: x - ao + Xlx + ... +Àsxs be a polynomial function.
Then

If, in addition, 03BB0 = À, =... = 03BBm = 0 for some m  s then
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PROOF: Everything follows from the formula

LEMMA 2 : Let P : x ~ 03BB0 + 03BB1x + ... +Àmxm be a polynomial function
and let n E N U (0), n  m. Then

PROOF: We have 03A6m+1P = 0 so that

for all x, y e K. Hence

and

We find for x, y E K, 1 x |  1, y l  1, x =1= y that

Now

so that

Further, by Lemma 1 we have
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so

Together with (*) this proves Lemma 2.

PROOF OF THEOREM 1: Let

Then

and

for each n. Define f : K ~ K as follows.

Clearly f is a C’-function at a for each a E K, a ~ 0. If rm+1  |x|  rm
for some m E 1B1 then

We have proved the case n = 0 of the following statement. For each
n ~ N u {0} the function f is C" and DJf(0) = Ày (0  j  n ). To prove
the step from n - 1 to n it suffices, according to Theorem 2 and Remark
2 (ii), to show that

In its turn, this statement follows, by continuity of Rn, from "if
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then

and it is the latter statement that we are intended to prove. So let

for some m, s à k. Then

We consider two cases.

(i) s  m. Writing P, = Pm + Q where Q (t) = 03BBm+1tm+1 + - .. +ÀstS
we obtain

By Lemma 2 the first part is  max(|x|, |y|) · max(|03BB0|,
|03BB1|,..., |03BBm|)  rm max(|03BB0|, |03BB1|,.., |03BBm|)  m-1  k-1.
To estimate the second part we may assume that s &#x3E; m. Then |x - y| &#x3E;
|y|. Using this, the definition of Tn, and Lemma 1, we obtain

(ii) s  m. Then set Pm = Ps + Q where Q(t) = 03BBs+1ts+1 + ... +Àmtm.
We find



By Lemma 2 the first part is  max( |x|, |y|) · max(|03BB0|,..., |03BBs|) 
rs max( 1 Ào 1,..., |03BBs|)  s-1  k-1. For the second part observe that

|x - y| &#x3E; |x| 1 and 1 Q) ) 1 = |03BBs+1xs+1 + ... +Àmxm 1 
|x|s+1 max(|03BB0|,..., |03BBm|). Then
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