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The goal of this appendix is to prove the following slightly improved
version of Theorems 1 and 4 of the preceding paper (which will be
referred to as [FP], all other references being those of [FP]).

THEOREM: Let D be a cusp singularity with r  3 components and m = r + 9.
Assume the dual cusp b lies anticanonically on a rational surface. Then for
every good embedding T: R ~ Tpqr  039B except possibly the primitive em-
bedding of T3,6,12 there is a family W ~ 0394 as in [FP], Theorem 4, where the
singularity D’ of Wo is in fact D. Furthermore (- 2, - 5, -11) has a good,
non primitive embedding.

By the discussion following Theorem 4 of [FP] the result is already
proved in all cases except D = ( - 4, - 5, - 9) and ( - 2, - 5, -11). Be-
fore dealing with these cases we make some general remarks, valid for all

Tp,q,r.

DEFINITION: Let T be an over lattice of Tpqr. Then the geometric section
of the map T ~ T/Tpqr is the section a: T/Tqqr ~ T which to t E TITPI,
associates the unique 03C3(t) ~ T all of whose coefficients in the natural
basis of Tpqr are &#x3E; 0 and  1. The support of a(t) consists of the

sublattice of TPqr spanned by the vertices where the coefficients of a(t)
are non zero.

We will construct branched covers using 03C3(t), whence the terminology.

DEFINITION: If T: R - L is an embedding of lattices, then the primitive
sublattice of L generated by R is called the saturation of R for cp.

We make the following hypothesis, which holds for all the overlattices
considered in this note: (H) for every non-trivial t ~ Tpqr/T, , , the
support of the geometric section a(t) has connected components with
negative definite intersection matrix of type An- It seems that ( H ) holds
for all overlattices of TPqr, where p + q + r = 21, which is the case

considered in this note, but J. Wahl has given an example of an
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overlattice T of T4,7,9 for which it fails. Wahl shows that T is the

saturation of a good embedding of T4,7,9, so that Lemma 1 below fails
without (H).

LEMMA 1: Let (p: Tpqr  A be a good embedding in the sense of Looijenga,
and let T be the saturation of Tpqr for cp. Assume hypothesis (H). Then for
any non-trivial t E TIT the geometric section 0’( t) of t has square

03C3(t)2  -4.
PROOF: Since cp is good there is a K - 3 surface X with Picard group T
and a T pqr configuration ([FP], Lemma 2). Apply Riemann-Roch to 03C3(t)
considered as an element of Pic X. The hypotheses imply that

H0(X, O(03C3(t))) and H2(X, O(03C3(t))) are trivial, so that the desired

inequality is equivalent to the assertion that dim H1(X, O(03C3(t)))  0.

LEMMA 2: Let V by a rational surface containing the minimal resolution of
either the cusp D or the associated Dpqr singularity, and assume the

orthogonal complement Tpqr of the components of the exceptional divisor
contains a lattice Tp’,q’,r’ of finite index such that 

(i) the vertices of the Tp’,q’,r’ are represented by P 
1’ 

s, so V has a Tp’,q’,r’
configuration, in the language of [FP].

(ii) hypothesis (H) holds.
Then 03C3(t)2 = -2 for every non trivial t, and the singularity is in fact the

cusp if TpqlTp’,q’,r’ is non-trivial.

PROOF: Contract the connected components of the support of 03C3(t),
considered as a fractional divisor on V, to rational double points. Call
the resulting surface V. As in Nikulin, "Finite automorphism groups of
Kâhler K 3 surfaces" (Trans. Moscow Math. Soc. 38(2), (1980)), §8.2, we
can construct using 03C3(t) a cyclic cover Z of V ramified only above these
rational double points and with Z smooth above the double points. The
dualizing sheaf on V is anti-effective, so that on Z is too. If the resolution
on V is that of Dpqrl then ’171 of the exceptional locus is trivial so that Dp qr
splits into several isomorphic singularities in the cover, if the cover is non
trivial. By the classification of singular algebraic surfaces with trivial

canonical divisor due to J.Y. Mérindol (C.R.A.S. Paris 293, 417-420

(1981), théorème 1.4) this cannot occur. So the resolution on V is that of
D (where the exceptional locus has ’171 === Z). By Mérindol’s classification
again, we see that Z is rational, so 77BZ, OZ) = 0. Use standard ramifica-
tion theory and Riemann-Roch on V to compute H1(Z, OZ): it is zero if
and only if 03C3(t)2 = - 2 for all non-trivial t.

We now check the theorem in the two remaining cases.

Case I: ( - 4, - 5, - 9)
T’s,6,lo has one overlattice Tl in which it has index 4. We represent it by
listing the non-zero coefficients of the geometric section of a generator of
T1/T5,6,10:
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T5,6,10 also has one overlattice T2 in which it has index 2, corresponding to
the subgroup of order 2 of T1/T5,6,10. These are the only overlattices of
TS,6,IO as can be checked using [P2], Lemmas 1 and 2. In both cases, for
all non-trivial t, 03C3(t)2 = -4 so that by Lemma 2 (and [FP] Lemma 9, (ii))
applied to ( p’, q’, r’) = (5, 6, 10) the only cusp or Dolgachev singularity,
corresponding as in [FP] Lemma 2 to Tpqr, with rank T5,6,10 = 19, and in
the negative part of the versal deformation of D5,6,10 is ( - 4, - 5, - 9) or
DS,6,IO itself. The theorem now follows by examining the statement of
[FP], theorem 4: all other possibilities for D" have been ruled out.

Case II: (-2, -5, -11)
T3,6,12 has two overlattices, and has index 3 in both. The first, which we
call Ml corresponds to the geometric section
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The other, M2, to

Note that for Ml (resp. M2 ) every non-trivial geometric section has
square - 4 (resp. - 2), so that M2 is not the saturation of a good
embedding of T3.16,12 (Lemma 1) and MI cannot correspond to a Tp,q,r as
in Lemma 2, where ( p’, q’, r’) = (3, 6, 12). On the positive side we have:

LEMMA 3: 

(i) There exists a good embedding 99: T3,6,12 - A with saturation Ml.
(ii) There exists a smooth rational surface V containing a nodal rational

curve C of self-intersection -10 and a T3,6,12 configuration of rational
curves orthogonal to C. The saturation of T3,6,12 in H2(V, Z) is then
necessarily M2.

PROOF: The existence of 99 in (i) is standard, using [N]; the computation
that T is good is given in Lemma 4.

For (ii) we exhibit V explicitly: take two inflection points on a nodal
cubic C in P2, and blow up 15 times at one, and 4 times at the other. The
proper transforms of the two inflection lines and of the exceptional
curves with self-intersection - 2 form a T3,6,12 diagram.

We now conclude the proof of the theorem. By Lemma 3, i) we
construct using T a family W - à as in Theorem 4 of [FP]. We want to
show that the special fiber Wo has a ( - 2, - 5, -11) singularity. If not
Wo has a (-10) cusp singularity: indeed the only other possibility
allowed by theorem 4 is a D2,3,16 singularity, but this is ruled out by
Lemma 2.

So assume Wo has a ( -10) cusp singularity. Call the singular point p.
As in Lemma 11 of [FP] let B be a Milnor ball around p, and let

Yt = Wt - B. All the (Y, ~Yt) are diffeomorphic, and aY is a certain
S1 X S’1 bundle over S’ (described for example in [P3], but we will not
need more detailed information).
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Let L = H2 (Y,). Note that L has rank 20, and has a kernel of dim. 1.
We have a natural inclusion of lattices for t ~ 0: L = H2(Yt)  H2(Wt) =
A. Let L’ be the saturation of L in A. Since T3,6,12  L and the saturation
of Tp,q,r by the embedding into A is Ml, we have M1  L’; and since Ml
is non degenerate M, - L’ where indicates the quotient by the kemel.
_ 

But we also have L = H2(Y0), and by construction we have M2 ~ L c
L’. So finally we have

but this is absurd since L’ has an integer valued quadratic form and Ml
and M2 are distinct maximal overlattices of T3,6,12.

To conclude we must show that the embedding of Lemma 3(i) is good.
Using the definition of good given by Looijenga in [L2] it is possible to
check, via a straightforward but involved computation, whether any given
embedding of a Tpqr is good or not. (I thank Looijenga for explaining to
me how to do this, and for showing me some unpublished manuscripts
on this subject). There is one situation, covering the case we are inter-
ested in, which can be treated using a generalization of Looijenga’s proof
that primitive embeddings are good:

LEMMA 4: Let T: Tpqr ~ 039B and let T be the saturation. If for every
non-trivial t E T/Tpqr the geometric section a(t) satisfies :

(i) 03C3(t)2 = -4;
(ii) the support of 0’( t) is contained in 2 branches of Tpqr;

then the embedding is good.
Hypothesis (ii) is probably unnecessary. It is rather restrictive, since

for instance it forces |T/Tpqr|  3.
PROOF: We label the vertices of Tpqr as in [L2]:
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Let n be the fundamental isotropic element ([L2], §3): e.g., if 3  p  q
 r then n = Ap-2 + 2Ap-1 + 3E + 2Bq-1 + Bq-2 + 2Cr-1 + Cr-2.

According to [L2], we must show that for any t E T such that t. n = 0
and t2 = - 2, then either t is orthogonal to all components in the support
of n, or is supported on the support of n.

Write t = s - u, where s E Tp qr and u is the geometric section of an
element of T/Tpqr. By Looijenga’s result in the primitive case we may
assume u ~ 0. By hypothesis u is supported on 2 branches of Tpqr, say for
concreteness on ( E, Bj 1  j  q - 1, Ck 1  k  r - 1). It is easy to see

that |T/Tpqr|  3 and u is of the form:

if the order is 2. Thus q and r are even. The condition u 2 = - 4 implies
q + r = 16. This case was already treated in [P2]. Or if the order is 3:

(or interchange 1/3 ~ 2/3). So q = r ~ 0 mod 3, and q + r = 18.
Note that t is obviously not supported on n.
We will need the following two facts on the -Ak root system. Let

«1, ... , ak be the standard basis, so that a, 2 = -2, al’ aj = 1 if i - j| = 1
and 0 if |i - j| &#x3E; 1.

SUBLEMMA 1 : (Looijenga) If z = 03A3kJ=1 zjaj is in the integral span of the aJ’
then z - z + z21  0 with equality iff z = 0 and z - z + zi 2 = -1 iff ± z = al +
... +a, for some 1  k.

SUBLEMMA 2: If k = mp - 1 ( m and p positive integers) and

then for any w in the integral span of the aJ’
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PROOF: We only prove Sublemma 2. Use the standard representation of
- Ak in R"’ 

1 with basis e1,...,ek+1 and bilinear form el · eJ = -03B4ij.
Then aJ 

= 

eJ - eJ+1, W 
= 03A3k+1J=1tJeJ with 03A3k+1J=1tJ = 0, and tJ ~ Z.

So that

Now make the change of variable to complete the square. The equation
becomes 2u · w - w2 = 03A3k+1J=1s2j - m with constraint 03A3k+1J=1sJ = m. Clearly
this is always &#x3E; 0, as required.

We go back to the original situation: t = s - u. Note that replacing t
by t + an for any integer a affects neither the hypothesis nor the

conclusion of what we are trying to show, so we may assume the

coefficient of s in A p -1 1 (the vertex in Tpqr, not the root system.... ) is  0
and strictly less than the corresponding coefficient of n.

Write s = z + w, where z is supported on (Al, 1  i  p - 1) and w on
( E, BJ, 1  j  q - 1, Ck, 1  k  r - 1). Let z1 be the coefficient of Ap-1

in z and we that of E in w. Now

If z, = 0, since z2  0, u2  -4 by hypothesis and w 2 - 2a · w  0 by
sublemma 2, there is no solution to this equation. The rest of the proof
consists in checking case by case the remaining values of zl : 0  z, 
coefficient of Ap- 1 in n.

For concreteness we only do the case ( p, q, r) = (3, 6, 12) and T the
overlattice M, defined above. Then there is only one case to check:
zl = 1. Note that z · n = u · n = 0 so the hypothesis on t implies w - n = 0.
Using sublemma 1, equation (* *) becomes:

Identify the chain B1,..., Bq-1, E, CI-1, .... CI with the AI, root system
in the obvious way and use the standard representation as in the proof of
Sublemma 2. Then
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and the condition w - n = 0 is

Thus we are trying to solve in integers (use equation ( * ) in ( * * * )) :

with constraints 03A318J=1tJ = 0 and (****).
Make the obvious change of variable to complete the square. The

equation becomes :

with constraints

and

It is obvious there are no solutions in integers. Therefore there are no
candidates for t, and the Lemma is proved.
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